
Fast Random Walk with Restart and Its Applications

Hanghang Tong
Carnegie Mellon University

htong@cs.cmu.edu

Christos Faloutsos
Carnegie Mellon University

christos@cs.cmu.edu

Jia-Yu Pan
Carnegie Mellon University

jypan@cs.cmu.edu

Abstract

How closely related are two nodes in a graph? How
to compute this score quickly, on huge, disk-resident, real
graphs? Random walk with restart (RWR) provides a good
relevance score between two nodes in a weighted graph,
and it has been successfully used in numerous settings,
like automatic captioning of images, generalizations to
the “connection subgraphs”, personalized PageRank, and
many more. However, the straightforward implementations
of RWR do not scale for large graphs, requiring either
quadratic space and cubic pre-computation time, or slow
response time on queries.

We propose fast solutions to this problem. The heart of
our approach is to exploit two important properties shared
by many real graphs: (a) linear correlations and (b) block-
wise, community-like structure. We exploit the linearity by
using low-rank matrix approximation, and the community
structure by graph partitioning, followed by the Sherman-
Morrison lemma for matrix inversion. Experimental results
on the Corel image and the DBLP dabasets demonstrate
that our proposed methods achieve significant savings over
the straightforward implementations: they can saveseveral
ordersof magnitude in pre-computation and storage cost,
and they achieve up to 150x speed up with 90%+ quality
preservation.

1 Introduction

Defining the relevance score between two nodes is one
of the fundamental building blocks in graph mining. One
very successful technique is based on random walk with
restart (RWR). RWR has been receiving increasing interest
from both the application and the theoretical point of view
(see Section (5) for detailed review). An important research
challenge is its speed. especially for large graphs.

Mathematically, RWR requires a matrix inversion. There
are two straightforward solutions, none of which is scal-
able for large graphs: The first one is to pre-compute and
store the inversion of a matrix (“PreCompute” method); the

second one is to compute the matrix inversion on the fly,
say, through power iteration (“OnTheFly” method). The
first method is fast on query time, but prohibitive on space
(quadratic on the number of nodes on the graph), while the
second is slow on query time.

Here we propose a novel solution to this challenge.
Our approach, BLIN, takes the advantage of two prop-
erties shared by many real graphs: (a) the block-wise,
community-like structure, and (b) the linear correlations
across rows and columns of the adjacency matrix. The pro-
posed method carefully balances the off-line pre-processing
cost (both the CPU cost and the storage cost), with the re-
sponse quality (with respect to both the accuracy and the
response time). Compared toPreCompute, it only requires
pre-computing and storing the low-rank approximation of
a large but sparse matrix, and the inversion of some small
size matrices. Compared withOnTheFly, it only need a few
matrix-vector multiplication operations in on-line response
process.

The main contributions of the paper are as follows:

• A novel, fast, and practical solution (BLIN and its
derivative, NBLIN);

• Theoretical justification and analysis, giving an error
bound for NBLIN;

• Extensive experiments on several typical applications,
with real data.

The proposed method is operational, with careful de-
sign and numerous optimizations. Our experimental results
show that, in general, it preserves 90%+ quality, while (a)
saves several orders of magnitude of pre-computation and
storage cost overPreCompute, and (b) it achieves up to
150x speedup on query time overOnTheFly. For the DBLP
author-conference dataset, with light pre-computationaland
storage cost, it achieves up to 1,800x speedup with no qual-
ity loss. Figure (1-a) shows some results for the auto-
captioning application as in [22]. Figure (1-b) shows
some results for the neighborhood formation application as
in [25].

‘Jet’ ‘Plane’ ‘Runway’ ‘Texture’ ‘Candy’ ‘Background’

(a) Automatic image captioning. The proposed
method and OnTheFly output the same result
within 0.04 seconds and 4.5 seconds, respectively.

(b) Neighborhood formulation. Find the 10 most related
conferences for ICDM. The proposed method andOnThe-
Fly output the same result within 0.013 seconds and 23.97
seconds, respectively.

Figure 1. Application examples by RWR

The rest of the paper is organized as follows: the pro-
posed method is presented in Section 2; the justification and
the analysis are provided in Section 3. The experimental re-
sults are presented in Section 4. The related work is given
in Section 5. Finally, we conclude the paper in Section 6.

2 Fast RWR

2.1 Preliminary

Table 1 gives a list of symbols used in this paper.
Random walk with restart is defined as equation (1) [22]:

consider a random particle that starts from nodei. The par-
ticle iteratively transmits to its neighborhood with the prob-
ability that is proportional to their edge weights. Also at
each step, it has some probabilityc to return to the nodei.
The relevance score of nodej wrt nodei is defined as the

steady-state probabilityri,j that the particle will finally stay
at nodej [22].

~ri = cW̃~ri + (1− c)~ei (1)

Equation (1) defines a linear system problem, where~ri

is determined by:

~ri = (1− c)(I − cW̃)−1~ei

= (1− c)Q−1~ei (2)

The relevance score defined by RWR has many good
properties: compared with those pair-wise metrics, it can
capture the global structure of the graph [14]; compared
with those traditional graph distances (such as shortest path,
maximum flow etc), it can capture the multi-facet relation-
ship between two nodes [26].

One of the most widely used ways to solve random walk
with restart is the iterative method, iterating the equation (1)
until convergence, that is, until theL2 norm of successive
estimates of~ri is below our thresholdξ1, or a maximum iter-
ation stepm is reached. In the paper, we refer it asOnThe-
Fly method. OnTheFlydoes not require pre-computation
and additional storage cost. Its on-line response time is lin-
ear to the iteration number and the number of edges1, which
might be undesirable when (near) real-time response is a
crucial factor while the dataset is large. A nice observa-
tion of [25] is that the distribution of~ri is highly skewed.
Based on this observation, combined with the factor that
many real graphs has block-wise/community structure, the
authors in [25] proposed performing RWR only on the par-
tition that contains the starting pointi (methodBlk). How-
ever, for all data points outside the partition,ri,j is simply
set0. In other words,Blk outputs a local estimation of~ri.

On the other hand, it can be seen from equation (2) that
the system matrixQ defines all the steady-state probabil-
ities of random walk with restart. Thus, if we can pre-
compute and storeQ−1, we can get~ri real-time (We refer to
this method asPreCompute). However, pre-computing and
storingQ−1 is impractical when the dataset is large, since
it requires quadratic space and cubic pre-computation2.

On the other hand, linear correlations exist in many real
graphs, which means that we can approximateW̃ by low-
rank approximation. This property allows us to approximate
Q−1 very efficiently. Moreover, this enables a global esti-
mation of~ri, unlike the local estimation obtained byBlk.
However, due to the low rank approximation, such kind of
estimation is conducted at a coarse resolution.

1Here, we storeW̃ in a sparse format.
2Even if we useOnTheFlyto compute each column ofQ−1, the pre-

computation cost is still linear to the number of noden.

Table 1. Symbols
Symbol Definition

W = [wi,j] the weighted graph,1 ≤ i, j ≤ n

W̃ the normalized weighted matrix associated withW

W̃1 the within-partition matrix associated with̃W
W̃2 the cross-partition matrix associated with̃W

Q the system matrix associated withW: Q = I− cW̃

D n× n matrix,Di,i =
∑

j wi,j andDi,j = 0 for i 6= j

U n× t node-concept matrix
S t× t concept-concept matrix
V t× n concept-node matrix
0 a block matrix, whose elements are all zeros
~ei n× 1 starting vector, theith element1 and0 for others
~ri = [ri,j] n× 1 ranking vector,ri,j is the relevance score of nodej wrt nodei

c the restart probability,0 ≤ c ≤ 1
n the total number of the nodes in the graph
k the number of partitions
t the rank of low-rank approximation
m the maximum iteration number
ξ1 the threshold to stop the iteration process
ξ2 the threshold to sparse the matrix

2.2 Algorithm

In summary, the skewed distribution of~ri and the block-
wise structure of the graph lead to a local/fine resolution
estimation; the linear correlations of the graph lead to a
global/coarse resolution estimation. In this paper, we com-
bine these two properties in a unified manner. The proposed
algorithm, BLIN is shown in table (2). A pictorical de-
scription of BLIN is given in figure (2).

W̃1 =

W̃1,1 0 ... 0

0 W̃1,2 ... 0

...

0 ... 0 W̃1,k

 (3)

Q−1
1 =

Q−1
1,1 0 ... 0

0 Q−1
1,2 ... 0

...

0 ... 0 Q−1
1,k

 (4)

2.3 Normalization on W

B LIN takes the normalized matrixW̃ as the input.
There are several ways to normalize the weighted ma-
trix W. The most natural way might be by row nor-
malization [22]. Complementarily, the authors in [27]
propose using the normalized graph Lapalician (W̃ =

D−1/2WD−1/2). In [26], the authors also propose penal-
izing the famous nodes before row normalization for social
network.

It should be pointed out that all the above normalization
methods can be fitted into the proposed BLIN. However,
in this paper, we will focus on the normalized graph Lapla-
cian3 for the following reasons:

• For real applications, these normalization methods of-
ten lead to very similar results. (For cross-media corre-
lation discovery, our experiments demonstrate that nor-
malized graph Laplacian actually outperforms the row
normalization method, which is originally proposed by
the authors in [22]

• Unlike the other two methods, normalized graph
Laplacian outputs the symmetric relevance score (that
is ri,j = rj,i), which is a desirable property for some
applications.

• The normalized graph Laplacian is symmetric, and it
leads to a symmetricQ1, which will save50% storage
cost.

• It might be difficult to develop an error bound for
B LIN in the general case. However, as we will show

3It should be pointed out that strictly speaking,~ri is no longer a proba-
bility distribution. However, for all the applications we cover in this paper,
it does not matter since what we need is a relevance score. On the other
hand, we can always normalized~ri to get a probability distribution.

Table 2. B LIN
Input: The normalized weighted matrix̃W and the

starting vector~ei

Output: The ranking vector~ri

Pre-Computational Stage(Off-Line):
p1. Partition the graph intok partitions by METIS [19];
p2. DecomposẽW into two matrices:W̃ = W̃1 + W̃2

according to the partition result, wherẽW1 contains
all within-partition links andW̃2 contains all cross-
partition links;

p3. LetW̃1,i be theith partition, denoteW̃1 as
equation(3);

p4. Compute and storeQ−1
1,i = (I− cW̃1,i)

−1 for
each partitioni;

p5. Do low-rank approximation for̃W2 = USV;
p6. DefineQ−1

1 as equation (4). Compute and store
Λ̃ = (S−1 − cVQ−1

1 U)−1.
Query Stage (On-Line):
q1. Output~ri = (1− c)(Q−1

1 ~ei + cQ−1
1 UΛ̃VQ−1

1 ~ei).

in Section 3.3, it is possible to develop an error bound
for the simplified version (NBLIN) of B LIN, which
also benefits from the symmetric property of the nor-
malized graph Laplacian.

2.4 Partition number k: case study

The partition numberk balances the complexity of̃W1

andW̃2. We will evaluate different values fork in the ex-
periment section. Here, we investigate two extreme cases of
k.

First, if k = 1, we haveW̃1 = W̃ andW̃2 = 0. Then,
B LIN is just equivalent to thePreComputemethod.

On the other hand, ifk = n, we haveW̃1 = 0 and
W̃2 = W̃. In this case,Q1 = I and we have the following
simplified version of BLIN as in table(3). We refer it as
NB LIN.

Table 3. NB LIN
Input: The normalized weighted matrix̃W and the

starting vector~ei

Output: The ranking vector~ri

Pre-Computational Stage(Off-Line):
p1. Do low-rank approximation for̃W = USV;
p2. Compute and storẽΛ = (S−1 − cVU)−1.
Query Stage (On-Line):
q1. Output~ri = (1− c)(~ei + cUΛ̃V~ei).

An application of random walk with restart is neighbor-
hood formulation in the bipartite graph [25]. Suppose there

(a) Original weighted graph, consisting of 3 partitions,
which are indicated by the dash circles

W

W

W

W

U S V

=

+

()()

1 1

1 2

1 3

0 0

0 0

0 0

,

,

,

(b) Decompose original weighted graph into within-
partition matrix (W̃1), which is block-diagonal, and
cross-partition matrix, which is approximated by low-
rank approximation (U, S, andV)

I cW

Q

Q

Q

c

Q

−

=

+

−

−

−

−

−

1

1 1

1

1 2

1

1 3

1

1 1

0 0

0 0

0 0

,

,

,

,

11

1 2

1

1 3

1

1 1

1

1

0 0

0 0

0 0

0 0

0Q

Q

U V

Q

Q
,

,

,

−

−

−

()()Λ

,,

,

2

1

1 3

1

0

0 0

−

−

 Q

(c) Approximate the inverse of(I− cW̃) by the inversi-
on of a few small size matrices(Q1,1, Q1,2, Q1,3 andΛ̃),
which can be pre-computed and stored more efficiently.

Figure 2. A pictorical description of B LIN

aren1 andn2 nodes for each type of objects in the bipartite
graph;M is then1 × n2 bipartite matrix. The normalized
weighted matrix, the starting vector and the ranking vector
have the following format:

W̃ =

(
0 M

MT 0

)
~ri =

(
~ri,1

~ri,2

)
~ei =

(
~ei,1

~ei,2

)
(5)

As a direct application of NBLIN, we have the follow-
ing fast algorithm (BBLIN) for one class of bipartite graph
whenn1 ≫ n2 as in table (4)

2.5 Low-rank approximation on W̃2

One natural choice to do low-rank approximation onW̃2

is by eigen-value decomposition4:

4if the other two normalization methods are used, we can do singular
vector decomposition instead.

Table 4. BB LIN
Input: The normalized weighted matrix̃W and the

starting vector~ei as equation(5)
Output: The ranking vector~ri as equation(5)
Pre-Computational Stage(Off-Line):
p1. Compute and storẽΛ = (I− c2MT M)−1;
Query Stage (On-Line):
q1.~ri,1 = (1− c)(~ei,1 + c2MΛ̃MT~ei,1 + cMΛ̃~ei,2)

q2.~ri,2 = (1− c)(cΛ̃MT~ei,1 + Λ̃~ei,2)
q3. Output~ri = (~ri,1, ~ri,2)

T .

W̃2 = USUT (6)

where each column ofU is the eigen-vector of̃W2 andS

is a diagonal matrix, whose diagonal elements are eigen-
values ofW̃2.

The advantage of eigen-value decomposition is that it is
’optimal’ in terms of reconstruction error. Also, sinceV =
UT in this situation, we can save50% storage cost. How-
ever, one potential problem is that it might lose the spar-
sity of original matrixW̃2. Also, whenW̃2 is large, doing
eigen-value decomposition itself might be time-consuming.

To address this issue, in this paper, we also propose the
following heuristic to do low-rank approximation as in ta-
ble (5). Its basic idea is that, firstly, constructU by par-
titioning W̃2; and then use the projection of̃W2 on the
sub-space spanned by the columns ofU as the low-rank ap-
proximation.

Table 5. Low Rank Approximation by Partition

Input: The cross-partition matrix̃W2 andt

Output: Low rank approximation ofW̃2: U,S,V

1. PartitionW̃2 into t partitions;
2. Construct ann× t matrixU. Theith column ofU is

the sum of all the columns of̃W2 that belong to the
ith partition;

3. ComputeS = (UT U)−1;
4. ComputeV = UT W̃2.

3 Justification and Analysis

3.1 Correctness

Here, we present a brief proof of the proposed algorithms

3.1.1 BLIN

Lemma 1 If W̃ = W̃1 + USV holds, BLIN outputs ex-
actly the same result asPreCompute.

Proof: SinceW̃1 is a block-diagonal matrix. Based on
equation (3) and (4), we have

(I− cW̃1)
−1 = Q−1

1 (7)

Then, based on the Sherman-Morrison lemma [23], we
have:

Λ̃ = (S−1 − cVQ−1
1 U)−1

(I− cW̃)−1 = (I− cW̃1 − cUSV)−1

= Q−1
1 + cQ−1

1 UΛ̃VQ−1
1

~ri = (1− c)(Q−1
1 ~ei + cQ−1

1 UΛ̃VQ−1
1 ~ei)

which completes the proof of Lemma 1. It can be seen that
the only approximation of BLIN comes from the low-rank
approximation forW̃2.

We can also interpret BLIN from the perspective of la-
tent semantic/concept space. By low-rank approximation
onW̃2, we actually introduce at×t latent concept space by
S. Furthermore, if we treat the original̃W as ann×n node
space,U and V actually define the relationship between
these two spaces (U for node-concept relationship andV
for concept-node relationship). Thus, it can be seen that,
instead of doing random walk with restart on the original
whole node space, BLIN decomposes it into the following
simple steps:

(1) Doing RWR within the partition that contains the start-
ing point (multiply ~ei by Q−1

1);

(2) Jumping from node-space to latent concept space
(multiply the result of (1) byV);

(3) Doing RWR within the latent concept space (multiply
the result of (2) bỹΛ);

(4) Jumping back to the node space(multiply the result of
(3) byU);

(5) Doing RWR within each partition until convergence
(multiply the result of (4) byQ−1

1).

3.1.2 NBLIN

Lemma 2 If W̃ = USV holds, NBLIN outputs exactly
the same result asPreCompute.

Proof: TakingW̃1 = 0 andQ1 = I, by applying Lemma
1, we directly complete the proof of Lemma 2.

3.1.3 BBLIN

Lemma 3 BB LIN outputs exactly the same result asPre-
Compute.

Proof: Substituting equation (5) into equation (2), we have

~ri,1 = (1− c)(I− c2MMT)−1(cM~ei,2 + ~ei,1)

~ri,2 = (1− c)(I− c2MT M)−1(cMT~ei,1 + ~ei,2)

Solving ~ri,2 directly completes the proof of ’q2’ in ta-
ble (4).

Define a new RWR, which takes 1)(cM~ei,2 + ~ei,1) as
the new starting vector; 2)(cMMT) as the new normal-
ized weighted matrix; and 3)(M(cI)MT) as the low-rank
approximation. Applying Lemma 2 to this RWR, we com-
plete the proof for ’q1’ in table (4), which in turn completes
the proof of Lemma 3.

3.2 Computational and storage cost

In this section, we make a brief analysis for the proposed
algorithms in terms of computational and storage cost. For
the limited space, we only provide the result for BLIN.

3.2.1 On-line computational cost

It is not hard to see that, at the on-line query stage of BLIN
(table 2, step q1), we only need a few matrix-vector mul-
tiplication operations as shown in equation (8). Therefore,
B LIN is capable of meeting the (near) real-time response
requirement.

~r0 ← Q−1
1 ~ei

~ri ← V~r0

~ri ← Λ̃~ri

~ri ← U~ri

~ri ← Q−1
1 ~ri

~ri ← (1− c)(~r0 + c~ri) (8)

3.2.2 Pre-computational cost

The main off-line computational cost of the proposed algo-
rithm consists of the following parts:

(1) partitioning the whole graph;

(2) inversion of eachI− cW̃1,i, (i = 1, ..., k);

(3) low-rank approximation oñW2;

(4) inversion of(S−1 −VQ−1
1 U) .

Thus, instead of solving the inversion of the original
n×n matrix, B LIN1) inversesk +1 small matrices (Q−1

1,i ,

i=1,...,k, andΛ̃); 2) computes a low-rank approximation of
a sparsen × n matrix (W̃2), and 3) partitions the whole
graph.

3.2.3 Pre-storage cost

In terms of storage cost, we have to storek +1 small matri-
ces (Q−1

1,i , (i = 1, ..., k), andΛ̃), onen× t matrix (U) and
onet × n matrix (V). Moreover, we can further save the
storage cost as shown in the following:

• An observation from all our experiments is that many
elements inQ−1

1,i , U andV are near zeros. Thus, an
optional step is to set these elements to be zero (by
the thresholdξ2) and to store these matrices as sparse
format. For all experiments in this paper, we find that
this step will significantly reduce the storage cost while
almost not affecting the approximation accuracy.

• The normalized graph Laplacian is symmetric, which
leads to 1) a symmetricQ−1

1,i , and 2)U = VT , if
eigen-value decomposition is used when computing
the low-rank approximation5. By taking advantage of
this symmetry property, we can further save 50% stor-
age cost.

3.3 Error Bound

Developing an error bound for the general case of the
proposed methods is difficult. However, for NBLIN (table
3), we have the following lemma:

Lemma 4 Let~r and~̂r be the ranking vectors6 byPreCom-
puteand by NBLIN, respectively. If NBLIN takes eigen-
value decomposition as low-rank approximation,‖~r −
~̂r‖2 ≤ (1 − c)

∑n
i=t+1

1
(1−cλi)

, whereλi is theith largest

eigen-value ofW̃.

Proof: Taking the full eigen-value decomposition for̃W:

W̃ =
n∑

i=1

λi · ui · uT
i = USUT (9)

where λi and ui are theith largest eigen-value and the
corresponding eigen-vector of̃W, respectively. U =
[u1, ...un], andS = diag(λ1, ..., λn)

Noteui · uT
i = I. We have:

5On the other hand, if we use partition-based low-rank approximation
as in table (5),U andV are usually sparse and thus can be efficiently
stored

6Here, we ignore the low scripti of ~r and~̂r for simplicity

Λ̃ = (S−1 − cUT U)−1

=
n∑

i=1

λi

(1− cλi)
· ui · uT

i (10)

By Lemma 2, we have:

~r = (1− c)
n∑

i=1

1

(1− cλi)
· ui · uT

i · ~ei

~̂r = (1− c)

t∑

i=1

1

(1− cλi)
· ui · uT

i · ~ei (11)

Thus, we have

‖~r − ~̂r‖2 = ‖(1− c)

n∑

i=t+1

1

(1− cλi)
· ui · uT

i · ~ei‖2

≤ (1− c)‖
n∑

i=t+1

1

(1− cλi)
· ui · uT

i ‖2 · ‖~ei‖2

= (1− c)

n∑

i=t+1

1

(1− cλi)
(12)

which completes the proof of Lemma 4.

4 Experimental Results

4.1 Experimental Setup

4.1.1 Datasets

• CoIR

This dataset contains 5,000 images. The images are cate-
gorized into 50 groups, such as beach, bird, mountain, jew-
elry, sunset, etc. Each of the categories contains 100 images
of essentially the same content, which serve as the ground
truth. This is a widely used dataset for image retrieval. Two
kinds of low-level features are used, including color mo-
ment and pyramid wavelet texture feature. We use exactly
the same method as in [14] to construct the weighted graph
matrixW, which contains5, 000 nodes and≈ 774K edges

• CoMMG

This dataset is used in [22], which contains around 7,000
captioned images, each with about 4 captioned terms. There
are in total 160 terms for captioning. In our experiments,
1,740 images are set aside for testing. The graph matrix
W is constructed exactly as in [22], which contains54, 200
nodes and≈ 354K edges.

• AP

The author-paper information of DBLP dataset [4] is
used to construct the weighted graphW as in equation (5):
every author is denoted as a node inW, and the edge weight
is the number of co-authored papers between the corre-
sponding two authors. On the whole, there are≈ 315K

nodes and≈ 1, 834K non-zero edges inW.

• AC

The author-conference information of DBLP dataset [4]
is used to construct the bipartite graphM: each row cor-
responds to an author and each column corresponds to a
conference; and the edge weightMi,j is the number of pa-
pers that theith author publishes injth conference. On
the whole, there are≈ 291K nodes (≈ 288K authors and
≈ 3K conferences) and≈ 661K non-zero edges inM.

All the above datasets are summarized in table(6):

Table 6. Summary of data sets
dataset number of nodes number of edges

CoIR 5K ≈ 774K

CoMMG ≈ 52K ≈ 354K

AP ≈ 315K ≈ 1, 834K

AC ≈ 291K ≈ 661K

4.1.2 Applications

As mentioned before, many applications can be built upon
random walk with restart. In this paper, we test the follow-
ing applications:

• Center-piece subgraph discovery (CePs) [26]

• Content based image retrieval (CBIR) [14]

• Cross-modal correlation discovery (CMCD), including
automatic captioning of images [22]

• neighborhood formulation (NF) for both uni-partite
graph and bipartite graph [25]

The typical datasets for these applications in the past
years are summarized in table(4.1.2)

4.1.3 Parameter Setting

The proposed methods are compared withOnTheFly, Pre-
ComputeandBlk. All these methods share 3 parameters:c,
m andξ1. we use the same parameters for CBIR as [14],
that isc = 0.95, m = 50 andξ1 = 0. For the rest applica-
tions, we use the same setting as [22] for simplicity, that is
c = 0.9, m = 80 andξ1 = 10−8.

Table 7. Summary of typical applications with
different datasets

CBIR CMCD Ceps NF
CoIR

√ √

CoMMG
√

AP
√

AC
√

For B LIN and NB LIN, we takeξ2 = 10−4 to spar-
sify Q1, U, andV which further reduces storage cost. We
evaluate different choices for the remaining parameters. For
clarification, in the following experiments, BLIN is further
referred as BLIN(k, t, Eig/Part), wherek is the number
of partition,t is the target rank of the low-rank approxima-
tion, and “Eig/Part” denotes the specific method for doing
low-rank approximation – “Eig” for eigen-value decompo-
sition and “Part” for partition-based low-rank approxima-
tion. Similarly, NB LIN is further referred as NBLIN(t,
Eig/Part), andBlk is further referred asBlk(k).

For the datasets with groundtruth (CoIR and CoMMG),
we use the relative accuracyRelAcu as the evaluation cri-
terion:

RelAcu =
Âcu

Acu
(13)

whereÂcu andAcu are the accuracy values by the evalu-
ated method and byPreCompute, respectively.

Another evaluation criterion isRelScore,

RelScore =
t̂Scr

tScr
, (14)

wheret̂Scr andtScr are the total relevance scores captured
by the evaluated method and byPreCompute, respectively.

All the experiments are performed on the same machine
with 3.2GHz CPU and 2GB memory.

4.2 CoIR Results

100 images are randomly selected from the original
dataset as the query images and the precision vs. scope is
reported. The user feedback process is simulated as fol-
lows. In each round of relevance feedback (RF), 5 images
that are most relevant to the query based on the current
retrieval result are fed back and examined. It should be
pointed out that the initial retrieval result is equivalentto
that for neighborhood formulation (NF).RelAcu is evalu-
ated on the first 20 retrieved images, that is, the precision
within the first 20 retrieved images. In figure (3), the results
are evaluated from three perspectives: accuracy vs. query
time (QT), accuracy vs. pre-computational time (PT) and

accuracy vs. pre-storage cost (PS). In the figure, the QT, PT
and PS costs are in log-scale. Note that pre-computational
time and storage cost are the same for both initial retrieval
and relevance feedback, therefore, we only report accuracy
vs. pre-computational time and accuracy vs. pre-storage
cost for initial retrieval.

It can be seen that in all the figures, BLIN and
NB LIN always lie in the upper-left zone, which indi-
cates that the proposed methods achieve a good balance
between on-line response quality and off-line processing
cost. Both BLIN and NB LIN 1) achieve about one
order of magnitude speedup (compared withOnTheFly);
and 2) save one order of magnitude on pre-computational
and storage cost. For example, BLIN(50, 300, Eig) pre-
serves 95%+ accuracy for both initial retrieval and rel-
evance feedback, while it 1) achieves 32x speedup for
on-line response (0.09Sec/2.91Sec), compared withOn-
TheFly; and 2)save 8x on storage (21M/180M) and 161x
on pre-computational cost (90Sec/14,500Sec), compared
with PreCompute. NB LIN(600,Eig) preserves 93%+ ac-
curacy for both initial retrieval and relevance feedback,
while it 1) achieves 97x speedup for on-line response
(0.03Sec/2.91Sec), compared withOnTheFly; and 2)saves
10x on storage(17M/180M) and 48x on pre-computational
cost (303Sec/14,500Sec), compared withPreCompute.7.

For the task of neighborhood formation (NF), figure (4)
shows the result of RelScore vs. scope. It can been seen
that by exploring both the block-wise and linear correlations
structure simultaneously, 1) bothBlk(50) and NBLIN(50,
Eig) capture most neighborhood information (for example,
they both capture about 90% score for the precision on the
first 10 retrieved images), and 2) BLIN(50, 300, Eig) cap-
tures 95%+ score over the whole scope. (The improve-
ment becomes even more significant with the increase of
the scope).

10 20 30 40 50 60 70 80 90 100
0.7

0.75

0.8

0.85

0.9

0.95

1

Scope

R
el

S
co

re

Evaluation on Neighbor Formulation

Blk(50)
NB_Lin(300, Eig)
B_Lin(50, 300, Eig)

Figure 4. Evaluation on CoIR for NF

7We also perform experiment on BlockRank [18]. However, the result
is similar withOnTheFly. Thus, we do not present it in this paper.

−4 −3 −2 −1 0 1 2 3 4
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Log Query Time (Sec)

R
el

at
iv

e
A

cc
ur

ac
y

Relative Accuracy vs. Query Time

OnTheFly
PreCompute
Blk(50)
NB_Lin(600, Eig)
NB_Lin(800, Eig)
B_Lin(50, 300, Eig)
B_Lin(100,300)

−4 −3 −2 −1 0 1 2 3 4
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Log Query Time (Sec)

R
el

at
iv

e
A

cc
ur

ay

Relative Accuray vs. Query Time

OnTheFly
PreCompute
Blk(50)
NB_Lin(600, Eig)
NB_Lin(800, Eig)
B_Lin(50, 300, Eig)
B_Lin(100,300)

(a) Accuracy (Initial) vs. Log QT (b) Accuracy (RF) vs. Log QT

−inf 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Log Pre−Computational Cost (Sec)

R
el

at
iv

e
A

cc
ur

ac
y

Relative Accuracy vs. Pre−Computational Cost

OnTheFly
PreCompute
Blk(50)
NB_Lin(600, Eig)
NB_Lin(800, Eig)
B_Lin(50, 300, Eig)
B_Lin(100,300)

−inf 0.5 1 1.5 2 2.5 3 3.5 4
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Log Pre−Storage Cost (M)

R
el

at
iv

e
A

cc
ur

ac
y

Relative Accuracy vs. Pre−Storage Cost

OnTheFly
PreCompute
Blk(50)
NB_Lin(600, Eig)
NB_Lin(800, Eig)
B_Lin(50, 300, Eig)
B_Lin(100,300)

(c)Accuracy (Initial) vs. Log PT (d) Accuracy (Initial) vs.Log PS

Figure 3. Evaluation on CoIR for CBIR

4.3 CoMMG Results

For this dataset, we only compare NBLIN with On-
TheFly and PreCompute. The results are shown in fig-
ure (6). The x-axis of figure (6) is plotted in log-scale.
Again, NB LIN lies in the upper-left zone in all the fig-
ures, which means that NBLIN achieves a good bal-
ance between on-line quality and off-line processing cost.
For example, NBLIN(100, Eig) preserves 91.3% quality,
while it 1) achieves 154x speedup for on-line response
(0.029/4.50Sec), compared withOnTheFly; 2) saves 868x
on storage (281/243,900M) and 479x on pre-computational
cost (46/21,951Sec), compared withPreCompute. The rel-
ative precision/recall vs. scope is shown in figure (5).

4.4 AP Results

This dataset is used to evaluate Ceps as in [26]. BLIN is
used to generate 1000 candidates, which are further fed

to the original Ceps Algorithm [26] to generate the final
center-piece subgraphs. We fix the number of query nodes
to be3 and the size of the subgraph to be20. RelScore is
measured by ”Important Node Score” as in [26]. The result
is shown in figure (7).

Again, B LIN lies in the upper-left zone in all the fig-
ures, which means that BLIN achieves a good balance
between on-line quality and off-line processing cost. For
example, BLIN(100, 4000, Part) preserves 98.9% qual-
ity, while it 1) achieves 27x speedup for on-line response
(9.45/258.2Sec), compared withOnTheFly; 2) saves 2264x
on storage (269/609,020M) and 214x on pre-computational
cost (8.7/1875Hour), compared withPreCompute.

4.5 AC Results

For this dataset, the number of conferences (3K) is
much less than that of the authors (228K). We evaluate
BB LIN for the following four tasks:

4 6 8 10 12 14 16 18 20
0.7

0.75

0.8

0.85

0.9

0.95

1

Scope

R
el

at
iv

e
P

re
ci

si
on

Evaluation on Relative Precision

NB_Lin(60, Eig)
NB_Lin(100, Eig)
NB_Lin(200, Eig)
NB_Lin(400, Eig)

(a) Relative precision

4 6 8 10 12 14 16 18 20
0.7

0.75

0.8

0.85

0.9

0.95

1

Scope

R
el

at
iv

e
R

ec
al

l

Evaluation on Relative Recall

NB_Lin(60, Eig)
NB_Lin(100, Eig)
NB_Lin(200, Eig)
NB_Lin(400, Eig)

(b) Relative recall

Figure 5. Precision/recall for CMCD

• C C: Given a conference, find its most related confer-
ences

• C A: Given a conference, find its most related authors

• A A: Given an author, find its most related authors

• A C: Given an author, find its most related confer-
ences

On this application, BBLIN preserves 100% accuracy
for all the tasks. Thus, in table (8), we only report Query
time (QT), Pre-computational time (PT), and Pre-storage
cost (PS). Note that the query time for BBLIN might differ
for the different tasks. For clarification, BBLIN is further
referred as BBLIN(C/A C/A). (For example, BBLIN(C,
A) denotes using BBLIN for C A task.)

As shown in table (8), BBLIN can achieve up to 3 or-
ders of magnitude speedup, with light off-line computa-
tional and storage cost (20.5Sec for pre-computation and
56M for pre-storage). For example, it achieves 180x
speedup forA A (0.13/23.98Sec) and 1,800 speedup for
C C(0.013/23.98Sec).

Table 8. Evaluation on AC for NF
Method QT(Sec) PT(Sec) PS(M)
OnTheFly 23.97 0 6.7
PreCompute 0.001 6,990,648 626,250
BB LIN(C, A) 0.097 20.50 56
BB LIN(C, C) 0.013 20.50 56
BB LIN(A, C) 0.035 20.50 56
BB LIN(A, A) 0.13 20.50 56

5 Related work

In this Section, we briefly review related work, which
can be categorized into three groups: 1) random walk re-
lated methods; 2) graph partitioning methods and 3) the
methods for low-rank approximation.

Random walk related methods. There are sev-
eral methods similar to RWR, including electricity-
based method [28], graph-based Semi-supervised learn-
ing [27] [7] and so on. Exact solution of these methods
usually requires the inversion of a matrix which is often di-
agonal dominant and of big size. Other methods sharing this
requirement include regularized regression, Gaussian pro-
cess regression [24], and so on. Existing fast solution for
RWR include Hub-vector decomposition based [16]; block
structure based [18] [25]; fingerprint based [9], and so on.
Many applications take random walk and related methods as
the building block, including PageRank [21], personalized
PageRank [13], SimRank [15], neighborhood formulation
in bipartite graphs [25], content-based image retrieval [14],
cross modal correlation discovery [22], the BANKS sys-
tem [2], ObjectRank [3], RalationalRank [10], and so on.

Graph partition and clustering. Several algorithms
have been proposed for graph partition and clustering, e.g.
METIS [19], spectral clustering [20], flow simulation [8],
co-clustering [6], and the betweenness based method [11].
It should be pointed out that the proposed method is orthog-
onal to the partition method.

Low-rank approximation: One of the widely used
techniques is singular vector decomposition (SVD) [12],
which is the base for a lot of powerful tools, such as la-
tent semantic index (LSI) [5], principle component analysis
(PCA) [17], and so on. For symmetric matrices, a comple-
mentary technique is the eigen-value decomposition [12].
More recently, CUR decomposition has been proposed for
sparse matrices [1].

6 Conclusions

In this paper, we propose a fast solution for computing
the random walk with restart. The main contributions of the
paper are as follows:

• The design of BLIN and its derivative, NBLIN.
These methods take advantages of the block-wise
structure and linear correlations in the adjacency ma-
trix of real graphes, using the Sherman-Morrison
Lemma.

• The proof of an error bound for NBLIN. To our
knowledge, this is the first attempt to derive an error
bound for fast random walk with restart.

• Extensive experiments are performed on several real
datasets, on typical applications. The results demon-
strate that our proposed algorithm can nicely balance
the off-line processing cost and the on-line response
quality. In most cases, our methods preserve 90%+
quality, with dramatic savings on the pre-computation
cost and the query time.

• A fast solution (BBLIN) for one particular class of
bipartite graphs. Our method achieves up to 1,800x
speedup with light pre-computational and storage cost,
without suffering quality loss.

Future work includes exploring error bounds for the gen-
eral case of BLIN, and performing comparative experi-
ments with other candidate solutions, such as [16] and [9].

A Appendix

Sherman-Morrison Lemma [23]: if X−1 exists, then:

(X−USV)−1 = X−1 + X−1UΛ̃VX−1

whereΛ̃ = (S−1 −VX−1U)−1

References

[1] D. Achlioptas and F. McSherry. Fast computation of low
rank matrix approximation. InSTOC, 2001.

[2] B. Aditya, G. Bhalotia, S. Chakrabarti, A. Hulgeri,
C. Nakhe, and S. S. Parag. Banks: Browsing and keyword
searching in relational databases. InVLDB, pages 1083–
1086, 2002.

[3] A. Balmin, V. Hristidis, and Y. Papakonstantinou. Objec-
trank: Authority-based keyword search in databases. In
VLDB, pages 564–575, 2004.

[4] http://www.informatik.uni-trier.de/ ley/db/.
[5] S. Deerwester, S. Dumais, T. Landauer, G. Furnas, and

R. Harshman. Indexing by latent semantic analysis.Journal
of the American Society of Information Science, 41(6):391–
407, 1990.

[6] I. S. Dhillon, S. Mallela, and D. S. Modha. Information-
theoretic co-clustering. InThe Ninth ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Min-
ing (KDD 03), Washington, DC, August 24-27 2003.

[7] C. Faloutsos, K. S. McCurley, and A. Tomkins. Fast dis-
covery of connection subgraphs. InKDD, pages 118–127,
2004.

[8] G. Flake, S. Lawrence, and C. Giles. Efficient identification
of web communities. InKDD, pages 150–160, 2000.

[9] D. Fogaras and B. Racz. Towards scaling fully personalized
pagerank. InProc. WAW, pages 105–117, 2004.

[10] F. Geerts, H. Mannila, and E. Terzi. Relational link-based
ranking. InVLDB, pages 552–563, 2004.

[11] M. Girvan and M. E. J. Newman. Community structure is
social and biological networks.

[12] G. Golub and C. Loan.Matrix Computation. Johns Hopkins,
1996.

[13] T. H. Haveliwala. Topic-sensitive pagerank.WWW, pages
517–526, 2002.

[14] J. He, M. Li, H. Zhang, H. Tong, and C. Zhang. Manifold-
ranking based image retrieval. InACM Multimedia, pages
9–16, 2004.

[15] G. Jeh and J. Widom. Simrank: A measure of structural-
context similarity. InKDD, pages 538–543, 2002.

[16] G. Jeh and J. Widom. Scaling personalized web search. In
WWW, 2003.

[17] I. Jolliffe. Principal Component Analysis. Springer, 2002.
[18] S. Kamvar, T. Haveliwala, C. Manning, and G. Golub. Ex-

ploiting the block structure of the web for computing pager-
ank. InStanford University Technical Report, 2003.

[19] G. Karypis and V. Kumar. Parallel multilevel k-way parti-
tioning for irregular graphs.SIAM Review, 41(2):278–300,
1999.

[20] A. Ng, M. Jordan, and Y. Weiss. On spectral clustering:
Analysis and an algorithm. InNIPS, pages 849–856, 2001.

[21] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageR-
ank citation ranking: Bringing order to the web. Technical
report, Stanford Digital Library Technologies Project, 1998.
Paper SIDL-WP-1999-0120 (version of 11/11/1999).

[22] J.-Y. Pan, H.-J. Yang, C. Faloutsos, and P. Duygulu. Au-
tomatic multimedia cross-modal correlation discovery. In
KDD, pages 653–658, 2004.

[23] W. Piegorsch and G. E. Casella. Inverting a sum of matrices.
In SIAM Review, 1990.

[24] C. E. Rasmusen and C. Williams.Gaussian Processes for
Machine Learning. MIT Press, 2006.

[25] J. Sun, H. Qu, D. Chakrabarti, and C. Faloutsos. Neighbor-
hood formation and anomaly detection in bipartite graphs.
In ICDM, pages 418–425, 2005.

[26] H. Tong and C. Faloutsos. Center-piece subgraphs: Problem
definition and fast solutions. InKDD, 2006.

[27] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and
B. Scholkopf. Learning with local and global consistency.
In NIPS, 2003.

[28] X. Zhu, Z. Ghahramani, and J. D. Lafferty. Semi-supervised
learning using gaussian field and harmonic functions. In
ICML, pages 912–919, 2003.

−4 −3 −2 −1 0 1 2 3 4 5
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Log Query Time (Sec)

R
el

at
iv

e
A

cc
ur

ac
y

Relative Accuracy vs. Query Time

OnTheFly
PreCompute
NB_Lin(60, Eig)
NB_Lin(100, Eig)
NB_Lin(200, Eig)
NB_Lin(400, Eig)

(a) Accuracy vs. Log QT

−inf 1 2 3 4 5
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Log Pre−Computational Cost (Sec)

R
el

at
iv

e
A

cc
ur

ac
y

Relative Accuracy vs. Pre−Computational Cost

OnTheFly
PreCompute
NB_Lin(60, Eig)
NB_Lin(100, Eig)
NB_Lin(200, Eig)
NB_Lin(400, Eig)

(b) Accuracy vs. Log PT

0 1 2 3 4 5 6 7 8
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Log Pre−Storage Cost (M)

R
el

at
iv

e
A

cc
ur

ac
y

Relative Accuracy vs. Pre−Storage Cost

OnTheFly
PreCompute
NB_Lin(60, Eig)
NB_Lin(100, Eig)
NB_Lin(200, Eig)
NB_Lin(400, Eig)

(c) Accuracy vs. Log PS

Figure 6. Evaluation on CoMMG for CMCD

1 1.5 2 2.5 3 3.5 4
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Log Query Time (Sec)

R
el

at
iv

e
S

co
re

Relative Score vs. Query Time

OnTheFly
PreCompute
B_Lin(50, 4000, Part)
B_Lin(80, 4000, Part)
B_Lin(100, 4000, Part)

(a) Accuracy vs. Log QT

−inf 0.5 1 1.5 2 2.5
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Log Pre−Computational Time (Hour)

R
el

at
iv

e
S

co
re

Relative Score vs. Pre−Computational Cost

OnTheFly
PreCompute
B_Lin(50, 4000, Part)
B_Lin(80, 4000, Part)
B_Lin(100, 4000, Part)

(b) Accuracy vs. Log PT

0 1 2 3 4 5 6 7 8
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Log Pre−Storage Cost (M)

R
el

at
iv

e
S

co
re

Relative Score vs. Pre−Storage Cost

OnTheFly
PreCompute
B_Lin(50, 4000, Part)
B_Lin(80, 4000, Part)
B_Lin(100, 4000, Part)

(c) Accuracy vs. Log QS

Figure 7. Evaluation on AP for Ceps

