I. Course Data Mining (COSC 6335)

A. Catalog Description
Goals and objectives of data mining, data quality, data preprocessing, OLAP and data warehousing, exploratory data analysis, classification and prediction, similarity assessment, cluster and outlier analysis, association analysis, post processing techniques, data mining methodologies, data mining case studies.

B. Purpose
Data mining centers on finding novel, interesting, and potentially useful patterns in data. It aims at transforming a large amount of data into a well of knowledge. Data mining has become a very important field in industry as well as academia. The course covers most of the important data mining techniques and provides background knowledge on how to conduct a data mining project. Topics covered in the course include exploratory data analysis, classification and prediction, clustering and similarity assessment, association analysis, outlier and anomaly detection, and interpreting and interpreting data analysis/data mining results. In the first 9 weeks a very basic introduction to data mining will be given. After defining what knowledge discovery and data mining is, data mining tasks such classification, clustering, and association analysis will be discussed in detail. Also basic visualization techniques and statistical methods will be introduced. Moreover, hands on data mining experience will be provided in three problem sets. Finally, you will learn on how to use and do programming in the popular statistics, visualization, and data mining environment R.
II. Course Objectives

Upon completion of this course, students
1. will know what the goals and objectives of data mining are and how to conduct a data mining project
2. will have sound knowledge of popular classification techniques, such as decision trees, support vector machines and neural networks.
3. will know the most important association analysis techniques
4. will have detailed knowledge of popular clustering algorithms such as K-means, density-based, graph-based, and hierarchical clustering.
5. will obtain some basic knowledge about popular outlier detection techniques
6. will conduct small and medium-sized projects in which data mining is applied to real world data sets. They will obtain valuable experience in learning how to interpret and evaluate data mining results, how to select parameters of data mining tools, and how to make sense out of data.
7. will get some practical experience in evaluating data mining results of other students in the course as well as data mining publications. Kritik (https://www.kritik.io/) might be used for some evaluation tasks of the course.
8. will obtain practical experience in designing and implementing data mining algorithms
9. will learn on how to use popular data mining programming environment R.

III. Course Content

I. Introduction to Data Mining
II. Exploratory Data Analysis
III. A Short Introduction to R
IV. Introduction to Classification: Basic Concepts and Decision Trees, Support Vector Machines and Neural Networks.
V. Association Analysis — Rule, Sequence, Graph and Collocation Mining
VI. Outlier and Anomaly Detection
VII. Introduction to Clustering and Similarity Assessment
VIII. More on Clustering: Hierarchical, Density-based, and Graph-based Clustering.
IX. Spatial Data Mining only if enough time
X. Data Preprocessing

IV. Course Structure

23 lectures
2 exams
3 problem sets
1 student presentation
2 40-minute review sessions
V. **Problem Sets**
Problem Sets contain paper and pencil tasks which review your understanding of basic data mining concepts and algorithms, tasks which use data mining tools, and small and medium sized data analysis/data mining projects, and tasks in which you evaluate data mining results of other students and data mining publications. Some tasks will be group tasks. There will be three Problem Sets in Fall 2020:

Problem Set1: Exploratory Data Analysis, Classification, and Evaluating Data Mining Results
Problem Set2: Association Analysis and Outlier Detection
Problem Set3: Clustering and Data Mining Paper Reviewing

VI. **Textbooks**

Highly Recommended Text:

Recommended Text
Jiawei Han and Micheline Kamber, *Data Mining: Concepts and Techniques* Morgan Kaufman Publishers, Third Edition

VII. **Evaluation and Grading**

Problem Set1: 12% (+ 4% evaluation)
Problem Set2: 14% (+ 2% evaluation)
Problem Set3: 12% (+4% evaluation)
Evaluation: 10%
Spontaneous Online Credit: 4%
Midterm Exam: 20%
Final Exam: 26%
Attendance: 2%

Students will be responsible for material covered in the lectures and assigned in the readings.

Translation number to letter grades:
A:100-90 A-:90-86 B+:86-82 B:82-77 B-:77-74 C+:74-70

Students may discuss course material and homeworks, but must take special care to discern the difference between **collaborating** in order to increase understanding of course materials and collaborating on the homework / course project itself. We encourage students to help each other

1 If the course is taught only partially online, this credit will be reduced to 2% and evaluation will increased to 10%!
understand course material to clarify the meaning of homework problems or to discuss problem-solving strategies, but it is **not** permissible for one student to help or be helped by another student in working through homework problems and in the course project. If, in discussing course materials and problems, students believe that their like-mindedness from such discussions could be construed as collaboration on their assignments, students must cite each other, briefly explaining the extent of their collaboration. Any assistance that is not given proper citation may be considered a violation of the Honor Code, and might result in obtaining a grade of F in the course, and in further prosecution.

Policy on grades of I (Incomplete): A grade of ‘I’ will only be given in extreme emergency situations and only if the student completed more than 2/3 of the course work.

VIII. Bibliography

The course textbook contains a detailed data mining bibliography. Moreover, the following conferences center on data mining and related areas:

1. **Data mining and KDD**
 - Conference proceedings: ICDM, KDD, PKDD, PAKDD, SDM, MLDM etc.
 - Journal: Data Mining and Knowledge Discovery
2. **Database field (SIGMOD member CD ROM):**
 - Conference proceedings: VLDB, ICDE, ACM-SIGMOD, CIKM
 - Journals: ACM-TODS, J. ACM, IEEE-TKDE, JIIS, etc.
3. **AI and Machine Learning:**
 - Conference proceedings: ICML, AAAI, IJCAI, etc.
 - Journals: Machine Learning, Artificial Intelligence, etc.
4. **Statistics:**
 - Conference proceedings: Joint Stat. Meeting, etc.
 - Journals: Annals of statistics, etc.
5. **Visualization:**
 - Conference proceedings: CHI, etc.
 - Journals: IEEE Trans. visualization and computer graphics, etc.

Addendum: Whenever possible, and in accordance with 504/ADA guidelines, the University of Houston will attempt to provide reasonable academic accommodations to students who request and require them. Please call 713-743-5400 for more assistance.