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Abstract

Traditionally, spectral clustering is limited to a single ob-

jective: finding the normalized min-cut of a single graph.

However, many real-world datasets, such as scientific data

(fMRI scans of different individuals), social data (different

types of connections between people), web data (multi-type

data), are generated from multiple heterogeneous sources.

How to optimally combine knowledge from multiple sources

to improve spectral clustering remains a developing area.

Previous work on multi-view clustering formulated the prob-

lem as a single objective function to optimize, typically by

combining the views under a compatibility assumption and

requiring the users to decide the importance of each view

a priori. In this work, we propose a multi-objective formu-

lation and show how to solve it using Pareto optimization.

The Pareto frontier captures all possible good cuts without

requiring the users to set the “correct” parameter. The ef-

fectiveness of our approach is justified by both theoretical

analysis and empirical results. We also demonstrate a novel

application of our approach: resting-state fMRI analysis.

1 Introduction

Traditional spectral clustering only applies to a single
graph/view [19, 22]. However, in a wide range of appli-
cations, the same dataset can be simultaneously charac-
terized by multiple graphs, which are often constructed
from heterogeneous sources. The most common setting,
multi-view spectral clustering, is an extension of spec-
tral clustering to multi-view datasets and it is still a
developing area.

Previous work on multi-view spectral clustering
typically combines different views so as a single objec-
tive function is optimized. This inherently makes the as-
sumption that the different views are compatible to each
other [6,8,18]. Previous work also required the users to
set a parameter that regularizes the combination and
thus implicitly decides the outcome of the algorithm.

In this paper, we explore an alternative and more
natural formulation that treats the problem as a multi-
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objective problem. Given two views, we create a bi-
criteria objective function (see Equation (2.1)) that si-
multaneously considers the quality of a single cut on
both graphs. This cut can be viewed as a tradeoff be-
tween the two views/objectives. To solve the problem,
we use the classic Pareto optimization framework, which
allows multiple objectives to compete with each other
in deciding the optimal tradeoffs.

Our multi-objective spectral clustering formulation
has several benefits and makes the following contribu-
tions to the field:

• We solve the multi-objective problem using Pareto
optimization. The Pareto frontier captures all
possible good cuts that are preferred by one or more
objectives. (Section 3)

• We present a novel algorithm that reduces the
search space from an infinite number of possible
cuts (since a cut in the relaxed sense is just a real
vector) to a small set of mutually orthogonal cuts so
that the Pareto frontier can be computed efficiently.
(Section 3.1)

• We provide an approximation bound on how good
the solution in the reduced space is. The bound
states how much better an optimal solution in the
full search space can be than the one in the reduced
search space. (Section 3.3)

• The Pareto optimal cuts can be interpreted ei-
ther individually as alternative clusterings or collec-
tively as a Pareto embedding of the dataset. (Sec-
tion 3.2)

• The effectiveness of our approach is evaluated on
benchmark datasets with comparison to the state-
of-the-art multi-view spectral clustering techniques
(Section 4). We also demonstrate a novel applica-
tion of our algorithm for resting-state fMRI anal-
ysis, where one graph represents the ground truth
and the other the observed data. (Section 5)

Related work To our knowledge no work exists on
multi-objective spectral clustering with the closest work
being multi-view clustering. Previous work on multi-
view (spectral) clustering relies on a fundamental as-
sumption that all the views are compatible to each other,



Table 1: Table of notations
Symbol Meaning

N The number of instances/nodes
D The degree matrix
L̄ The normalized graph Laplacian
v The normalized relaxed indicator vector
Ω The set of all nontrivial cuts
P The set of Pareto optimal cuts

J (·, ·) The joint numerical range of two graphs
F(·, ·) The Pareto frontier of J (·, ·)

i.e. different views are generated from the same under-
lying distribution [5], or different views agree on a con-
sensus partition that reflects a hidden ground truth [17].
This assumption is then exploited to convert multi-
view spectral clustering into a single objective problem,
which either tries to maximize the agreement between
the partitions generated by different views [15,16,21], or
combines multiple views into one view with the antici-
pation that the combined view is a better representation
of the underlying distribution [10, 20, 23]. In contrast,
our multi-objective formulation allows the two graphs
to be incompatible and compete with each other based
on their own preferences. The most preferred cuts will
be captured by the Pareto frontier, which represents a
range of alternative yet optimal ways to partition the
dataset. Pareto optimization is popular in many com-
puter science areas (see [14] for a review), since it pro-
vides a principled way of optimizing tradeoffs between
competing objectives.

2 A Pareto Optimization Framework for
Multi-View Spectral Clustering

In this section, we propose our multi-objective formu-
lation for spectral clustering and show how to solve it
in the context of Pareto optimization. We follow the
standard formulation and notations of spectral cluster-
ing [19, 22] (see Table 1).We start with the two-view
case, then later discuss its extension to more than two
views (Section 3.4).

2.1 A Multi-Objective Formulation A two-view
dataset can be represented by two graphs that share
the same set of nodes but have two different sets of
edges, namely G1 = (V , E1) and G2 = (V , E2). Our goal
is to find a shared cut that simultaneously cuts both
graphs with minimal cost. This leads us to a natural
extension of spectral clustering, where instead of finding
the normalized min-cut on one graph, we find the
normalized min-cut over the two graphs simultaneously:

(2.1) argmin
v∈Ω

{vT L̄1v,v
T L̄2v},

where
(2.2)

Ω , {v ∈ R
N | vTv = 1,v ⊥L̄1

D
1/2
1 1,v ⊥L̄2

D
1/2
2 1}

is the set of all nontrivial cuts. The notation v ⊥X v′

means vTXv′ = 0. v ∈ Ω means that v is normalized
and it is orthogonal to (w.r.t. L̄1 and L̄2) the trivial cut
1 (the N × 1 vector of all 1’s).

Note that Equation (2.1) can be reduced to spectral
clustering if we replace L̄2 with L̄ and L̄1 with the
identity matrix I. In other words, spectral clustering on
a single graph is covered as a special case of our model
where one graph is combined with a zero-knowledge
graph (whose normalized graph Laplacian is I).

2.2 Joint Numerical Range and Pareto Opti-
mality Rather than converting the two objectives in
Equation (2.1) to a single objective, we solve them si-
multaneously using Pareto optimization. Since we aim
to find a single cut for both graphs, we can consider find-
ing this cut as a competition between the two graphs:
each graph gives the cut a “score” (the cut quality);
we enumerate all possible cuts by their costs on the
respective graphs, which constitute the joint numeri-
cal range [12] of the two graphs. Each point in the
joint numerical range represents a tradeoff between the
two graphs in terms of cut cost. Next we compute the
Pareto frontier of the joint numerical range, which cor-
responds to the cuts that are optimal in terms of Pareto
improvement : its cost on one graph cannot be improved
(decrease) without making the cost on the other graph
worse (increase).

The joint numerical range of G1 and G2 is defined
as follows:

(2.3) J (G1,G2) , {(vT L̄1v, vT L̄2v) | v ∈ Ω},

where Ω is defined as in Equation (2.2). Essentially,
J (G1,G2) is the set of the costs of all nontrivial cuts
over G1 and G2.

Recall that in spectral clustering we evaluate the
quality of any two cuts by comparing their costs on a
single graph. We say v is better than v′ if v has a lower
cost than v′ does. Now consider the joint numerical
range of two graphs. When we evaluate the quality
of a cut, we must consider its cost on both graphs.
Specifically, we need to introduce the notion of Pareto
improvement:

Definition 1. (Pareto Improvement) Given two
different cuts v ∈ Ω and v′ ∈ Ω over two graphs G1

and G2, we say v is a Pareto improvement over v′ if
and only if one of the following two conditions holds:

vT L̄1v < v′T L̄1v
′ ∧ vT L̄2v ≤ v′T L̄2v

′,



or

vT L̄1v ≤ v′T L̄1v
′ ∧ vT L̄2v < v′T L̄2v

′.

When v is a Pareto improvement over v′, we say v
dominates v′, or v′ is dominated by v, and we use
the following notation:

v ≺(G1,G2) v
′.

In terms of Pareto improvement, the optimal solu-
tion to Equation (2.1) is the Pareto frontier of J (G1,G2).

Definition 2. (Pareto Frontier) Define:

F(G1,G2) , {(vT L̄1v, vT L̄2v) | v ∈ P}.

F(G1,G2) is the Pareto frontier of J (G1,G2) if P satis-
fies:

1. P ⊂ Ω;

2. (Optimality) ∀v ∈ P , ¬∃v′ ∈ Ω, such that
v′ ≺(G1,G2) v;

3. (Completeness) ∀v ∈ Ω\P , ∃v′ ∈ P , such that
v′ ≺(G1,G2) v.

We say v lies on the Pareto frontier of J (G1,G2) if
v ∈ P .

We call P the set of Pareto optimal cuts. Intu-
itively speaking, P satisfies the following properties: 1)
any cut in P is better than cuts that are not in P (com-
pleteness); 2) any two cuts in P are equally good; 3)
for any cut in P , it is impossible to reduce its cost on
one graph without increasing its cost on the other graph
(optimality). Therefore, our Pareto optimization frame-
work captures the complete set of equally good cuts (in
terms of Pareto optimality) that are superior to any
other possible cuts.

We summarize our approach as follows:

1. Given the two graphs G1 and G2, construct their
joint numerical range J (G1,G2).

2. Compute the Pareto frontier of J (G1,G2), which is
F(G1,G2).

3. Output P , the set of Pareto optimal cuts.

3 Algorithm Derivation

In this section, we present an efficient approximation
algorithm to compute the Pareto frontier. We also
discuss how to interpret the Pareto optimal cuts and
convert them into actual clusterings in practice. Our
algorithm is summarized in Algorithm 1.

Algorithm 1 Multi-Objective Multi-View Spectral
Clustering via Pareto Optimization

Input: Two graph Laplacians L̄1, L̄2

Output: The set of Pareto optimal cuts P̃
1: Solve the generalized eigenvalue problem: L̄1v =

λL̄2v;
2: Normalize all v’s such that vTv = 1;
3: Let P̃ be the set of all eigenvectors, excluding the

two associated with eigenvalue 0 and ∞;
4: for all v ∈ P̃ do
5: for all v′ ∈ P̃ ,v′ 6= v do
6: if v ≺(G1,G2) v

′ then

7: Remove v′ from P̃ ;
8: continue;
9: end if

10: if v′ ≺(G1,G2) v then

11: Remove v from P̃ ;
12: break;
13: end if
14: end for
15: end for
16: (Optional) Consolidate the cuts in P̃ into a single

clustering u (see Section 3.2);

3.1 Computing the Pareto Frontier via Gener-
alized Eigendecomposition Recall that F(G1,G2) ⊂
J (G1,G2) is the Pareto frontier and P ⊂ Ω is the set of
Pareto optimal cuts. Our goal is to compute F(G1,G2),
or equivalently P . However, Ω consists of an infinite
number of different cuts (in the relaxed form)1, which
map to an infinite number of points in J (G1,G2). To
the best of our knowledge, there is no efficient way to
compute F(G1,G2) in closed form.

Nevertheless, although Ω consists of an infinite
number of cuts, many of those cuts are effectively
identical to each other. For instance, one cut may
only differ from another cut by a small perturbation.
From a practical point of view, those two cuts will
lead to exactly the same clustering. Therefore, we
introduce an additional constraint to narrow down our
search space: we only focus on a subset of cuts that are
distinct to each other, namely they must be mutually
orthogonal. Consequently, instead of dealing with a
continuous vector space Ω, we only consider the set of
vectors, Ω̃, which comprise an orthogonal basis of Ω.

Formally, we define

Ω̃ , {v ∈ Ω | ∀v 6= v′,v ⊥L̄1
v′,v ⊥L̄2

v′},

J̃ (G1,G2) , {(vT L̄1v, vT L̄2v) | v ∈ Ω̃}.

1The infinite amount of real vectors map to 2N−1 distinct
clusterings, which are still too many to enumerate through.



Under a mild assumption that the null space of L̄1

and L̄2 do not overlap, (L̄1, L̄2) is a Hermitian definite
matrix pencil [3]. Then Ω̃ is the set of N (N is
the number of nodes) eigenvectors of the generalized
eigenvalue problem [11]

(3.4) L̄1v = λL̄2v

less the principal eigenvector of L̄1, which is D
1/2
1 1, and

the principal eigenvector of L̄2, which is D
1/2
2 1. The

generalized eigenvalue problem in Equation (3.4) can
be solved efficiently in closed form.

Now since J̃ (G1,G2) only consists of N − 2 points,
corresponding to the N − 2 mutually orthogonal cuts
in Ω̃, we can efficiently find its Pareto frontier (see
Algorithm 1), which is:

F̃(G1,G2) , {(vT L̄1v, vT L̄2v) | v ∈ P̃}.

F̃(G1,G2) is an approximation to F(G1,G2). We call
F̃(G1,G2) the orthogonal Pareto frontier and P̃ the
orthogonal Pareto optimal cuts. We will provide a
bound for this approximation in Section 3.3.

The runtime of our algorithm is dominated by that
of generalized eigendecomposition, which is on par with
that of spectral clustering in big-O notation.

Example We use the Wine dataset from the UCI
archive to demonstrate how our algorithm works. It
consists of 119 instances. Each instance has 13 features
(attributes). We construct one view using the first
6 features and the other view using the remaining 7
features. After applying our approximation algorithm,
we have 117 points in J̃ (G1,G2) that correspond to
117 nontrivial orthogonal cuts of the graph, as shown
in Figure 1 (+’s). Among the 117 cuts, three lie on
the Pareto frontier F̃(G1,G2) (the circled points). We
visualize the clusterings derived from the three Pareto
optimal cuts in Figure 2. Note that Cut 3 (Figure 2(c))
coincides with the ground truth labeling of the Wine
dataset (Figure 2(d)).

3.2 Interpreting and Using the Pareto Optimal
Cuts The Pareto optimal cuts in P̃ can be interpreted
either individually as alternative clusterings or collec-
tively as a Pareto embedding of the dataset.

Specifically, if the two views are compatible with
each other, then by definition, they would agree on
a single cut that is Pareto optimal. In this case,
our algorithm will produce a unique clustering that
is optimal. If the two views are incompatible (which
is the case for the Wine dataset in Figure 1), the
cardinality of P̃ will be greater than 1. In this case,
the Pareto optimal cuts can be interpreted as a set of

alternative clusterings. On the one hand, these cuts are
alternative to each other in terms of orthogonality. On
the other hand, as shown in Figure 2, different Pareto
optimal cuts correspond to different ways to partition
the dataset: Figure 2(a) separates three outliers from
the rest of the data points, Figure 2(b) partitions the
points vertically, and Figure 2(c) partitions the points
horizontally. These three alternative clusterings are all
informative and could all be valid, depending on the
users’ needs.

In practice, |P̃ | is usually small. Hence it is
feasible to submit P̃ directly to domain experts for
further review. We argue that it is more intuitive
and much easier for domain experts to choose among
a few plausible clusterings than assigning a parameter a
priori which only implicitly decides the outcome of the
algorithm.

Sometimes the application demands one single par-
tition as output. In this case, we can interpret the
Pareto optimal cuts in P̃ collectively using the classic
spectral embedding technique [2, 4]. Specifically, let V
be a N × |P̃ | matrix, whose columns are the Pareto op-
timal cuts in P̃ . If we look at the i-th rows of V , it can
be considered as an embedding of the i-th node of the
graph in a |P̃ |-dimensional subspace, spanned by the
mutually orthogonal generalized eigenvectors (Figure 2
is the Pareto embedding of the Wine dataset). To derive
a single clustering, we perform K-means on the Pareto
embedding of all nodes, which is also common practice.

In addition, we used in our experiments a simple
but effective unsupervised weighting scheme that can
further improve the result. We assigned each Pareto
optimal cut a weight that is inversely proportional to
the squared sum of its costs on respective graphs. In
other words, all cuts being Pareto optimal, we assign
higher weights to those with lower overall costs.

3.3 Approximation Bound for Our Algorithm
In our algorithm, we compute the orthogonal Pareto
frontier F̃(G1,G2) as an approximation to the Pareto
frontier F(G1,G2). Here we create an upper bound on
how far a point in the Pareto frontier can be to the
orthogonal Pareto frontier. This effectively bounds the
difference between the costs of the cuts on the Pareto
frontier and those on the orthogonal Pareto frontier.

Let co(J̃ (G1,G2)) be the convex hull of J̃ (G1,G2).
It is a convex polygon that lies in J (G1,G2) (see
Figure 1). Let ext(J̃ (G1,G2)) be its extreme points
(“corners” of the convex polygon). Let

B , ext(J̃ (G1,G2)) ∩ F̃(G1,G2).

B is nonempty (e.g. the leftmost and lowest points
in J̃ (G1,G2) are both in B). First, it is obvious that
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Figure 1: The joint numerical range of the Wine dataset.
The +’s correspond to points in J̃ (G1,G2). The ◦’s are
the Pareto optimal cuts found by our algorithm, which
is F̃(G1,G2).
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(d) Ground truth label

Figure 2: The Pareto embedding of the Wine
dataset. (a)(b)(c) show the clusterings derived from
the Pareto optimal cuts in Figure 1; (d) shows the
original labels of the dataset.

any points in co(J̃ (G1,G2)) cannot dominate points in
B. Then, we examine the chance that any points in
J (G1,G2) dominate points in B.

Let Ω̃ = {ṽi}
N−2
i=1 and Ṽ = (ṽ1, . . . , ṽN−2). Any

v ∈ Ω can be represented by a linear combination
of ṽi’s: v = Ṽ a, a = (a1, . . . , aN−2)

T . We define
f(v) : Ω 7→ J (G1,G2):

f(v) =
(

vT L̄1v, vT L̄2v
)

(3.5)

=
(

(

N−2
∑

i=1

aiṽi)
T L̄1(

N−2
∑

j=1

aj ṽj), (

N−2
∑

i=1

aiṽi)
T L̄2(

N−2
∑

j=1

aj ṽj)
)

(3.6)

=
(

N−2
∑

i=1

N−2
∑

j=1

aiaj ṽ
T
i L̄1ṽj ,

N−2
∑

i=1

N−2
∑

j=1

aiaj ṽ
T
i L̄2ṽj

)

(3.7)

=
(

N−2
∑

i=1

a2i ṽ
T
i L̄1ṽi,

N−2
∑

i=1

a2i ṽ
T
i L̄2ṽi

)

(3.8)

= ‖a‖2
(

N−2
∑

i=1

a2i
‖a‖2

ṽT
i L̄1ṽi,

N−2
∑

i=1

a2i
‖a‖2

ṽT
i L̄2ṽi

)

(3.9)

= ‖a‖2
(

x, y
)

(3.10)

‖ · ‖ is 2-norm. The transition from Equation (3.7)
to (3.8) is due to the fact that, for i 6= j, ṽi and ṽj

are mutually orthogonal with respect to L̄1 and L̄2,
according to the definition of Ω̃. Equation (3.10) simply
replaces the two items in Equation (3.9) with shorter
notation.

Since
a2

i

‖a‖2 ≥ 0 and
∑N−2

i=1
a2

i

‖a‖2 = 1, (x, y) is a

convex combination of points in J̃ (G1,G2), therefore
(x, y) ∈ co(J̃ (G1,G2)). In other words, for any v ∈
Ω, f(v) can be represented by a point in J̃ (G1,G2)
multiplied by a scaling factor ‖a‖2. If ‖a‖2 = 1, then
f(v) = (x, y) ∈ co(J̃ (G1,G2)) and it cannot dominate
any point in B. If ‖a‖2 > 1, then f(v) is dominated by
(x, y), therefore, it cannot dominate any point in B. On
the other hand, we can derive a lower-bound for ‖a‖2.
We have:

1 = ‖v‖ = ‖Ṽ a‖ ≤ ‖Ṽ ‖‖a‖ = σmax(Ṽ )‖a‖,

where σmax(Ṽ ) is the largest singular value of Ṽ .
Consequently we have:

(3.11) ‖a‖2 ≥ 1/σ2
max(Ṽ ).

1/σ2
max(Ṽ ) effectively bounds how far f(v) can be from

the point (x, y), which is in co(J̃ (G1,G2)). The larger
1/σ2

max(Ṽ ) is, the closer f(v) is to (x, y), thus the
better co(J̃ (G1,G2)) approximates J (G1,G2) and the
more likely B coincides with F(G1,G2). The equality
in Equation (3.11) holds when v is the largest right
singular vector of Ṽ . As shown in Figure 1, △ is



f(v) = ‖a‖2(x, y) when ‖a‖2 reaches the lower-bound
on the Wine dataset; � is the corresponding (x, y). Note
that ‖a‖2 < 1 is a necessary but not sufficient condition
for f(v) to dominate any point in B. For example, in
Figure 1, although f(v) lies outside the convex hull of
J̃ (G1,G2), it does not dominate any point in B, which
are the three circled points.

3.4 Extension to Multiple Views It is possible
to extend our framework to M views. Given a finite
number of cuts across M views, it is not difficult
to compute the M -dimensional Pareto frontier. The
challenge is to discretize the joint numerical range of M
graphs, since the generalized eigenvalue system can only
accommodate two graphs at a time. To cope with the
limitation, we combine each view with the average of the
otherM−1 views, respectively. Then we use generalized
eigendecomposition to compute the orthogonal joint
numerical range of those two graphs. We repeat this
process M times and will get M(N − 2) cuts. Then we
compute the Pareto frontier of the M(N−2) cuts. This
approach ensures that a good cut will be preserved as
long as it is preferred by at least one view.

4 Empirical Study

In this section, we use six UCI benchmark datasets [1]
and the 20 Newsgroups dataset2 to empirically evaluate
the effectiveness of our approach. We aim to answer the
following questions:

• How does our algorithm perform on datasets with
incompatible views? (Table 2, Figure 3).

• How does it perform on datasets with compatible
views? (Table 3, Figure 3).

• How does it compare to the single-view spectral
clustering baseline and the state-of-the-art multi-
view spectral clustering techniques? (Tables 2 and
3, Figure 3).

The short answer to these questions is that (see Fig-
ure 3) our technique performs comparably to other
multi-view clustering techniques on datasets with com-
patible views, and it outperforms the other techniques
by a large margin on datasets with incompatible views.
This is a significant result since testing if two views are
compatible or not is an open research problem.

We chose six UCI benchmark datasets, namely
Hepatitis, Iris, Wine, Glass, Ionosphere, and
Breast Cancer. To construct the two views, we di-
vided the features into two disjoint subsets. We divided

2http://cs.nyu.edu/~roweis/data.html

them in such a way that the two views tend to be in-
compatible, e.g. we put different types of features into
opposite views. The graph Laplacians were computed
using RBF kernel. We also used the 20 Newsgroups
dataset that contains documents from four high-level
categories: comp, rec, sci, and talk. These categories
were used as ground truth labels. The features of the
dataset are 100 representative words. To construct the
two views, we randomly divided the features into two
subsets, each with 50 words. Therefore, for this dataset,
the two views tend to be compatible. The graph Lapla-
cians were computed using inner-product kernel, based
on the word-frequency vectors.

For our algorithm, we first computed the Pareto
optimal cuts, then used their Pareto embedding to find a
clustering. We evaluated this clustering against ground
truth labels using adjusted Rand index [13]: 0 means
the partition is as good as a random assignment and 1
means the partition perfectly matches the ground truth.

To make comparisons, we implemented several
state-of-the-art multi-view spectral clustering algo-
rithms (which all use a single objective). MM is the
Markov mixture algorithm proposed in [23], where the
two views are combined using a mixing random walk
on both graphs. KerAdd is kernel addition algorithm
that combines the two views by averaging their graph
Laplacians. Though simplistic, this method has been
shown to be very effective when two views are compat-
ible [9, 15, 23] and it outperforms many more sophisti-
cated alternatives. CoReg is the co-regularization multi-
view spectral clustering algorithm proposed in [16]. We
implemented the centroid based version and used the
centroids to compute the final clustering. As a baseline,
we also report the results of performing spectral clus-
tering on each single view (View 1, View 2), as well as
the concatenation of two views (Concat.).

The results are summarized in Table 2 and 3.
Our approach (Pareto) outperformed all three spectral
clustering baselines (View 1, View 2, Concat.) in most
cases. This suggests that our approach is effective in
combining the two views in a constructive way. When
comparing to existing multi-view clustering techniques,
our approach outperformed any single one of them.
Across all 12 datasets, our approach achieved highest
ARI on 6 and second highest on 3.

More importantly, our approach is more reliable in
terms of performance than its competitors when the two
views were constructed to be incompatible. Across 6
UCI datasets (Table 2), our approach achieved highest
performance on 4 and second highest on the other
2. This justifies the advantage of our multi-objective
framework over the single-objective framework used by
previous methods. On the other hand, for the 20



Table 2: The adjusted Rand index of various algorithms on six UCI datasets with incompatible views. Bold
numbers are best results. The number in the parenthesis is the performance gain of our approach (Pareto) over
the best competitor. Our method performs the best on the majority of datasets.

View 1 View 2 Concat. MM KerAdd CoReg Pareto

Hepatitis -0.109 0.247 0.193 -0.091 -0.111 0.247 0.360(+0.113)
Iris 0.136 0.808 0.485 0.430 0.430 0.404 0.808(+0.000)
Wine -0.015 0.869 -0.015 0.869 0.933 0.933 0.933(+0.000)
Glass 0.510 0.041 0.413 0.474 0.448 0.510 0.490(−0.020)
Ionosphere 0.209 -0.043 -0.043 0.209 0.257 0.209 0.209(−0.048)
Breast Cancer 0.005 0.005 0.112 0.005 0.002 0.297 0.368(+0.071)

Table 3: The adjusted Rand index of various algorithms on the 20 Newsgroups dataset with compatible views.
Bold numbers are best results. The number in the parenthesis is the performance gain of our approach (Pareto)
over the best competitor. Note our method is comparable to other methods. The best performing method here,
MM, performs poorly in Table 2.

View 1 View 2 Concat. MM KerAdd CoReg Pareto

comp-rec 0.697 0.719 0.747 0.758 0.747 0.741 0.747(−0.011)
comp-sci 0.520 0.506 0.700 0.702 0.717 0.688 0.684(−0.033)
comp-talk 0.837 0.702 0.939 0.939 0.939 0.939 0.957(+0.018)
rec-sci 0.533 0.605 0.640 0.633 0.640 0.626 0.640(+0.000)
rec-talk 0.684 0.681 0.754 0.764 0.748 0.748 0.725(−0.039)
sci-talk -0.011 0.520 0.558 0.566 0.559 0.393 0.542(−0.024)
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Figure 3: The mean difference (in terms of ad-
justed Rand index) of various techniques wrt the best-
performing technique on each dataset, grouped by two
cases (datasets with compatible views vs. datasets with
incompatible views).

Newsgroups datasets (Table 3) where the two views
are constructed to be compatible, the advantage of our
approach was less significant. Nevertheless, it was not
outperformed by its competitors by a large margin.

To better demonstrate our approach’s consistent
performance with both compatible and incompatible
views, we compute the relative difference (in terms of
adjusted Rand index) of each technique’s performance
with respect to the best-performance approach per

dataset. Then we compute the mean relative difference
for each technique on the UCI datasets and the 20
Newsgroups dataset, respectively. Since no technique
was always the best, the mean relative difference of
all techniques is always less than zero. However, in
Figure 3, we can clearly see that our algorithm is
the only technique that performed consistently well in
both cases (compatible and incompatible). In contrast,
although the Concat., MM, and KerAdd performed very
well on compatible views, they performed poorly on
incompatible views.

5 Applying Our Algorithm to Automated
fMRI Analysis

In this section, we explore an application of our work
where incompatible views naturally occur: resting-state
fMRI analysis. A resting-state fMRI scan is a series
of 3D brain images over time of a person at resting
state. We can construct a graph for each scan, where
each node corresponds to a voxel in the brain image,
and the edge weight corresponds to the correlation
between the activity of two voxels over time. If we
partition this graph into two parts, one will comprise
regions in the brain that share the same functionality
(called a cognitive network), the other background.
For our application, we are interested in a particular
network, called the Default Mode Network (DMN) (see
Figure 4(a)), which is periodically activated when the
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Figure 4: The results of applying our algorithm to
resting-state fMRI scans. Illustrated is a horizontal
slice of the scan (eyes are on the right-hand side). We
use an exemplary scan (View 1) to induce the Default
Mode Network (the red/yellow pixels in the figures) in
a set of target scans (View 2). Our algorithm produced
consistent partitions across different target scans.

person is in resting state. The absence of the DMN has
been related to the Alzheimer’s disease [7]. Our goal is
to elicit the DMN from a given scan and determine its
strength.

The challenge of this task is that fMRI scans are
notoriously noisy. Many factors, such as equipment
calibration, head positioning, and the mental state of
the subject, can introduce a significant amount of noise
into the scan. As a result, the same person scanned
twice over the period of a month (as our data is)
will produce two incompatible scans which suggest two
very different clusterings. Combining two incompatible
scans is not desirable because the noise in one scan can
dominate the other scan. In effort to overcome this,
we use our algorithm to simultaneously cut two scans:
an exemplary scan and a target scan. The exemplary
scan is a scan verified by domain experts that exhibits a
strong DMN pattern. We pair this exemplary scan with
a target scan, which may or may not be compatible, to
detect the DMN therein.

Figure 4(a) shows what a DMN should look like.
Note that it only illustrates the general shape of the
DMN based on the average of a large number of scans.
The actual DMN differs from individual to individual.
Figure 4(b) shows the DMN exhibited by an exemplary
scan from a young healthy person.
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Figure 5: The costs of induced DMN cuts on the target
scans, grouped by 3 sub-populations. The costs increase
as the cognitive symptom gets worse.

Given the exemplary scan and a target scan, our
algorithm finds the set of Pareto optimal cuts. We
compare each Pareto optimal cut to the DMN cut
exhibited by the exemplary scan and choose the most
similar one (as shown in Figure 4(c) and (d)) as the
induced DMN cut for the target scan. The induced
DMN cut can be considered as the target scan’s
best effort (in terms of Pareto optimality) to
accommodate the exemplary DMN cut. We then
record the cost of the induced DMN cut for the target
scan, which can be naturally viewed as an indicator for
the strength of the DMN in the target scan. The lower
the cost is, the more the target scan prefers the DMN
cut, thus the stronger the DMN is in the target scan.

The dataset we used was collected and processed
within the research program of UC Davis Alzheimer’s
Disease Center. The exemplary scans were chosen
by domain experts from a group of young healthy
individuals. The target scans were from 31 elderly
individuals: 11 diagnosed as Healthy, 10 Mild Cognitive
Impairment (MCI), and 10 Dementia.

We observed that, despite the ubiquitous noise
in fMRI scans, our algorithm managed to induce the
DMN cut across all target scans, i.e. the candidate
set always included a cut that is highly similar to the
exemplary DMN in Figure 4(b). In Figure 4(c) and
(d), we illustrate two induced DMN cuts from two
different target scans. This demonstrated that our
formulation can accommodate incompatible views and
avoid destructive knowledge combination. Then we
studied the costs of the induced cuts on three different
sub-populations, namely Healthy, MCI, and Dementia.
As shown in Figure 5(a), as the cognitive symptom
develops, the costs of the induced cuts tend to increase,
which means the strength of the DMN tends to decrease.
To verify this, we tried a different exemplary scan and
had similar results (Figure 5(b)). This observation
provided direct support to the claim made in previous
study [7] that the DMN diminishes as the Alzheimer’s
disease progresses.



Existing multi-view techniques do not work well for
this task since they assume compatible views. However,
the two views, the exemplary and the target scan,
are often incompatible due to not only the noise but
also the fact that they are from different individuals.
Consequently, existing methods suffer from destructive
combination as indicated by earlier results (see Table 2).
Moreover, the pattern we are interested in, the DMN, is
often not the dominant pattern in the exemplary scan.
This makes it much more difficult, if possible, for single-
objective based techniques to find the DMN pattern in
all the target scans.

6 Conclusion

In this paper we explored multi-view spectral clustering
using a multi-objective formulation. The search space of
our objective is the joint numerical range of two graphs.
We use Pareto optimization to find the optimal solu-
tions, which is the Pareto frontier of the joint numerical
range. To the best of our knowledge, we are the first to
use Pareto optimization for multi-objective multi-view
spectral clustering. We also proposed an efficient ap-
proximation algorithm to compute the Pareto frontier,
which reduces the search space from an infinite num-
ber of cuts to a finite set of mutually orthogonal cuts.
We compared our work against a variety of algorithms
in the multi-view setting. The pragmatic benefits of
our approach over existing single-objective techniques
are: 1) the users do not need to specify the weights for
different views a priori ; 2) the views need not to be
compatible (a difficult-to-test property); 3) it efficiently
enumerates plausible and alternative clusterings. We
also explored using our multi-objective formulation in
the setting where one objective captures the adherence
to the ground truth and the other the adherence to the
observed data.
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