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What is Preference Learning ?

 Preference learning is an emerging subfield of machine learning 

 Roughly speaking, it deals with the learning of (predictive) preference 

models from observed (or extracted) preference information 

MACHINE 
LEARNING

PREFERNCE MODELING 
and DECISION ANALYSIS

Preference Learning

computer science
artificial intelligence

operations research
social sciences (voting and choice theory)

economics and decision theory
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Workshops and Related Events

 NIPS–01: New Methods for Preference Elicitation

 NIPS–02: Beyond Classification and Regression: Learning Rankings, 
Preferences, Equality Predicates, and Other Structures

 KI–03: Preference Learning: Models, Methods, Applications

 NIPS–04: Learning With Structured Outputs

 NIPS–05: Workshop on Learning to Rank

 IJCAI–05: Advances in Preference Handling

 SIGIR 07–10: Workshop on Learning to Rank for Information Retrieval

 ECML/PDKK 08–10: Workshop on Preference Learning

 NIPS–09: Workshop on Advances in Ranking

 American Institute of Mathematics Workshop in Summer 2010: The
Mathematics of Ranking
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Preferences in Artificial Intelligence

User preferences play a key role in various fields of application:

 recommender systems,

 adaptive user interfaces,

 adaptive retrieval systems,

 autonomous agents (electronic commerce),

 games, …

Preferences in AI research:

 preference representation (CP nets, GAU networks, logical 
representations, fuzzy constraints, …)

 reasoning with preferences (decision theory, constraint satisfaction, 
non-monotonic reasoning, …)

 preference acquisition (preference elicitation, preference learning, ...)

More generally, „preferences“ is a key topic in current AI research
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AGENDA

1. Preference Learning Tasks (Eyke)

2. Loss Functions (Johannes)

3. Preference Learning Techniques (Eyke)

4. Complexity of Preference Learning (Johannes)

5. Conclusions
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Preference Learning

Preference learning problems can be distinguished along several 

problem dimensions, including

 representation of preferences, type of preference model: 

 utility function (ordinal, cardinal), 

 preference relation (partial order, ranking, …), 

 logical representation, …

 description of individuals/users and alternatives/items: 

 identifier, feature vector, structured object, …

 type of training input: 

 direct or indirect feedback, 

 complete or incomplete relations, 

 utilities, …

 …

6



ECML/PKDD-2010 Tutorial on Preference Learning | Part 1 | J. Fürnkranz & E. Hüllermeier

Preference Learning
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Preferences

absolute relative

binary gradual total order partial order

ÂA Â ÂB C D A
B

C
DA B C D

1 1 0 0

A B C D

.9 .8 .1 .3

ordinalnumeric

A B C D

+ + - 0

 (ordinal) regression  classification/ranking
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Structure of this Overview

(1) Preference Learning as an extension of conventional supervised learning: 
Learn a mapping

that maps instances to preference models ( structured/complex output
prediction).

(2) Other settings (object ranking, instance ranking, CF, …)
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Structure of this Overview

(1) Preference Learning as an extension of conventional supervised learning: 
Learn a mapping

that maps instances to preference models ( structured/complex output
prediction).

Instances are typically (though not necessarily) characterized in terms of a 
feature vector.

The output space consists of preference models over a fixed set of
alternatives (classes, labels, …) represented in terms of an identifier
 extensions of multi-class classification
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Multilabel Classification [Tsoumakas & Katakis 2007]

10

X1 X2 X3 X4 A B C D

0.34 0 10 174 0 1 1 0

1.45 0 32 277 0 1 0 1

1.22 1 46 421 0 0 0 1

0.74 1 25 165 0 1 1 1

0.95 1 72 273 1 0 1 0

1.04 0 33 158 1 1 1 0

0.92 1 81 382 0 1 0 1

Training

Prediction

0.92 1 81 382 1 1 0 1

Ground truth

Binary
preferences on a 
fixed set of items: 
liked or disliked

LOSS
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Multilabel Ranking

11

X1 X2 X3 X4 A B C D

0.34 0 10 174 0 1 1 0

1.45 0 32 277 0 1 0 1

1.22 1 46 421 0 0 0 1

0.74 1 25 165 0 1 1 1

0.95 1 72 273 1 0 1 0

1.04 0 33 158 1 1 1 0

0.92 1 81 382 4 1 3 2

Training

Prediction

0.92 1 81 382 1 1 0 1

Ground truth

ÂB Â ÂD C A

Binary
preferences on a 
fixed set of items: 
liked or disliked

A ranking of all 
items

LOSS
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Graded Multilabel Classification [Cheng et al. 2010]
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X1 X2 X3 X4 A B C D

0.34 0 10 174 -- + ++ 0

1.45 0 32 277 0 ++ -- +

1.22 1 46 421 -- -- 0 +

0.74 1 25 165 0 + + ++

0.95 1 72 273 + 0 ++ --

1.04 0 33 158 + + ++ --

0.92 1 81 382 -- + 0 ++

Training

Prediction

0.92 1 81 382 0 ++ -- +

Ground truth

Ordinal
preferences on a 
fixed set of items: 
liked or disliked

A ranking of all 
items

LOSS
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Graded Multilabel Ranking
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X1 X2 X3 X4 A B C D

0.34 0 10 174 -- + ++ 0

1.45 0 32 277 0 ++ -- +

1.22 1 46 421 -- -- 0 +

0.74 1 25 165 0 + + ++

0.95 1 72 273 + 0 ++ --

1.04 0 33 158 + + ++ --

0.92 1 81 382 4 1 3 2

Training

Prediction

0.92 1 81 382 0 ++ -- +

Ground truth

ÂB Â ÂD C A

Ordinal
preferences on a 
fixed set of items: 
liked or disliked

A ranking of all 
items

LOSS
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Label Ranking [Hüllermeier et al. 2008]
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X1 X2 X3 X4 Preferences

0.34 0 10 174 A Â B, B Â C, C Â D

1.45 0 32 277 B Â C

1.22 1 46 421 B Â D, A Â D, C Â D, A Â C

0.74 1 25 165 C Â A, C Â D, A Â B

0.95 1 72 273 B Â D, A Â D, 

1.04 0 33 158 DÂ A, A Â B, C Â B, A Â C

0.92 1 81 382 4 1 3 2

Training

Prediction

0.92 1 81 382 2 1 3 4

Ground truth

ÂB Â ÂD C A
A ranking of all 
items

Instances are
associated with
pairwise
preferences
between labels.

LOSS
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Calibrated Label Ranking [Fürnkranz et al. 2008]
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Combining absolute and relative evaluation:

Âa Âb c d Â Â Âe f g

relevant
positive

liked

irrelevant
negative
disliked

Preferences

absolute relative
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Structure of this Overview

(1) Preference Learning as an extension of conventional supervised learning: 
Learn a mapping

that maps instances to preference models ( structured output
prediction).

(2) Other settings

object ranking, instance ranking („no output space“)
collaborative filtering („no input space“)
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Object Ranking [Cohen et al. 99]

17

Training

Prediction (ranking a new set of objects)

Ground truth (ranking or top-ranking or subset of relevant objects)

Pairwise
preferences
between objects
(instances).
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Instance Ranking [Fürnkranz et al. 2009]
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Training
X1 X2 X3 X4 class

0.34 0 10 174 --

1.45 0 32 277 0

0.74 1 25 165 ++

… … … … …

0.95 1 72 273 +

Prediction (ranking a new set of objects)

+ 0 ++ ++ -- + 0 + -- 0 0 -- --

Ground truth (ordinal classes)
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Instance Ranking [Fürnkranz et al. 2009]
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predicted ranking, e.g., 
through sorting by
estimated score

most likely good most likely bad

ranking error

Extension of AUC maximization to the polytomous case, in which
instances are rated on an ordinal scale such as { bad, medium, good}

Query set of instances to 
be ranked (true labels
are unknown).
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Collaborative Filtering [Goldberg et al. 1992]

20

P1 P2 P3 … P38 … P88 P89 P90

U1 1 4 … … 3

U2 2 2 … … 1

… … …

U46 ? 2 ? … ? … ? ? 4

… … …

U98 5 … … 4

U99 1 … … 2

1: very bad,   2: bad,   3: fair,   4: good,   5: excellent

U
 S

 E
 R

 S

P R O D U C T S

Inputs and outputs as identifiers, absolute preferences in terms of ordinal degrees.
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Preference Learning Tasks

21

task input output training prediction ground truth

collaborative
filtering

identifier identifier absolute
ordinal

absolute
ordinal

absolute
ordinal

multilabel
classification

feature identifier absolute
binary

absolute
binary

absolute
binary

multilabel
ranking

feature identifier absolute
binary

ranking absolute
binary

graded multilabel
classification

feature identifier absolute
ordinal

absolute
ordinal

absolute
ordinal

label
ranking

feature identifier relative
binary

ranking ranking

object
ranking

feature -- relative
binary

ranking ranking or subset

instance
ranking

feature identifier absolute
ordinal

ranking absolute
ordinal

ge
n

er
al

iz
ed

cl
as

si
fi

ca
ti

o
n
ran

kin
g

Two main directions: (1) Ranking and variants (2) generalizations of classification.

representation type of preference information
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Beyond Ranking: Predicting Partial Oders [Chevaleyre et al. 2010, Cheng et al. 2010b]

22

 Rankings (strict total orders) can be generalized in different ways, e.g., 
through indifference (ties) or incomparability

 Predicting partial orders among alternatives:

 Learning conditional preference (CP) networks

 Two interpretations: Partial abstention due to uncertainty (target is a total 
order) versus prediction of truly partial order relation. 

Barcelona

Paris

Rome

London
„cannot

compare“
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Loss Functions

23

absolute utility degree absolute utility degree

subset of preferred items subset of preferred items

subset of preferred items ranking of items

fuzzy subset of preferred items fuzzy subset of preferred items

ranking of items ranking of items

ranking of items ordered partition of items

Things to be compared:

standard comparison of 
scalar predictions

n
o

n
-s

ta
n

d
ar

d
co

m
p

ar
is

o
n

s
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AGENDA

1. Preference Learning Tasks (Eyke)
2. Loss Functions (Johannes)

a. Evaluation of Rankings
b. Weighted Measures
c. Evaluation of Bipartite Rankings
d. Evaluation of Partial Rankings

3. Preference Learning Techniques (Eyke)
4. Complexity (Johannes)
5. Conclusions
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Rank Evaluation Measures

 In the following, we do not discriminate between different ranking 
scenarios
 we use the term items for both, objects and labels

 All measures are applicable to both scenarii
 sometimes have different names according to context

 Label Ranking 
 measure is applied to the ranking of the labels of each examples
 averaged over all examples

 Object Ranking 
 measure is applied to the ranking of a set of objects
 we may need to average over different sets of objects which have disjoint 

preference graphs
 e.g. different sets of query / answer set pairs in information retrieval
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 Given:
 a set of items X = {x1, …, xc} to rank 
 Example: 

X = {A, B, C, D, E}

D
C

E
B

A

Ranking Errors

items can be 
objects or labels
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Ranking Errors

 Given:
 a set of items X = {x1, …, xc} to rank 
 Example: 

X = {A, B, C, D, E}

 a target ranking 
 Example: 

E  B  C  A  D  

r

D

C

A

B

E

r
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Ranking Errors

 Given:
 a set of items X = {x1, …, xc} to rank 
 Example: 

X = {A, B, C, D, E}

 a target ranking 
 Example: 

E  B  C  A  D 

 a predicted ranking 
 Example: 

A  B  E  C  D 

 Compute:
 a value              that measures the 

distance  between the two rankings

r

D

E

C

B

A

r

r

D

C

A

B

E

r

d r , r 
d  r , r 
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Notation

    and    are functions from X → ℕ
 returning the rank of an item x

 the inverse functions r-1: ℕ → X 
 return the item at a certain position

 as a short-hand for         , we also define
function R: ℕ → ℕ
 R(i) returns the true rank of the i-th item 

in the predicted ranking

r

D

E

C

B

A

r r

D

C

A

B

E

r

r A=4

r A=1

r−11=A r−14=A

R 1=r  r−11=4

r ° r−1
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Spearman's Footrule

 Key idea:
 Measure the sum of absolute differences 

between ranks

DSF r , r =∑
i=1

c

∣r xi −r  xi ∣=∑
i=1

c

∣i−R i ∣

D

E

C

B

A

r

D

C

A

B

E

r

=∑
i=1

c

d x i
r , r 

d A=∣1−4∣=3

d B=0

d c=1

d D=0

d E=2

∑xi
d xi

=30102=6
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Spearman Distance

 Key idea:
 Measure the sum of absolute differences 

between ranks

 Value range:

→ Spearman Rank Correlation Coefficient

DS r , r =∑
i=1

c

r  xi −r  xi
2=∑

i=1

c

i−R i2

D

E

C

B

A

r

D

C

A

B

E

r

=∑
i=1

c

d x i
r , r 2

d A=∣1−4∣=3

d B=0

d c=1

d D=0

d E=2

∑xi
d xi

2=32012022=14

squared

min DS r , r =0

max DS r , r =∑
i=1

c

c−i −i 2= c⋅c2−1
3

1−
6⋅DS r , r 
c⋅c2−1

∈[−1,1]
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Kendall's Distance

 Key idea:
 number of item pairs that are inverted in the 

predicted ranking

 Value range:

→ Kendall's tau
D

E

C

B

A

r

D

C

A

B

E

r

1−
4⋅D r , r 
c⋅c−1

∈[−1,1]

Dr , r  =∣ {i , j ∣ r  xir  x j ∧ r  xi r x j} ∣

Dr , r  = 4

min Dr , r =0

max Dr , r = c⋅c−1
2
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AGENDA

1. Preference Learning Tasks (Eyke)
2. Loss Functions (Johannes)

a. Evaluation of Rankings
b. Weighted Measures
c. Evaluation of Bipartite Rankings
d. Evaluation of Partial Rankings

3. Preference Learning Techniques (Eyke)
4. Complexity (Johannes)
5. Conclusions
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Weighted Ranking Errors

 The previous ranking functions give equal weight to all ranking positions
 i.e., differences in the first ranking positions have the same effect as differences 

in the last ranking positions

 In many applications this is not desirable
 ranking of search results
 ranking of product recommendations
 ranking of labels for classification
 ...

D

C

E

B

A

E

C

D

B

A

E

C

D

B

A

E

C

D

A

B

D        ,        = D        ,       

Higher ranking 
positions should 

be given more
weight

⇒
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Position Error

 Key idea:
 in many applications we are interested in 

providing a ranking where the target item 
appears a high as possible in the 
predicted ranking
 e.g. ranking a set of actions for the next step 

in a plan
 Error is the number of wrong items that 

are predicted before the target item

 Note:
 equivalent to Spearman's footrule with all 

non-target weights set to 0
D

E

C

B

A

r

D

C

A

B

E

r

DPE r , r =r arg min x∈X r  x−1

DPE r , r =2DPE r , r =∑
i=1

c

w i⋅d xi
r , r 

wi = 〚xi=arg min x∈X r  x〛with
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Discounted Error

 Higher ranks in the target position get 
a higher weight than lower ranks

D

E

C

B

A

r r

D

A

C

B

E
DDRr , r =∑

i=1

c

w i⋅d x i
r , r 

wi =
1

log r  x i1with

D DRr , r = 3
log 2

0 1
log 4

0 2
log 6
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(Normalized) Discounted Cumulative Gain

 a “positive” version of discounted error:
Discounted Cumulative Gain (DCG)

 Maximum possible value:
 the predicted ranking is correct, 

i.e. 
 Ideal Discounted Cumulative Gain (IDCG)

 Normalized DCG (NDCG)
D

E

C

B

A

r r

D

A

C

B

EDCG r , r =∑
i=1

c c−Ri 
log i1

∀ i : i=R i 

IDCG=∑
i=1

c c−i
log i1

NDCG r , r =DCG r , r 
IDCG

NDCG r , r =
1

log 2
 3

log 3
 4

log 4
 2

log 5
 0

log 6
4

log 2
 3

log 3
 2

log 4
 1

log 5
 0

log 6
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AGENDA

1. Preference Learning Tasks (Eyke)
2. Loss Functions (Johannes)

a. Evaluation of Rankings
b. Weighted Measures
c. Evaluation of Bipartite Rankings
d. Evaluation of Partial Rankings

3. Preference Learning Techniques (Eyke)
4. Complexity (Johannes)
5. Conclusions
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Bipartite Rankings
 The target ranking is not totally ordered 

but a bipartite graph
 The two partitions may be viewed as 

preference levels L = {0, 1}
 all c1 items of level 1 are preferred over all 

c0 items of level 0

 We now have fewer preferences

 for a total order:

 for a bipartite graph: 

Bipartite Rankings

D

E

C

B

A

r

D

C
A

B
E

r

c
2
⋅c−1

c1⋅c−c1
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Evaluating Partial Target Rankings

 Many Measures can be directly adapted from 
total target rankings to partial target rankings

 Recall: Kendall's distance
 number of item pairs that are inverted 

in the target ranking

 can be directly used
 in case of normalization, we have to 

consider that fewer items satisfy r(xi) < r(xj)

 Area under the ROC curve (AUC)
 the AUC is the fraction of pairs of (p,n) for 

which the predicted score s(p) > s(n)
 Mann Whithney statistic is the absolute number

 This is 1 - normalized Kendall's distance 
for a bipartite preference graph with L = {p,n}

Dr , r  =∣ {i , j ∣ r x ir  x j ∧ r  xir  x j} ∣

D

E

C

B

A

r

D

C
A

B
E

r

Dr , r  = 2

AUC r , r  = 4
6
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Evaluating Multipartite Rankings

 Multipartite rankings:
 like Bipartite rankings
 but the target ranking r consists of 

multiple relevance levels L = {1 … l}, 
where l < c

 total ranking is a special case where each 
level has exactly one item

 # of preferences

 ci is the number of items in level I

 C-Index [Gnen & Heller, 2005]
 straight-forward generalization of AUC
 fraction of pairs (xi ,xj) for which

D

E

C

B

A

r

D

C

A

B
E

r

=∑
i , j 

ci⋅c j ≤
c2

2
⋅1−1

l


l i l  j  ∧ r  xir  x j 

Dr , r  = 3

C-Index r , r  = 5
8
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Evaluating Multipartite Rankings

C-Index
 the C-index can be rewritten as a weighted sum of pairwise AUCs:

where       and        are the rankings    and    restricted to levels i and j.

Jonckheere-Terpstra statistic
 is an unweighted sum of pairwise AUCs:

 equivalent to well-known multi-class extension of AUC 
[Hand & Till, MLJ 2001]

C-Index r , r = 1
∑i , ji

ci⋅c j
∑i , ji

ci⋅c j⋅AUC r i , j , r i , j 

m-AUC= 2
l⋅l−1∑i , ji

AUC r i , j , r i , j 

Note:
C-Index and m-AUC
can be optimized by
optimization of 
pairwise AUCs

Note:
C-Index and m-AUC
can be optimized by
optimization of 
pairwise AUCs

r i , j r i , j r r
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Normalized Discounted Cumulative Gain 
[Jarvelin & Kekalainen, 2002]

D

E

C

B

A

r

D

C

A

B
E

r The original formulation of (normalized) 
discounted cumulative gain refers to
this setting

 the sum of the true (relevance) 
levels of the items

 each item weighted by its rank
in the predicted ranking

 Examples:
 retrieval of relevant or irrelevant pages
 2 relevance levels

 movie recommendation
 5 relevance levels

DCG r , r =∑
i=1

c l i 
log i1
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Evaluating Partial Structures in the Predicted 
Ranking

 For fixed types of partial structures, we have conventional measures
 bipartite graphs → binary classification
 accuracy, recall, precision, F1, etc.
 can also be used when the items are labels!

 e.g., accuracy on the set of labels for multilabel classification
 multipartite graphs → ordinal classification
 multiclass classification measures (accuracy, error, etc.)
 regression measures (sum of squared errors, etc.)

 For general partial structures 
 some measures can be directly used on the reduced set of target preferences
 Kendall's distance, Gamma coefficient

 we can also use set measures on the set of binary preferences
 both, the source and the target ranking consist of a set of binary preferences
 e.g. Jaccard Coefficient

 size of interesection over size of union of the binary preferences in both sets

¿

¿
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Gamma Coefficient

 Key idea: normalized difference between 
 number of correctly ranked pairs

(Kendall's distance)

 number of incorrectly ranked pairs

 Gamma Coefficient
[Goodman & Kruskal, 1979]

 Identical to Kendall's tau 
if both rankings are total
 i.e., if 

D

E

C

B

A

r

D

C

A

B

E

r

d=Dr , r 

d  =∣ {i , j ∣ r  xir  x j  ∧ r  xir  x j}∣

r , r =d− d  
d d  

∈[−1,1]

r , r =2−1
21

=1
3

d d  = c⋅c−1
2
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Two Ways of Representing Preferences

2

 Utility-based approach: Evaluating single alternatives

 Relational approach: Comparing pairs of alternatives

weak preference

strict preference

indifference

incomparability
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Utility Functions

 A utility function assigns a utility degree (typically a real number or an 
ordinal degree) to each alternative.

 Learning such a function essentially comes down to solving an (ordinal) 
regression problem.

 Often additional conditions, e.g., due to bounded utility ranges or
monotonicity properties ( learning monotone models)

 A utility function induces a ranking (total order), but not the other way 
around! 

 But it can not represent a partial order!

 The feedback can be direct (exemplary utility degrees given) or indirect
(inequality induced by order relation):

3

direct feedback indirect feedback
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Predicting Utilities on Ordinal Scales

4

(Graded) multilabel classification

Collaborative filtering

Exploiting dependencies
(correlations) between items
(labels, products, …). 

 see work in MLC and RecSys communities
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Learning Utility Functions from Indirect Feedback

 A (latent) utility function can also be used to solve ranking problems, 
such as instance, object or label ranking
 ranking by (estimated) utility degrees (scores)

5

Instance ranking

Absolute preferences given, so in 
principle an ordinal regression
problem. However, the goal is to 
maximize ranking instead of 
classification performance. 

Object ranking
Find a utility function that agrees
as much as possible with the
preference information in the
sense that, for most examples, 



ECML/PKDD-2010 Tutorial on Preference Learning | Part 3 | J. Fürnkranz & E. Hüllermeier

Ranking versus Classification

6

positive negative

A ranker can be turned into a classifier via thresholding:

A good classifier is not necessarily a good ranker:

2 classification but
10 ranking errors

 learning AUC-optimizing scoring classifiers !
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RankSVM and Related Methods (Bipartite Case)

 The idea is to minimize a convex upper bound on the empirical ranking
error over a class of (kernalized) ranking functions:

7

convex upper bound on

regularizer
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RankSVM and Related Methods (Bipartite Case)

 The bipartite RankSVM algorithm [Herbrich et al. 2000, Joachimes 2002]:

8

hinge loss

regularizer

reproducing kernel
Hilbert space (RKHS) with

kernel K

 learning comes down to solving a QP problem
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RankSVM and Related Methods (Bipartite Case)

 The bipartite RankBoost algorithm [Freund et al. 2003]:

9

class of linear 
combinations of base

functions

 learning by means of boosting techniques
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Learning Utility Functions for Label Ranking

10
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Label Ranking: Reduction to Binary Classification [Har-Peled et al. 2002]

11

 each pairwise comparison is turned into a binary classification example
in a high-dimensional space!

positive example in the new instance space(m x k)-dimensional weight vector
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Learning Binary Preference Relations

 Learning binary preferences (in the form of predicates P(x,y)) is often
simpler, especially if the training information is given in this form, too. 

 However, it implies an additional step, namely extracting a ranking from a 
(predicted) preference relation.

 This step is not always trivial, since a predicted preference relation may
exhibit inconsistencies and may not suggest a unique ranking in an 
unequivocal way.

13

1 1 0 0

0 0 1 0

0 1 0 0

1 0 1 1

1 1 1 0

inference
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Object Ranking: Learning to Order Things [Cohen et al. 99]

 In a first step, a binary preference function PREF is constructed; 
PREF(x,y) 2 [0,1] is a measure of the certainty that x should be ranked
before y, and PREF(x,y)=1- PREF(y,x).

 This function is expressed as a linear combination of base preference
functions:

 The weights can be learned, e.g., by means of the weighted majority
algorithm [Littlestone & Warmuth 94]. 

 In a second step, a total order is derived, which is a much as possible in 
agreement with the binary preference relation. 

14
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Object Ranking: Learning to Order Things [Cohen et al. 99]

 The weighted feedback arc set problem: Find a permutation ¼ such that

becomes minimal.

15

0.70.9

0.6

0.6

0.80.5

0.3

0.1 0.6

0.4

0.5

0.8

cost = 0.1+0.6+0.8+0.5+0.3+0.4 = 2.7 

0.1
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Object Ranking: Learning to Order Things [Cohen et al. 99]

 Since this is an NP-hard problem, it is solved heuristically. 

16

Input: 

Output:

let

for do

while do

let

let

for do

endwhile

 The algorithm successively chooses nodes having maximal „net-flow“ within the
remaining subgraph. 

 It can be shown to provide a 2-approximation to the optimal solution.
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Label Ranking: Learning by Pairwise Comparison (LPC) [Hüllermeier et al. 2008]

17
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X1 X2 X3 X4 preferences class

0.34 0 10 174 A Â B, B Â C, C Â D 1

1.45 0 32 277 B Â C

1.22 1 46 421 B Â D, B Â A, C Â D, A Â C 0

0.74 1 25 165 C Â A, C Â D, A Â B 1

0.95 1 72 273 B Â D, A Â D, 

1.04 0 33 158 D Â A, A Â B, C Â B, A Â C 1

Label Ranking: Learning by Pairwise Comparison (LPC) [Hüllermeier et al. 2008]

Training data (for the label pair A and B):
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At prediction time, a query instance is submitted to all models, and 
the predictions are combined into a binary preference relation:

A B C D

A 0.3 0.8 0.4

B 0.7 0.7 0.9

C 0.2 0.3 0.3

D 0.6 0.1 0.7

Label Ranking: Learning by Pairwise Comparison (LPC) [Hüllermeier et al. 2008]
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At prediction time, a query instance is submitted to all models, and 
the predictions are combined into a binary preference relation:

A B C D

A 0.3 0.8 0.4 1.5

B 0.7 0.7 0.9 2.3

C 0.2 0.3 0.3 0.8

D 0.6 0.1 0.7 1.4

From this relation, a ranking is derived by means of a ranking procedure. 
In the simplest case, this is done by sorting the labels according to their
sum of weighted votes. 

B Â A Â D Â C

Label Ranking: Learning by Pairwise Comparison (LPC) [Hüllermeier et al. 2008]
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Structured Output Prediction [Bakir et al. 2007]

 Rankings, multilabel classifications, etc. can be seen as specific types of 
structured (as opposed to scalar) outputs. 

 Discriminative structured prediction algorithms infer a joint scoring 
function on input-output pairs and, for a given input, predict the output 
that maximises this scoring function.

 Joint feature map and scoring function

 The learning problem consists of estimating the weight vector, e.g., using
structural risk minimization. 

 Prediction requires solving a decoding problem:

22
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 Preferences are expressed through inequalities on inner products:

 The potentially huge number of constraints cannot be handled explicitly
and calls for specific techniques (such as cutting plane optimization)

23

loss function

Structured Output Prediction [Bakir et al. 2007]
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Model-Based Methods for Ranking

 Model-based approaches to ranking proceed from specific assumptions
about the possible rankings (representation bias) or make use of 
probabilistic models for rankings (parametrized probability distributions
on the set of rankings).

 In the following, we shall see examples of both type:
 Restriction to lexicographic preferences

 Conditional preference networks (CP-nets)

 Label ranking using the Plackett-Luce model

25
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Learning Lexicographic Preference Models [Yaman et al. 2008] 

 Suppose that objects are represented as feature vectors of length m, and 
that each attribute has k values.

 For n=km objects, there are n! permutations (rankings). 

 A lexicographic order is uniquely determined by

 a total order of the attributes

 a total order of each attribute domain

 Example: Four binary attributes (m=4, k=2)

 there are 16! ¼ 2 ¢ 1013 rankings

 but only (24) ¢ 4! = 384 of them can be expressed in terms of a 
lexicographic order

 [Yaman et al. 2008] present a learning algorithm that explictly maintains
the version space, i.e., the attribute-orders compatible with all pairwise
preferences seen so far (assuming binary attributes with 1 preferred to 0). 
Predictions are derived based on the „votes“ of the consistent models.

26
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Learning Conditional Preference (CP) Networks [Chevaleyre et al. 2010]

27

main dish

drink restaurant

meat > veggie > fish

meat:   red wine > white wine

veggie: red wine > white wine

fish:   white wine > red wine

meat:   Italian > Chinese

veggie: Chinese > Italian

fish:   Chinese > Italian

Compact representation of a 
partial order relation, exploiting
conditional independence of 
preferences on attribute values.

(meat, red wine, Italian)       > (veggie, red wine, Italian) 

(fish, whited wine, Chinease)   > (veggie, red wine, Chinease)

(veggie, whited wine, Chinease) > (veggie, red wine, Italian) 

…                   …               …

Training data (possibly noisy):
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Label Ranking based on the Plackett-Luce Model [Cheng et al. 2010c]

28
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ML Estimation of the Weight Vector in Label Ranking

29

can be seen as a log-linear 
utility function of i-th label

convex function, 
maximization
through gradient
ascent
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Learning Local Preference Models [Cheng et al. 2009]

 Main idea of instance-based (lazy) learning: Given a new query (instance
for which a prediction is requested), search for similar instances in a „case
base“ (stored examples) and combine their outputs into a prediction. 

 This is especially appealing for predicting structured outputs (like
rankings) in a complex space Y, as it circumvents the construction and 
explicit representation of a „Y-valued“ function. 

 In the case of ranking, it essentially comes down to aggregating a set of 
(possibly partial or incomplete) rankings. 

31
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Learning Local Preference Models: Rank Aggregation

32

 Finding the generalized median:

 If Kendall‘s tau is used as a distance, the generalized median is called the
Kemendy-optimal ranking. Finding this ranking is an NP-hard problem
(weighted feedback arc set tournament).

 In the case of Spearman‘s rho (sum of squared rank distances), the
problem can easily be solved through Borda count. 
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Learning Local Preference Models: Probabilistic Estimation

 Another approach is to assume the neighbored rankings to be generated
by a locally constant probability distribution, to estimate the parameters
of this distribution, and then to predict the mode [Cheng et al. 2009].

 For example, using again the PL model:

 Can easily be generalized to the case of incomplete rankings [Cheng et al. 
2010c].

33
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Summary of Main Algorithmic Principles

 Reduction of ranking to (binary) classification (e.g., constraint
classification, LPC)

 Direct optimization of (regularized) smooth approximation of ranking
losses (RankSVM, RankBoost, …)

 Structured output prediction, learning joint scoring („matching“) 
function

 Learning parametrized statistical ranking models (e.g., Plackett-Luce)

 Restricted model classes, fitting (parametrized) deterministic models
(e.g., lexicographic orders)

 Lazy learning, local preference aggregation (lazy learning)

34
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Training Complexity: Number of Preferences

we have d binary preferences for items X = {x1, …, xc}

 total ranking:

 multi-partite ranking (k partitions with pi items each):

 bi-partite ranking (with p and c-p items):
(e.g., multi-label classification)

 top rank: 
(e.g. classification)

d= c⋅c−1
2

d=c−1

d= p⋅c− p

d=∑
i≠ j

pi⋅p j



ECML/PKDD-2010 Tutorial on Preference Learning | Part 4 | J. Fürnkranz & E. Hüllermeier 3

Training Complexity of Relational Approach

We generate one training example for each binary preference
 complexity of the binary base learner is f (d)
 e.g.                       for a learner with quadratic complexity

Single-set ranking:
 We have c items with ranking information
 Total complexity f (d) depends on the density of the ranking information
 quadratic in c for (almost) full rankings
 linear in c for bipartite rankings with a constant p

Multi-set ranking:
 We have n sets of c items with ranking information
 label ranking is a special case of this scenario
 object ranking where multiple sets of objects are ranked is also a special case

 Total complexity is 
              for approaches where all preferences are learned jointly

 can be more efficient if f is super-linear and problem is decomposed into smaller subproblems 
(pairwise label ranking)

f d =O d 2

f n⋅d 
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Example: Complexity of SVMRank

 Reformulation as Binary SVM [Herbrich et al. 2000, Joachims 2002]
 d constraints of the form 
 d slack variables 

Total complexity: f (d)
where f (.) is the complexity for solving the quadratic program
 super-linear for conventional training algorithms like SMO, SVM-light, etc.

 Reformulation as Structural SVM [Joachims 2006]

 2d constraints of the form 
 1 slack variable ξ

Total complexity: d
 Cutting-Plane algorithm:
 iterative algorithm for solving the above problem in linear time

 iteratively find an appropriate subset of the constraints
 covergence independent of d

 further optimization could even yield a total complexity of 

wT x i−x j ≥1−ij

ij

1
d
⋅wT ∑

x ix j

cijx i−x j≥
1
d
⋅∑
x ix j

cij−

min n⋅logn , d 
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Example: Complexity of Pairwise Label Ranking

n examples, c classes, d preferences in total,             preferences on average

 decomposed into               binary problems
 each problem  has       examples 

→ total training complexity

 upper bounds are tight if f is linear
 big savings are possible super-linear complexities  f (n) = no (o > 1)

 distributing the same number of examples over a larger number of smaller 
dataset is more efficient 

c⋅c−1
2

nij ∑
ij

nij=d

∑
ij

f nij ≤ d⋅f n ≤ f d = f ∑ij
nij 

d=d
n

o1∑ ni
o∑ ni 

o

[Hüllermeier et al. 2008]
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Example: Complexity of Pairwise Classification

 Pairwise classification can be considered as a label ranking problem
 for each example the correct class is preferred over all other classes

→ Total training complexity 

For comparison:

 Constraint Classification:
 Utility-based approach that learns one theory from all                examples

Total training complexity:

 One-Vs-All Classification:
 different class binarization that learns one theory for each class

Total training complexity: 

≤c−1⋅ f n

c⋅f n

c−1⋅n

f c−1⋅n 
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– Efficient Aggregation

5. Conclusions
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Prediction Complexity

f  complexity for evaluating a single classifier, c items to rank

 Utility-Based Approaches:
 compute the utilities for each item: 
 sort the items according to utility: 

 
 Relational Approaches:

 compute all pairwise predictions:
 aggregate them into an overall ranking   
 method-dependent complexity

 Can we do better?

 

c⋅ f
c⋅log c

c⋅c−1
2

⋅ f

O c⋅logc  f 

O c2⋅ f 
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Aggregation is NP-Hard

 The key problem with aggregation is that the learned preference function 
may not be transitive.
 Thus, a total ordering will violate some constraints

Aggregation Problem:
 Find the total order that violates the least number of predicted preferences.

 equivalent to the Feedback Arc Set problem for tournaments
 What is the minimum number of edges in a directed graph that need to be 

inverted so that the graph is acyclic?
 This is NP-hard [Alon 2006]

 but there are approximation algorithms with guarantees
[Cohen et al. 1999, Balcan et al. 2007, Ailon & Mohri 2008, Mathieu & Schudy, to appear]

 For example, [Ailon et al. 2008]
 propose Kwiksort, a straight-forward adaption of Quicksort to the aggregation problem
 prove that it is a randomized expected 3-approximation algorithm
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Aggregating Pairwise Predictions

 Aggregate the predictions                   of the binary classifiers into a final 
ranking by computing a score si for each class I

 Voting: count the number of predictions for each class
             (number of points in a tournament)

 Weighted Voting: weight the predictions by their probability

 General Pairwise Coupling problem  [Hastie & Tibshirani 1998; Wu, Lin, Weng 2004]

 Given                                         for all i, j 
 Find             for all i 
 Can be turned into a system of linear equations

si=∑
j=1

c

 {P i j0.5}  {x }={1 if x= true 
0 if x= false 

P i j

si=∑
j=1

c

P i j

P i j=P i∣i , j
P i
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Pairwise Classification & Ranking Loss
[Hüllermeier & Fürnkranz, 2010]

➔ Weighted Voting optimizes Spearman Rank Correlation 
 assuming that pairwise probabilities are estimated correctly 

➔ Kendall's Tau can in principle be optimized
 NP-hard (feedback arc set problem)

 Different ways of combining the predictions of the binary classifiers 
optimize different loss functions
 without the need for re-training of the binary classifiers!

 However, not all loss functions can be optimized
 e.g., 0/1 loss for rankings cannot be optimized
 or in general the probability distribution over the rankings cannot be 

recovered from pairwise information
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Speeding Up Classification Time

 Training is efficient, but pairwise classification still has to 
 store a quadratic number of classifiers in memory
 query all of them for predicting a class

Key Insight: 
 Not all comparisons are needed for determining the winning class

 More precisely:
 If class X has a total score of s
 and no other class can achieve an equal score
→ we can predict X even if not all comparisons have been made

Algorithmic idea:
 Keep track of the loss points 
 if class with smallest loss has played all games, it is the winner
→ focus on the class with the smallest loss 
 Can be easily generalized from voting (win/loss) to weighted voting 

(e.g., estimated pairwise win probabilities)
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Quick Weighted Voting
[Park & Fürnkranz, ECML 2007]

select class with
fewest losses

pair it with 
unplayed class 

with fewest losses

evaluate the 
classifier and
update loss 

statistics

we're done if no such
class can be found
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Decision-Directed Acyclic Graphs
[Platt, Cristianini & Shawe-Taylor, NIPS 2000]

DDAGS
 construct a fixed decoding scheme 

with c−1 decisions
 unclear what loss function is optimized

Comparison to QWeighted
 DDAGs slightly faster
 but considerably less accurate
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Average Number of Comparisons
for QWeighted algorithm
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