Tutorial exercises

Clustering - K-means, Nearest Neighbor and Hierarchical.

Exercise 1. K-means clustering

Use the k-means algorithm and Euclidean distance to cluster the following 8 examples into 3 clusters: A1=(2,10), A2=(2,5), A3=(8,4), A4=(5,8), A5=(7,5), A6=(6,4), A7=(1,2), A8=(4,9).
The distance matrix based on the Euclidean distance is given below:

	A1	A2	A3	A4	A5	A6	A7	A8
A1	0	$\sqrt{25}$	$\sqrt{36}$	$\sqrt{13}$	$\sqrt{50}$	$\sqrt{52}$	$\sqrt{65}$	$\sqrt{5}$
A2		0	$\sqrt{37}$	$\sqrt{18}$	$\sqrt{25}$	$\sqrt{17}$	$\sqrt{10}$	$\sqrt{20}$
A3			0	$\sqrt{25}$	$\sqrt{2}$	$\sqrt{2}$	$\sqrt{53}$	$\sqrt{41}$
A4				0	$\sqrt{13}$	$\sqrt{17}$	$\sqrt{52}$	$\sqrt{2}$
A5					0	$\sqrt{2}$	$\sqrt{45}$	$\sqrt{25}$
A6						0	$\sqrt{29}$	$\sqrt{29}$
A7							0	$\sqrt{58}$
A8								0

Suppose that the initial seeds (centers of each cluster) are A1, A4 and A7. Run the k-means algorithm for 1 epoch only. At the end of this epoch show:
a) The new clusters (i.e. the examples belonging to each cluster)
b) The centers of the new clusters
c) Draw a 10 by 10 space with all the 8 points and show the clusters after the first epoch and the new centroids.
d) How many more iterations are needed to converge? Draw the result for each epoch.

Solution:

a)
$\mathrm{d}(\mathrm{a}, \mathrm{b})$ denotes the Eucledian distance between a and b . It is obtained directly from the distance matrix or calculated as follows: $\left.\mathrm{d}(\mathrm{a}, \mathrm{b})=\operatorname{sqrt}\left(\left(\mathrm{x}_{\mathrm{b}}-\mathrm{x}_{\mathrm{a}}\right)^{2}+\left(\mathrm{y}_{\mathrm{b}}-\mathrm{y}_{\mathrm{a}}\right)^{2}\right)\right)$ seed1 $=$ A1 $=(2,10)$, seed2 $=A 4=(5,8)$, seed3 $=A 7=(1,2)$
epoch1 - start:

> A1:
> d(A1, seed1) $=0$ as A1 is seed1
> d(A1, seed2) $=\sqrt{13}>0$
> d(A1, seed3) $=\sqrt{65}>0$
> \rightarrow A1 \in cluster1

A3:
$\mathrm{d}(\mathrm{A} 3$, seed 1$)=\sqrt{36}=6$
$\mathrm{d}(\mathrm{A} 3$, seed 2$)=\sqrt{25}=5 \quad \leftarrow$ smaller
$\mathrm{d}(\mathrm{A} 3$, seed3 $)=\sqrt{53}=7.28$
\rightarrow A3 \in cluster2

A2:
$\mathrm{d}(\mathrm{A} 2$, seed 1$)=\sqrt{25}=5$
$\mathrm{d}(\mathrm{A} 2$, seed2 $)=\sqrt{18}=4.24$
$\mathrm{d}(\mathrm{A} 2$, seed3) $=\sqrt{10}=3.16 \quad \leftarrow$ smaller
\rightarrow A2 \in cluster3
A4:
$d(A 4$, seed 1$)=\sqrt{13}$
$\mathrm{d}(\mathrm{A} 4$, seed2) $=0$ as A4 is seed2
$\mathrm{d}(\mathrm{A} 4$, seed 3) $=\sqrt{52}>0$
\rightarrow A4 \in cluster2

A6:
$\mathrm{d}(\mathrm{A} 6$, seed 1$)=\sqrt{52}=7.21$

$\mathrm{d}(\mathrm{A} 5$, seed 2$)=\sqrt{13}=3.60 \leftarrow$ smaller	$\mathrm{d}(\mathrm{A} 6$, seed 2$)=\sqrt{17}=4.12 \leftarrow$ smaller
$\mathrm{d}(\mathrm{A} 5$, seed 3$)=\sqrt{45}=6.70$	$\mathrm{~d}(\mathrm{~A} 6$, seed 3$)=\sqrt{29}=5.38$
\rightarrow A5 \in cluster2	\rightarrow A6 \in cluster2

A7:
$\mathrm{d}(\mathrm{A} 7$, seed1) $=\sqrt{65}>0$
$\mathrm{d}(\mathrm{A} 7$, seed2) $=\sqrt{52}>0$
$\mathrm{d}(\mathrm{A} 7$, seed3) $=0$ as A7 is seed3
A7 \in cluster3

A8:
$\mathrm{d}(\mathrm{A} 8$, seed 1$)=\sqrt{5}$
$\mathrm{d}(\mathrm{A} 8$, seed2) $=\sqrt{2} \leftarrow$ smaller
$\mathrm{d}(\mathrm{A} 8$, seed3) $=\sqrt{58}$
\rightarrow A8 \in cluster2
end of epoch1
new clusters: 1: $\{\mathrm{A} 1\}, 2:\{\mathrm{A} 3, \mathrm{~A} 4, \mathrm{~A} 5, \mathrm{~A} 6, \mathrm{~A} 8\}, 3:\{\mathrm{A} 2, \mathrm{~A} 7\}$
b) centers of the new clusters:
$\mathrm{C} 1=(2,10), \mathrm{C} 2=((8+5+7+6+4) / 5,(4+8+5+4+9) / 5)=(6,6), \mathrm{C} 3=((2+1) / 2,(5+2) / 2)=(1.5,3.5)$
c)

d)

We would need two more epochs. After the $2^{\text {nd }}$ epoch the results would be:
1: $\{\mathrm{A} 1, \mathrm{~A} 8\}, 2:\{\mathrm{A} 3, \mathrm{~A} 4, \mathrm{~A} 5, \mathrm{~A} 6\}, 3:\{\mathrm{A} 2, \mathrm{~A} 7\}$
with centers $\mathrm{C} 1=(3,9.5), \mathrm{C} 2=(6.5,5.25)$ and $\mathrm{C} 3=(1.5,3.5)$.
After the $3^{\text {rd }}$ epoch, the results would be:
1: $\{\mathrm{A} 1, \mathrm{~A} 4, \mathrm{~A} 8\}, 2:\{\mathrm{A} 3, \mathrm{~A} 5, \mathrm{~A} 6\}, 3:\{\mathrm{A} 2, \mathrm{~A} 7\}$
with centers $\mathrm{C} 1=(3.66,9), \mathrm{C} 2=(7,4.33)$ and $\mathrm{C} 3=(1.5,3.5)$.

Exercise 2. Nearest Neighbor clustering

Use the Nearest Neighbor clustering algorithm and Euclidean distance to cluster the examples from the previous exercise: A1=(2,10), A2=(2,5), A3=(8,4), A4=(5,8), A5=(7,5), A6=(6,4), A7=(1,2), A8=(4,9). Suppose that the threshold t is 4 .

Solution:

A1 is placed in a cluster by itself, so we have $\mathrm{K} 1=\{\mathrm{A} 1\}$.
We then look at A2 if it should be added to K1 or be placed in a new cluster.
$\mathrm{d}(\mathrm{A} 1, \mathrm{~A} 2)=\sqrt{25}=5>\mathrm{t} \rightarrow \mathrm{K} 2=\{\mathrm{A} 2\}$
A3: we compare the distances from A3 to A1 and A2.
A 3 is closer to A 2 and $\mathrm{d}(\mathrm{A} 3, \mathrm{~A} 2)=\sqrt{36}>\mathrm{t} \rightarrow \mathrm{K} 3=\{\mathrm{A} 3\}$
A4: We compare the distances from A4 to A1, A2 and A3.
A 1 is the closest object and $\mathrm{d}(\mathrm{A} 4, \mathrm{~A} 1)=\sqrt{13}<\mathrm{t} \rightarrow \mathrm{K} 1=\{\mathrm{A} 1, \mathrm{~A} 4\}$
A5: We compare the distances from A5 to A1, A2, A3 and A4.
A 3 is the closest object and $\mathrm{d}(\mathrm{A} 5, \mathrm{~A} 3)=\sqrt{2}<\mathrm{t} \rightarrow \mathrm{K} 3=\{\mathrm{A} 3, \mathrm{~A} 5\}$
A6: We compare the distances from A6 to A1, A2, A3, A4 and A5.
A 3 is the closest object and $\mathrm{d}(\mathrm{A} 6, \mathrm{~A} 3)=\sqrt{2}<\mathrm{t} \rightarrow \mathrm{K} 3=\{\mathrm{A} 3, \mathrm{~A} 5, \mathrm{~A} 6\}$
A7: We compare the distances from A7 to A1, A2, A3, A4, A5, and A6.
A2 is the closest object and d(A7,A2) $=\sqrt{10}<\mathrm{t} \rightarrow \mathrm{K} 2=\{\mathrm{A} 2, \mathrm{~A} 7$)

A8: We compare the distances from A8 to A1, A2, A3, A4, A5, A6 and A7.
A4 is the closest object and $\mathrm{d}(\mathrm{A} 8, \mathrm{~A} 4)=\sqrt{2}<\mathrm{t} \rightarrow \mathrm{K} 1=\{\mathrm{A} 1, \mathrm{~A} 4, \mathrm{~A} 8)$
Thus: $\mathrm{K} 1=\{\mathrm{A} 1, \mathrm{~A} 4, \mathrm{~A} 8), \mathrm{K} 2=\{\mathrm{A} 2, \mathrm{~A} 7), \mathrm{K} 3=\{\mathrm{A} 3, \mathrm{~A} 5, \mathrm{~A} 6)$
Yes, it is the same result as with K-means.

Exercise 3. Hierarchical clustering

Use single and complete link agglomerative clustering to group the data described by the following distance matrix. Show the dendrograms.

	A	B	C	D
A	0	1	4	5
B		0	2	6
C			0	3
D				0

Solution:

Agglomerative $\boldsymbol{\rightarrow}$ initially every point is a cluster of its own and we merge cluster until we end-up with one unique cluster containing all points.
a) single link: distance between two clusters is the shortest distance between a pair of elements from the two clusters.

\mathbf{d}	\mathbf{k}	\mathbf{K}	Comments
0	4	$\{\mathrm{~A}\},\{\mathrm{B}\},\{\mathrm{C}\},\{\mathrm{D}\}$	We start with each point = cluster
1	3	$\{\mathrm{~A}, \mathrm{~B}\},\{\mathrm{C}\},\{\mathrm{D}\}$	Merge $\{\mathrm{A}\}$ and $\{\mathrm{B}\}$ since $\mathrm{A} \& \mathrm{~B}$ are the closest: d(A, B) $=1$
2	2	$\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}\},\{\mathrm{D}\}$	Merge $\{\mathrm{A}, \mathrm{B}\}$ and $\{\mathrm{C}\}$ since B \& C are the closest: $\mathrm{d}(\mathrm{B}, \mathrm{C})=2$
3	1	$\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}\}$	Merge D

b) complete link: distance between two clusters is the longest distance between a pair of elements from
the two clusters.

d	k	K	Comments
0	4	\{A\}, \{B\}, \{C\}, \{D\}	We start with each point = cluster
1	3	\{A, B $\},\{\mathrm{C}\},\{\mathrm{D}\}$	$\mathrm{d}(\mathrm{A}, \mathrm{B})=1<=1 \rightarrow$ merge $\{\mathrm{A}\}$ and $\{\mathrm{B}\}$
2	3	\{A, B $\},\{\mathrm{C}\},\{\mathrm{D}\}$	$\mathrm{d}(\mathrm{A}, \mathrm{C})=4>2$ so we can't merge C with \{A,B $\mathrm{d}(\mathrm{A}, \mathrm{D})=5>2$ and $\mathrm{d}(\mathrm{B}, \mathrm{D})=6>2$ so we can't merge D with $\{\mathrm{A}, \mathrm{B}$ \} $d(C, D)=3>2$ so we can't merge C and D
3	2	\{A, B\}, \{C, D\}	$-\mathrm{d}(\mathrm{A}, \mathrm{C})=4>3$ so we can't merge C with \{A,B $\}$ $-d(A, D)=5>3$ and $d(B, D)=6>3$ so we can't merge D with $\{\mathrm{A}, \mathrm{B}$ \} $-\mathrm{d}(\mathrm{C}, \mathrm{D})=3<=3$ so merge C and D
4	2	\{A, B\}, \{C, D\}	$\{C, D\}$ cannot be merged with $\{\mathrm{A}, \mathrm{B}\}$ as $\mathrm{d}(\mathrm{A}, \mathrm{D})=5>4$ (and also $\mathrm{d}(\mathrm{B}, \mathrm{D})=6>4$) although $\mathrm{d}(\mathrm{A}, \mathrm{C})=4<=4, \mathrm{~d}(\mathrm{~B}, \mathrm{C})=2<=4)$
5	2	\{A, B\}, \{C, D\}	$\{C, D\}$ cannot be merged with $\{A, B\}$ as $\mathrm{d}(\mathrm{B}, \mathrm{D})=6>5$
6	1	\{A, B, C, D\}	$\begin{aligned} & \{C, D\} \text { can be merged with }\{A, B\} \text { since } \\ & d(B, D)=6<=6, d(A, D)=5<=6, d(A, C)= \\ & 4<=6, d(B, C)=2<=6 \end{aligned}$

Exercise 4: Hierarchical clustering (to be done at your own time, not in class)

Use single-link, complete-link, average-link agglomerative clustering as well as medoid and centroid to cluster the following 8 examples:
$\mathrm{A} 1=(2,10), \mathrm{A} 2=(2,5), \mathrm{A} 3=(8,4), \mathrm{A} 4=(5,8), \mathrm{A} 5=(7,5), \mathrm{A} 6=(6,4), \mathrm{A} 7=(1,2), \mathrm{A} 8=(4,9)$.
The distance matrix is the same as the one in Exercise 1. Show the dendrograms.

Solution:

Single Link:

\mathbf{d}	\mathbf{k}	\mathbf{K}
0	8	$\{\mathrm{~A} 1\},\{\mathrm{A} 2\},\{\mathrm{A} 3\},\{\mathrm{A} 4\},\{\mathrm{A} 5\},\{\mathrm{A} 6\},\{\mathrm{A} 7\},\{\mathrm{A} 8\}$
1	8	$\{\mathrm{~A} 1\},\{\mathrm{A} 2\},\{\mathrm{A} 3\},\{\mathrm{A} 4\},\{\mathrm{A} 5\},\{\mathrm{A} 6\},\{\mathrm{A} 7\},\{\mathrm{A} 8\}$
2	5	$\{\mathrm{~A} 4, \mathrm{~A} 8\},\{\mathrm{A} 1\},\{\mathrm{A} 3, \mathrm{~A} 5, \mathrm{~A} 6\},\{\mathrm{A} 2\},\{\mathrm{A} 7\}$
3	4	$\{\mathrm{~A} 4, \mathrm{~A} 8, \mathrm{~A} 1\},\{\mathrm{A} 3, \mathrm{~A} 5, \mathrm{~A} 6\},\{\mathrm{A} 2\},\{\mathrm{A} 7\}$
4	2	$\{\mathrm{~A} 1, \mathrm{~A} 3, \mathrm{~A} 4, \mathrm{~A} 5, \mathrm{~A} 6, \mathrm{~A} 8\},\{\mathrm{A} 2, \mathrm{~A} 7\}$
5	1	$\{\mathrm{~A} 1, \mathrm{~A} 3, \mathrm{~A} 4, \mathrm{~A} 5, \mathrm{~A} 6, \mathrm{~A} 8, \mathrm{~A} 2, \mathrm{~A} 7\}$

A4 A8 A1 A3 A5 A6 A2 A7

Complete Link

\mathbf{d}	\mathbf{k}	\mathbf{K}
0	8	$\{\mathrm{~A} 1\},\{\mathrm{A} 2\},\{\mathrm{A} 3\},\{\mathrm{A} 4\},\{\mathrm{A} 5\},\{\mathrm{A} 6\},\{\mathrm{A} 7\},\{\mathrm{A} 8\}$
1	8	$\{\mathrm{~A} 1\},\{\mathrm{A} 2\},\{\mathrm{A} 3\},\{\mathrm{A} 4\},\{\mathrm{A} 5\},\{\mathrm{A} 6\},\{\mathrm{A} 7\},\{\mathrm{A} 8\}$
2	5	$\{\mathrm{~A} 4, \mathrm{~A} 8\},\{\mathrm{A} 1\},\{\mathrm{A} 3, \mathrm{~A} 5, \mathrm{~A} 6\},\{\mathrm{A} 2\},\{\mathrm{A} 7\}$
3	5	$\{\mathrm{~A} 4, \mathrm{~A} 8\},\{\mathrm{A} 1\},\{\mathrm{A} 3, \mathrm{~A} 5, \mathrm{~A} 6\},\{\mathrm{A} 2\},\{\mathrm{A} 7\}$
4	3	$\{\mathrm{~A} 4, \mathrm{~A} 8, \mathrm{~A} 1\},\{\mathrm{A} 3, \mathrm{~A} 5, \mathrm{~A} 6\},\{\mathrm{A} 2, \mathrm{~A} 7\}$
5	3	$\{\mathrm{~A} 4, \mathrm{~A} 8, \mathrm{~A} 1\},\{\mathrm{A} 3, \mathrm{~A} 5, \mathrm{~A} 6\},\{\mathrm{A} 2, \mathrm{~A} 7\}$
6	2	$\{\mathrm{~A} 4, \mathrm{~A} 8, \mathrm{~A} 1, \mathrm{~A} 3, \mathrm{~A} 5, \mathrm{~A} 6\},\{\mathrm{A} 2, \mathrm{~A} 7\}$
7	2	$\{\mathrm{~A} 4, \mathrm{~A} 8, \mathrm{~A} 1, \mathrm{~A} 3, \mathrm{~A} 5, \mathrm{~A} 6\},\{\mathrm{A} 2, \mathrm{~A} 7\}$
8	1	$\{\mathrm{~A} 4, \mathrm{~A} 8, \mathrm{~A} 1, \mathrm{~A} 3, \mathrm{~A} 5, \mathrm{~A} 6, \mathrm{~A} 2, \mathrm{~A} 7\}$

\mathbf{d}	\mathbf{k}	\mathbf{K}
0	8	$\{\mathrm{~A} 1\},\{\mathrm{A} 2\},\{\mathrm{A} 3\},\{\mathrm{A} 4\},\{\mathrm{A} 5\},\{\mathrm{A} 6\},\{\mathrm{A} 7\},\{\mathrm{A} 8\}$
1	8	$\{\mathrm{~A} 1\},\{\mathrm{A} 2\},\{\mathrm{A} 3\},\{\mathrm{A} 4\},\{\mathrm{A} 5\},\{\mathrm{A} 6\},\{\mathrm{A} 7\},\{\mathrm{A} 8\}$
2	5	$\{\mathrm{~A} 4, \mathrm{~A} 8\},\{\mathrm{A} 1\},\{\mathrm{A} 3, \mathrm{~A} 5, \mathrm{~A} 6\},\{\mathrm{A} 2\},\{\mathrm{A} 7\}$
3	4	$\{\mathrm{~A} 4, \mathrm{~A} 8, \mathrm{~A} 1\},\{\mathrm{A} 3, \mathrm{~A} 5, \mathrm{~A} 6\},\{\mathrm{A} 2\},\{\mathrm{A} 7\}$
4	3	$\{\mathrm{~A} 4, \mathrm{~A} 8, \mathrm{~A} 1\},\{\mathrm{A} 3, \mathrm{~A} 5, \mathrm{~A} 6\},\{\mathrm{A} 2, \mathrm{~A} 7\}$
5	3	$\{\mathrm{~A} 4, \mathrm{~A} 8, \mathrm{~A} 1\},\{\mathrm{A} 3, \mathrm{~A} 5, \mathrm{~A} 6\},\{\mathrm{A} 2, \mathrm{~A} 7\}$
6	1	$\{\mathrm{~A} 4, \mathrm{~A} 8, \mathrm{~A} 1, \mathrm{~A} 3, \mathrm{~A} 5, \mathrm{~A} 6, \mathrm{~A} 2, \mathrm{~A} 7\}$

Average distance from $\{\mathrm{A} 3, \mathrm{~A} 5, \mathrm{~A} 6\}$ to $\{\mathrm{A} 1, \mathrm{~A} 4, \mathrm{~A} 8\}$ is 5.53 and is 5.75 to $\{\mathrm{A} 2, \mathrm{~A} 7\}$
Centroid

\mathbf{D}	\mathbf{k}	\mathbf{K}
0	8	$\{\mathrm{~A} 1\},\{\mathrm{A} 2\},\{\mathrm{A} 3\},\{\mathrm{A} 4\},\{\mathrm{A} 5\},\{\mathrm{A} 6\},\{\mathrm{A} 7\},\{\mathrm{A} 8\}$
1	8	$\{\mathrm{~A} 1\},\{\mathrm{A} 2\},\{\mathrm{A} 3\},\{\mathrm{A} 4\},\{\mathrm{A} 5\},\{\mathrm{A} 6\},\{\mathrm{A} 7\},\{\mathrm{A} 8\}$
2	5	$\{\mathrm{~A} 4, \mathrm{~A} 8\},\{\mathrm{A} 1\},\{\mathrm{A} 3, \mathrm{~A} 5, \mathrm{~A} 6\},\{\mathrm{A} 2\},\{\mathrm{A} 7\}$
3	5	$\{\mathrm{~A} 4, \mathrm{~A} 8\},\{\mathrm{A} 1\},\{\mathrm{A} 3, \mathrm{~A} 5, \mathrm{~A} 6\},\{\mathrm{A} 2\},\{\mathrm{A} 7\}$
4	3	$\{\mathrm{~A} 4, \mathrm{~A} 8, \mathrm{~A} 1\},\{\mathrm{A} 3, \mathrm{~A} 5, \mathrm{~A} 6\},\{\mathrm{A} 2, \mathrm{~A} 7\}$
5	3	$\{\mathrm{~A} 4, \mathrm{~A} 8, \mathrm{~A} 1\},\{\mathrm{A} 3, \mathrm{~A} 5, \mathrm{~A} 6\},\{\mathrm{A} 2, \mathrm{~A} 7\}$
6	1	$\{\mathrm{~A} 4, \mathrm{~A} 8, \mathrm{~A} 1, \mathrm{~A} 3, \mathrm{~A} 5, \mathrm{~A} 6, \mathrm{~A} 2, \mathrm{~A} 7\}$

Centroid of $\{\mathrm{A} 4, \mathrm{~A} 8\}$ is $\mathrm{B}=(4.5,8.5)$ and centroid of $\{\mathrm{A} 3, \mathrm{~A} 5, \mathrm{~A} 6\}$ is $\mathrm{C}=(7,4.33)$
distance $(A 1, B)=2.91$ Centroid of $\{A 1, A 4, A 8\}$ is $\mathrm{D}=(3.66,9)$ and of $\{\mathrm{A} 2, \mathrm{~A} 7\}$ is $\mathrm{E}=(1.5,3.5)$
distance(D,C)=5.74 distance(D,E)=5.90
Medoid
This is not deterministic. It can be different depending upon which medoid in a cluster we chose.

\mathbf{d}	\mathbf{k}	\mathbf{K}
0	8	$\{\mathrm{~A} 1\},\{\mathrm{A} 2\},\{\mathrm{A} 3\},\{\mathrm{A} 4\},\{\mathrm{A} 5\},\{\mathrm{A} 6\},\{\mathrm{A} 7\},\{\mathrm{A} 8\}$
1	8	$\{\mathrm{~A} 1\},\{\mathrm{A} 2\},\{\mathrm{A} 3\},\{\mathrm{A} 4\},\{\mathrm{A} 5\},\{\mathrm{A} 6\},\{\mathrm{A} 7\},\{\mathrm{A} 8\}$
2	5	$\{\mathrm{~A} 4, \mathrm{~A} 8\},\{\mathrm{A} 1\},\{\mathrm{A} 3, \mathrm{~A} 5, \mathrm{~A} 6\},\{\mathrm{A} 2\},\{\mathrm{A} 7\}$
3	4	$\{\mathrm{~A} 4, \mathrm{~A} 8, \mathrm{~A} 1\},\{\mathrm{A} 3, \mathrm{~A} 5, \mathrm{~A} 6\},\{\mathrm{A} 2\},\{\mathrm{A} 7\}$
4	2	$\{\mathrm{~A} 1, \mathrm{~A} 3, \mathrm{~A} 4, \mathrm{~A} 5, \mathrm{~A} 6, \mathrm{~A} 8\},\{\mathrm{A} 2, \mathrm{~A} 7\}$
5	1	$\{\mathrm{~A} 1, \mathrm{~A} 3, \mathrm{~A} 4, \mathrm{~A} 5, \mathrm{~A} 6, \mathrm{~A} 8, \mathrm{~A} 2, \mathrm{~A} 7\}$

Exercise 5: DBScan

If Epsilon is 2 and minpoint is 2 , what are the clusters that DBScan would discover with the following 8 examples: $\mathrm{A} 1=(2,10), \mathrm{A} 2=(2,5), \mathrm{A} 3=(8,4), \mathrm{A} 4=(5,8), \mathrm{A} 5=(7,5), \mathrm{A} 6=(6,4), \mathrm{A} 7=(1,2), \mathrm{A} 8=(4,9)$.
The distance matrix is the same as the one in Exercise 1. Draw the 10 by 10 space and illustrate the discovered clusters. What if Epsilon is increased to $\sqrt{10}$?

Solution:

What is the Epsilon neighborhood of each point?
$\mathrm{N}_{2}(\mathrm{~A} 1)=\{ \} ; \mathrm{N}_{2}(\mathrm{~A} 2)=\{ \} ; \mathrm{N}_{2}(\mathrm{~A} 3)=\{\mathrm{A} 5, \mathrm{~A} 6\} ; \mathrm{N}_{2}(\mathrm{~A} 4)=\{\mathrm{A} 8\} ; \mathrm{N}_{2}(\mathrm{~A} 5)=\{\mathrm{A} 3, \mathrm{~A} 6\} ;$
$\mathrm{N}_{2}(\mathrm{~A} 6)=\{\mathrm{A} 3, \mathrm{~A} 5\} ; \mathrm{N}_{2}(\mathrm{~A} 7)=\{ \} ; \mathrm{N}_{2}(\mathrm{~A} 8)=\{\mathrm{A} 4\}$
So A1, A2, and A7 are outliers, while we have two clusters $\mathrm{C} 1=\{\mathrm{A} 4, \mathrm{~A} 8\}$ and $\mathrm{C} 2=\{\mathrm{A} 3, \mathrm{~A} 5, \mathrm{~A} 6\}$
If Epsilon is $\sqrt{10}$ then the neighborhood of some points will increase:
A1 would join the cluster C1 and A2 would joint with A7 to form cluster C3=\{A2, A7\}.

