Tutorial exercises Clustering – K-means, Nearest Neighbor and Hierarchical.

Exercise 1. K-means clustering

Use the k-means algorithm and Euclidean distance to cluster the following 8 examples into 3 clusters: A1=(2,10), A2=(2,5), A3=(8,4), A4=(5,8), A5=(7,5), A6=(6,4), A7=(1,2), A8=(4,9). The distance matrix based on the Euclidean distance is given below:

	A1	A2	A3	A4	A5	A6	A7	A8
A1	0	$\sqrt{25}$	$\sqrt{36}$	$\sqrt{13}$	$\sqrt{50}$	$\sqrt{52}$	$\sqrt{65}$	$\sqrt{5}$
A2		0	$\sqrt{37}$	$\sqrt{18}$	$\sqrt{25}$	$\sqrt{17}$	$\sqrt{10}$	$\sqrt{20}$
A3			0	$\sqrt{25}$	$\sqrt{2}$	$\sqrt{2}$	$\sqrt{53}$	$\sqrt{41}$
A4				0	$\sqrt{13}$	$\sqrt{17}$	$\sqrt{52}$	$\sqrt{2}$
A5					0	$\sqrt{2}$	$\sqrt{45}$	$\sqrt{25}$
A6						0	$\sqrt{29}$	$\sqrt{29}$
A7							0	$\sqrt{58}$
A8								0

Suppose that the initial seeds (centers of each cluster) are A1, A4 and A7. Run the k-means algorithm for 1 epoch only. At the end of this epoch show:

a) The new clusters (i.e. the examples belonging to each cluster)

b) The centers of the new clusters

c) Draw a 10 by 10 space with all the 8 points and show the clusters after the first epoch and the new centroids.

d) How many more iterations are needed to converge? Draw the result for each epoch.

Solution:

a) d(a,b) denotes the Eucledian distance between a and b. It is obtained directly from the distance matrix or calculated as follows: $d(a,b)=sqrt((x_b-x_a)^2+(y_b-y_a)^2))$ seed1=A1=(2,10), seed2=A4=(5,8), seed3=A7=(1,2)

epoch1 – start:

A1: d(A1, seed1)=0 as A1 is seed1 d(A1, seed2)= $\sqrt{13} > 0$ d(A1, seed3)= $\sqrt{65} > 0$ \Rightarrow A1 \in cluster1

A3:

d(A3, seed1)= $\sqrt{36} = 6$ d(A3, seed2)= $\sqrt{25} = 5$ \bigstar smaller d(A3, seed3)= $\sqrt{53} = 7.28$ \bigstar A3 \in cluster2

A5: d(A5, seed1)= $\sqrt{50} = 7.07$

A4:

d(A4, seed1)= $\sqrt{13}$ d(A4, seed2)=0 as A4 is seed2 d(A4, seed3)= $\sqrt{52} > 0$ \Rightarrow A4 \in cluster2

A6: d(A6, seed1)= $\sqrt{52} = 7.21$

Exercise 2. Nearest Neighbor clustering

Use the Nearest Neighbor clustering algorithm and Euclidean distance to cluster the examples from the previous exercise: A1=(2,10), A2=(2,5), A3=(8,4), A4=(5,8), A5=(7,5), A6=(6,4), A7=(1,2), A8=(4,9). Suppose that the threshold t is 4.

Solution:

A1 is placed in a cluster by itself, so we have $K1 = \{A1\}$.

We then look at A2 if it should be added to K1 or be placed in a new cluster. d(A1,A2)= $\sqrt{25} = 5 > t \rightarrow K2 = \{A2\}$

A3: we compare the distances from A3 to A1 and A2. A3 is closer to A2 and $d(A3,A2) = \sqrt{36} > t \rightarrow K3 = \{A3\}$

A4: We compare the distances from A4 to A1, A2 and A3. A1 is the closest object and $d(A4,A1) = \sqrt{13} < t \rightarrow K1 = \{A1, A4\}$

A5: We compare the distances from A5 to A1, A2, A3 and A4. A3 is the closest object and $d(A5,A3) = \sqrt{2} < t \rightarrow K3 = \{A3, A5\}$

A6: We compare the distances from A6 to A1, A2, A3, A4 and A5. A3 is the closest object and $d(A6,A3)=\sqrt{2} < t \rightarrow K3=\{A3, A5, A6\}$

A7: We compare the distances from A7 to A1, A2, A3, A4, A5, and A6. A2 is the closest object and $d(A7,A2) = \sqrt{10} < t \rightarrow K2 = \{A2, A7\}$ A8: We compare the distances from A8 to A1, A2, A3, A4, A5, A6 and A7. A4 is the closest object and $d(A8,A4) = \sqrt{2} < t \Rightarrow K1 = \{A1, A4, A8\}$

Thus: K1={A1, A4, A8), K2={A2, A7), K3={A3, A5, A6}

Yes, it is the same result as with K-means.

Exercise 3. Hierarchical clustering

Use single and complete link agglomerative clustering to group the data described by the following distance matrix. Show the dendrograms.

	А	В	С	D
А	0	1	4	5
В		0	2	6
С			0	3
D				0

Solution:

Agglomerative \rightarrow initially every point is a cluster of its own and we merge cluster until we end-up with one unique cluster containing all points.

a) single link: distance between two clusters is the shortest distance between a pair of elements from the two clusters.

d	k	K	Comments
0	4	$\{A\}, \{B\}, \{C\}, \{D\}$	We start with each point = cluster
1	3	$\{A, B\}, \{C\}, \{D\}$	Merge {A} and {B} since A & B are the
			closest: d(A, B)=1
2	2	$\{A, B, C\}, \{D\}$	Merge {A, B} and {C} since B & C are
			the closest: $d(B, C)=2$
3	1	$\{A, B, C, D\}$	Merge D

b) complete link: distance between two clusters is the longest distance between a pair of elements from

tł	the two clusters.							
	d	k	K	Comments				
	0	4	$\{A\}, \{B\}, \{C\}, \{D\}$	We start with each point = cluster				
	1	3	$\{A, B\}, \{C\}, \{D\}$	$d(A,B)=1 \le 1 \Rightarrow merge \{A\} and \{B\}$				
	2	3	$\{A, B\}, \{C\}, \{D\}$	d(A,C)=4>2 so we can't merge C with	3			
				{A,B}	5			
				d(A,D)=5>2 and $d(B,D)=6>2$ so we can't				
				merge D with {A, B}				
				d(C,D)=3>2 so we can't merge C and D				
	3	2	$\{A, B\}, \{C, D\}$	- $d(A,C)=4>3$ so we can't merge C with				
				{A,B}				
				- $d(A,D)=5>3$ and $d(B,D)=6>3$ so we can't				
				merge D with {A, B}				
				$- d(C,D)=3 \le 3$ so merge C and D				
	4	2	$\{A, B\}, \{C, D\}$	$\{C,D\}$ cannot be merged with $\{A, B\}$ as				
				d(A,D)= 5 >4 (and also $d(B,D)= 6 >4$)				
				although $d(A,C) = 4 \le 4$, $d(B,C) = 2 \le 4$				
	5	2	$\{A, B\}, \{C, D\}$	$\{C,D\}$ cannot be merged with $\{A, B\}$ as				
				d(B,D)= 6 > 5				
	6	1	$\{A, B, C, D\}$	$\{C, D\}$ can be merged with $\{A, B\}$ since				
				d(B,D)= 6 <= 6, d(A,D)= 5 <= 6, d(A,C)=				
				4 <= 6, d(B,C)= 2 <= 6				

Exercise 4: Hierarchical clustering (to be done at your own time, not in class)

Use single-link, complete-link, average-link agglomerative clustering as well as medoid and centroid to cluster the following 8 examples:

A1=(2,10), A2=(2,5), A3=(8,4), A4=(5,8), A5=(7,5), A6=(6,4), A7=(1,2), A8=(4,9).

The distance matrix is the same as the one in Exercise 1. Show the dendrograms.

S	oluti	ion:	
S	ingle	e Lin	k:
	d	k	K
	0	8	{A1}, {A2}, {A3}, {A4}, {
	1	8	{A1}, {A2}, {A3}, {A4}, {
	2	5	{A4 A8} {A1} {A3 A5

A4 A8 A1 A3 A5 A6 A2 A7

0

Complete Link

C.					
	d	k	K		
	0	8	$\{A1\}, \{A2\}, \{A3\}, \{A4\}, \{A5\}, \{A6\}, \{A7\}, \{A8\}$		
	1	8	$\{A1\}, \{A2\}, \{A3\}, \{A4\}, \{A5\}, \{A6\}, \{A7\}, \{A8\}$		
	2	5	{A4, A8}, {A1}, {A3, A5, A6}, {A2}, {A7}		
	3	5	{A4, A8}, {A1}, {A3, A5, A6}, {A2}, {A7}		
	4	3	{A4, A8, A1}, {A3, A5, A6}, {A2, A7}		
	5	3	{A4, A8, A1}, {A3, A5, A6}, {A2, A7}		
	6	2	{A4, A8, A1, A3, A5, A6}, {A2, A7}		
	7	2	{A4, A8, A1, A3, A5, A6}, {A2, A7}		
	8	1	{A4, A8, A1, A3, A5, A6, A2, A7}		

<u>Exercise 5:</u> DBScan

If Epsilon is 2 and minpoint is 2, what are the clusters that DBScan would discover with the following 8 examples: A1=(2,10), A2=(2,5), A3=(8,4), A4=(5,8), A5=(7,5), A6=(6,4), A7=(1,2), A8=(4,9). The distance matrix is the same as the one in Exercise 1. Draw the 10 by 10 space and illustrate the discovered clusters. What if Epsilon is increased to $\sqrt{10}$?

Solution:

What is the Epsilon neighborhood of each point? $N_2(A1)=\{\}; N_2(A2)=\{\}; N_2(A3)=\{A5, A6\}; N_2(A4)=\{A8\}; N_2(A5)=\{A3, A6\}; N_2(A6)=\{A3, A5\}; N_2(A7)=\{\}; N_2(A8)=\{A4\}$

So A1, A2, and A7 are outliers, while we have two clusters C1={A4, A8} and C2={A3, A5, A6}

If Epsilon is $\sqrt{10}$ then the neighborhood of some points will increase: A1 would join the cluster C1 and A2 would joint with A7 to form cluster C3={A2, A7}.

