
Theorem Proving using ResolutionExample:(1) If it is hot(t) and humid(h), then it will rain(r).(2) If it is humid(h) then it is hot(t)(3) It is humid(h) now.(?) Will it rain?(r)Resolution� works with clauses (disjunctions of predicates).� makes a proof by contradiction� uses the following inference rule:Q_ � R;S _RQ _ S

Theoretical Problems of Resolution� The resolution procedure does not necessary halt, if astatement cannot be proven.� However, the resolution procedure will �nd a proof, ifa proof exists | however, some syntactical restrictionshave to be imposed on theorem provers to guarantee thisproperty�.� Another problem is, how long it will take to �nd a proof.In general, it is hard to incorporate heuristic knowledgeinto resolution problem solvers, because they tend to worktoo low-level. Another related problem is, if this methodis applied to more complex problems, to prevent thatthe theorem prover infers clauses that are trivial or com-pletely irrelevant for the solution of the particular prob-lem.

� which are quite ugly and might lead to an ine�cient systemperformance due to using a breadth-�rst style search strategy.

Horn-Clause ResolutionHorn-clause: A clause that contains at most one posi-tive literal.Properties of Horn-Clause Resolution� The implication-problem is decidable for Horn-clauses;that is, you can �nd an algorithm that �nds a proof, if itexists, and which also terminates, when no proof can befound.� However due to the syntacal restrictions in Horn-clauses,it is complicated to express knowledge that involves nega-tions in Horn-clause resolution.� Therefore, systems that rely on Horn-clause resolu-tion use negation as failure: all assertions that nei-ther are stored in the knowledge base nor can be in-ferred from the information stored in the knowledgebase are assumed to be false."� Negation as failure relies on the closed world assump-tion that might cause serious knowledge representa-tion problems.� PROLOG uses Horn-clause resolution relying on a depth-�rst, left-to-write control strategy, similar to backtrack-ing.

Non-Finite Number of ClausesWhen applying the resolution method to �rst order pred-icate calculus, the number of clause you can generate from aset of ground clauses is not necessary �nite.Consider the following example:(A) Every human being loves another human being.8h(human(h) �! 9y(human(y) ^ loves(x; y)))(B) Fred is a human being.human(Fred)We receive the following three clauses:(1) � human($h) _ human(F ($h))(2) � human($h) _ loves($h; F ($h))(3) human(Fred)(4) human(F (Fred)) using (3) and (1)(5) human(F (F (Fred)) using (4) and (1)... continuing to resolve (1) with the last clause.(n+3) human(Fn(Fred))Analysis of the Example� The example shows that the number of clauses we canreceive by resolving clauses is not �nite, which explainssomehow why the resolution algorithm not necessary ter-minates when no proof exists for the particular case |the algorithm might generate clauses through the end ofits life.� It also shows that a theorem prover has to take specialprecautions to prevent the above situation in the casethat a proof does exist.� Classical search techniques such as backtracking, graph-search, and hill-climbing(?) can be applied to the searchprocess of �nding the empty clause.

Dr. Christoph F. EickClassical Reasoning Systems� They are based on classical logic.� They are complete. All facts that are necessary to solve aparticular problem are present in the system, either theyare stored or they can be derived.� They are consistent. The application of inference ruleswill never lead to a contradiction.� They are monotonic. The only way of change toleratedby these systems is the addition of new facts; no otherchanges such as modi�cations and retractions are toler-ated.� They rely on two-valued logic.Nonmonotonic SystemsNonmonotonic system intend to solve problems for whichthe �rst three of the above assumptions are violated. Namely,problems that require� inferences that are based on the lack of knowledge.� inferences in a changing environment.� inferences in the presence of inconsistencies.Nonmonotic systems still rely on two-valued logic.

Dr. Christoph F. EickNonmonotonic LogicM-operator: M P evaluates to true if it is possible tobelieve P; that is, if the assumption of P does not lead to acontradiction with other facts and/or other assumptions.More speci�cally, inference rules in NML look as follows:A ^ M B ! CSemantics: If A is true and it possible to assume B theninfer C, if the assumption of C does not lead to a contractic-tion.Example:8x(Republican(x) ^M � Pacifist(x) !� Pacifist(x))8x(Quaker(x) ^ M Pacifist(x) ! Pacifist(x))Problems of Nonmonotonic Logic� does not resolve conicts in one way or the other; doesnot support the notion of strength of assumptions and orinferences.� inferencing relies on inferring the absense of contradic-tions, a problem which in general is not decidable for(full) �rst order predicate calculus.� needs a powerful theorem prover.

Dr. Christoph F. EickDefault LogicA : BCSemantics: If A is true and it is possible to assume B, theninfer C.Remark: In default logic inference rules compute a setof plausible extensions of a knowledge base. Each extensioncorresponds to one maximal augmentation of the knowledgebase. DL does not make any statement which of the extensionsshould be chosen in the case that the above set contains morethan one member.Republican($x) : � Pacifist($x)� Pacifist($x)Quaker($x) : Pacifist($x)Pacifist($x)Inheritanceidea: An object inherits the attribute values of all classesof which it is member unless doing so leads to a contradiction,in which case the value of the more restrictive class takes pref-erence over the value of the broader class.Remarks:� Inheritance can be provided by using rules of DL; al-though this does not lead to elegant solutions | becausethe lack of preference rules in DL.� Inheritance is supported by object-oriented programminglanguages, frame-cased systems, and by advanced datamodels for data- and knowledge bases.

Dr. Christoph F. EickProblems with the Closed-World Assumption� ignorance ("I don't know (now).") cannot be expressed.� its results depend on the form in which assertions areexpressed; e.g. if the knowledge base contains A _ B wereceive a contradiction.

Dr. Christoph F. EickDependency-Directed BacktrackingContext: Constraint-satisfaction problems.Idea: Revise/change only those assumptions (operatorapplications) that have been responsible for the particular fail-ure (constraint violation) in the backtracking process. Thatis the algorithm might backtrack skipping several levels. Oth-erwise, the algorithm works like regular backtracking.Preconditions: all inferences have to be stored explic-itly in an inference network in order to be able to decidewhich decisions have been responsible for a particular fail-ure. In other words, justi�cations why something is believedare stored explicitly in a network.

