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Development of a memetic clustering algorithm
for optimal spectral histology: application to FTIR
images of normal human colon†

Ihsen Farah,a,b Thi Nguyet Que Nguyen,a,b Audrey Groh,c Dominique Guenot,c

Pierre Jeannessona,b and Cyril Gobinet*a,b

The coupling between Fourier-transform infrared (FTIR) imaging and unsupervised classification is

effective in revealing the different structures of human tissues based on their specific biomolecular IR sig-

natures; thus the spectral histology of the studied samples is achieved. However, the most widely applied

clustering methods in spectral histology are local search algorithms, which converge to a local optimum,

depending on initialization. Multiple runs of the techniques estimate multiple different solutions. Here, we

propose a memetic algorithm, based on a genetic algorithm and a k-means clustering refinement, to

perform optimal clustering. In addition, this approach was applied to the acquired FTIR images of normal

human colon tissues originating from five patients. The results show the efficiency of the proposed

memetic algorithm to achieve the optimal spectral histology of these samples, contrary to k-means.

1 Introduction

Fourier transform infrared (FTIR) imaging is a non-destructive,
non-invasive and label-free biophotonic technique based on
the two-dimensional scan of the light absorbed by a sample. It
has been successfully applied to elucidate the histopathologi-
cal structures of biological tissues.1,2

Acquired images are mathematically defined as data cubes
composed of two spatial and one spectral dimensions. Each
pixel of a FTIR image represents an IR spectrum informative
on the molecular composition of the tissue at this acquisition
point.

The analysis of a FTIR image is complex for two reasons.
Firstly, a large number (several thousands) of spectra com-
posed of numerous wavenumbers (several hundreds) can be
acquired. Secondly, the studied phenomenon can generate
weak and subtle spectral responses. The interpretation of such
a large and highly multi-dimensional data cube is possible by
the development and application of advanced numerical data

analysis tools. In particular, the application of partitional clus-
tering methods, such as k-means (KM)3,4 and Fuzzy c-means
(FCM),4,5 performs an IR spectral histology of the studied
tissue, highly correlated to the conventional histology.
However, these clustering methods are local search tech-
niques, ensuring only the convergence of the algorithm to a
local optimum, which is dependent on the initialization. Thus,
applied several times to the same data cube, a partitional clus-
tering algorithm can estimate highly variable solutions.

Metaheuristics are numerical methods designed to find the
global optimal solution of any optimization problem. Genetic
algorithms (GA),6 ant colony optimization,7 and particle
swarm optimization8 are popular examples of population-
based metaheuristics. Numerous applications have been
reported, such as traveling salesman problem,9 vehicle routing
problem,10 knapsack problem,11 bin-packing12 etc. In addition,
the hybridization between population-based metaheuristics
and local refinement procedures has led to the development of
the more efficient memetic algorithms.13

In this study, we propose a memetic clustering method
combining GA and KM to solve the problem of partitional clus-
tering of the acquired IR spectral images of normal human
colon tissue. We show that our method outperforms KM by
estimating the optimal histological partition.

2 Materials and methods
2.1 Sample preparation

Five formalin-fixed paraffin-embedded tissue blocks of normal
zones were prepared from surgically excised colons from five
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patients with colon cancer. For each tissue block, two consecu-
tive 6 μm thick slices were cut with a microtome. For FTIR
image acquisition, the first tissue section was mounted onto a
calcium fluoride (CaF2) window (Crystran, Dorset, UK) which
is transparent for IR light. For conventional histological ana-
lysis, the second tissue section was mounted on a glass
window and stained by Harris’ Hematoxylin and Eosin (HE).
In this study, the stained tissue section is used as a reference
for comparison with its corresponding FTIR images.

2.2 FTIR image acquisition

FTIR images were acquired using a Spectrum Spotlight 300
FTIR imaging system coupled with a Spectrum one FTIR
spectrometer (Perkin Elmer, Courtabœuf, France), equipped
with a nitrogen-cooled mercury cadmium telluride 16-pixel-
line detector.

FTIR images were collected with a 6.25 μm spatial resolu-
tion, a 4 cm−1 spectral resolution, and a 16 scan-averaged
accumulation in a mid-IR range of 750 to 4000 cm−1. A 240
scan-averaged reference spectrum was recorded from a blank
area of the CaF2 window in order to substract the background
spectrum from the recorded FTIR images, using Spectrum
Image software (Perkin Elmer).

On each tissue section, two FTIR images were collected:
(i) one on the tissue area for spectral histology, and (ii) one on
a pure paraffin zone for numerical dewaxing.

2.3 Spectral data preprocessing

Before applying clustering methods, preprocessing steps must
be applied in order to correct the spectra from parasitic
signals.

Firstly, an atmospheric correction was performed on each
FTIR image by Spectrum Image software to remove water vapor
and CO2 contributions.

Secondly, the spectral range was limited to the
900–1800 cm−1 fingerprint region of biological samples.14

Thirdly, the spectra were numerically corrected for paraffin
signal and baseline, and normalized using the Extended Multi-
plicative Signal Correction (EMSC) method.15,16 As previously
described in ref. 17, the EMSC parameters were chosen as
follows. The reference spectrum is the mean spectrum of the
IR spectral image acquired on the tissue area of the considered
sample. The interference matrix is composed of the mean
spectrum and the first ten principal components computed
from the pure paraffin spectra acquired in a pure paraffin zone
of the sample. A fourth-order polynomial function was used to
model the physical light scattering effects. The efficacy of
EMSC is shown in Fig. S1 of the ESI.†

After the preprocessing stage, two different clustering algor-
ithms were applied independently on each IR image in order
to highlight the tissue structures of the studied samples: (i)
the classical KM clustering which is a local search method,
and (ii) a memetic clustering algorithm developed to globally
optimize the clustering problem.

2.4 Partitional clustering

2.4.1 k-means clustering. KM18 is the most popular un-
supervised classification method. Its aim is to partition into
k clusters a set X = {xi|1 ≤ i ≤ n} of n patterns where
xi = {xil|1 ≤ l ≤ d} is the ith pattern composed of d features. The
clusters are estimated by minimizing the total within-cluster
variation defined as:

f X;W ;Cð Þ ¼
Xk
j¼1

Xn
i¼1

wij kxi � cj k2 : ð1Þ

C = {cj|1 ≤ j ≤ k} is the set of barycenters (also called centroids)
where cj = {cjl|1 ≤ l ≤ d} is the barycenter of the jth cluster.

kxi � cj k¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPd
l¼1

ðxil � cjlÞ2
s

is the Euclidean distance between

the ith pattern and the jth barycenter. W = {wij|1 ≤ i ≤ n, 1 ≤ j ≤ k}
is the membership matrix where:

wij ¼ 1 if the ith pattern belongs to the jth cluster
0 otherwise

�
: ð2Þ

W must respect the following constraints:

Xn
i¼1

wij � 1; 1 � j � k; ð3Þ

Xk
j¼1

wij ¼ 1; 1 � i � n; ð4Þ

Xk
j¼1

Xn
i¼1

wij ¼ n: ð5Þ

Constraint (3) means that each cluster must have at least
one pattern. Constraints (4) and (5) imply that each pattern
must be assigned to a unique cluster. A KM partition is
defined as: ψ = {ψi|1 ≤ i ≤ n} with ψi = j such that wij = 1 and
j ∈ {1,2,…,k}.

This KM optimization problem can be addressed using the
following algorithm:

(i) Randomly choose k patterns as barycenters.
(ii) Assign each pattern to the nearest barycenter in terms

of Euclidean distance.
(iii) Update barycenters using cj ¼

Pn
i¼1 wijxi

� �
=Pn

i¼1 wij
� �

; 1 � j � k.
(iv) Repeat steps (ii) and (iii) until no reassignment of

patterns occurs.
2.4.2 Memetic clustering. A memetic algorithm (MA)13 is a

global optimization method based on the hybridization
between a population-based approach and a local refinement
technique. In this paper, a MA coupling a GA and a KM local
search, named memetic clustering (MC), is proposed for the
clustering of infrared spectral images. This MC method
globally minimizes the KM objective function f (X,W,C) defined
in eqn (1).

Problem encoding. A clustering partition is encoded as a
chromosome ψp, such that W(p) and C(p) correspond to its
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membership matrix and centroid matrix, respectively.
A chromosome is composed of n genes where each gene ψpi,
1 ≤ i ≤ n, takes a value in {1,2,…,k} according to the string-of-
group-number encoding.19 Then, the ith gene represents the
cluster number to which the ith pattern belongs.

Initial population. The initial population is composed of
P chromosomes Ψ = {ψp|1 ≤ p ≤ P}. For each chromosome ψp,
k patterns are randomly selected as barycenters Cp. The ith

pattern xi (i.e. the ith gene) is assigned to the cluster with the
nearest barycenter cj

(p), i.e. the barycenter which minimizes
the squared Euclidean distance ∥xi − cj

(p)∥2, 1 ≤ i ≤ n, 1 ≤ j ≤ k.
Thus, each chromosome corresponds to an initial partition of
the n patterns into k clusters.

Selection operator. GA is based on the generation of children
chromosomes from the crossover of parent chromosomes
selected from the current population. In this study, a dynamic
parent selection was adopted using the roulette wheel strategy6

coupled with the exponential scaling.20

With exponential scaling, the fitness of chromosome ψp is
measured by g(ψp) = 1/f (X,W(p)C(p))E(t ), where:

EðtÞ ¼ tan
t

T þ 1

� �
π
2

� 	
ρ: ð6Þ

t is the current iteration, T is the total number of iterations.
ρ ∈ ]0; 1[ is a constant controlling the weight of the chromo-
somes during the selection process. Then, in the roulette
wheel strategy, P/2 chromosomes are randomly selected with a
probability proportional to their fitness values. During the first
iterations of MC, the chromosomes have the same probability
to be selected (because E(t ) ≈ 0, thus g(ψp) ≈ 1, ∀p). At the end
of the algorithm, chromosomes with high fitness have a high
probability to be chosen (because E(t ) ≫ 0). The higher ρ, the
earlier the chromosomes with the highest fitness will be
fostered.

In addition, the elitism scheme is used in this work, i.e. the
best chromosome is automatically selected.

Crossover operator. The goal of the crossover operator is to
exchange information between two selected parent chromo-
somes ψp1 and ψp2, to generate two children chromosomes ψc1
and ψc2. Let b1 and b2 be two integers randomly selected in
{1,2,…,n − 1}. The first child is composed of genes 1 to b1 from
the first parent, genes b1 + 1 to b2 from the second parent
and genes b2 + 1 to n from the first parent. Thus, ψc1 =
{ψp11,…,ψp1b1,ψp2(b1 + 1),…,ψp2b2,ψp1(b2+1),…,ψp1n}. The second child
is composed of genes 1 to b1 from the second parent, genes
b1 + 1 to b2 from the first parent and genes b2 + 1 to n from the
second parent. Thus, ψc2 = {ψp21,…,ψp2b1,ψp1(b1+1),…,ψp1b2,
ψp2(b2+1),…,ψp2n}. This crossover operator can generate chromo-
somes containing empty clusters. In this case, a correction
operator is applied on these chromosomes in order to
randomly create new non-empty clusters.

The new population is composed of the P/2 selected
parents and the P/2 generated children.

Mutation operator. The mutation operator acts as a local
genetic perturbation on each chromosome to prevent

premature algorithm convergence. In our algorithm, we used
the mutation operator defined in ref. 21. Each gene has a
probability pm = 0.05 to mutate, i.e. to change its value. For the
pth chromosome, the value of the ith gene subjected to a
mutation is selected in the range {1,2,…,k} by the roulette
wheel procedure described above, using the following fitness
function:

hj ¼ dmax� kxi � cjðpÞk2 ð7Þ

where dmax ¼ max
1�j�k

kxi � cjðpÞk2

 �

, cj
(p) is the jth updated

barycenter of the pth chromosome. The gene value has a high
probability to be equal to the cluster number with the nearest
barycenter.

Local search operator. The local search operator consists to
refine chromosomes computed by the application of the selec-
tion, crossover and mutation operators. Its role is to explore
the search space in the chromosome neighbourhood in order
to accelerate the convergence toward a global optimum. In this
work, a limited number N of KM steps is applied on each
chromosome as the local search operator.

Finally, MC repeats the selection, crossover, mutation and
local search operators until the number of iterations M is
reached. The output of the algorithm is the best chromosome
of the last population. The different steps of our MC are sum-
marised in the flowchart presented in Fig. 1.

2.5 Choice of the number of clusters

On the acquired IR spectral images of normal human colon
tissue sections, KM clustering has been performed for a
number of clusters k ranging from 2 to 20. Then, the patho-
logist compared the estimated partitions of the IR spectral
images with the histological structures and substructures that
can be identified on the reference HE-stained tissue sections.
Consequently, the pathologist has empirically chosen k = 15 as
the most relevant number of clusters.

This number of clusters was also used for the MC
algorithm.

2.6 Clustering pseudo-color-coded images and cluster
assignment

After the preprocessing stage, KM and MC clustering were
applied separately on each IR image. For each estimated par-
tition, a unique color is attributed to the pixels belonging to
the same cluster. Then, the corresponding reconstructed color-
coded image is visually analysed by an expert pathologist who
annotates each cluster to its corresponding histological class
by comparison to a reference HE-stained image.

2.7 Quality measure of a partition

The quality of a partition estimated by KM or MC is measured
by the KM objective function f defined in eqn (1). For a given
number of clusters k, the smaller the objective function, the
better the partition.
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3 Results and discussion
3.1 Conventional histology of normal human colon

Here, conventional histology using HE staining is considered
as the reference method for the morphological recognition of
the tissue structures. Fig. 2 shows the HE-stained colon tissue
section of patient #1. This image illustrates the five main histo-
logical tissue structures of a normal human colon. The outer
layer (mucosa) is composed of tubular glands (crypts of
Lieberkühn (structure 1)) and of connective tissue (lamina

propria (structure 2)). A thin layer of muscle (muscularis
mucosae (structure 3)) links the mucosa to the submucosa
(structure 4) which is rich in adipose tissue. Lymphoid aggre-
gates (structure 5) can locally appear in the lamina propria and
the submucosa or extend from the lamina propria to the
submucosa.22

The HE-stained colon tissue sections of the four remaining
patients are shown in Fig. S2–S5 of the ESI.†

In this study, the KM and MC pseudo-color-coded
images are compared to these HE sections for the

Fig. 1 Flowchart of the developed memetic clustering (MC) algorithm.
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assignment of the estimated clusters to the main tissue
structures.

3.2 Limitations of KM clustering

In our study, KM is repeated 100 times with k = 15 clusters on
each tissue section in order to evaluate the variability of KM
results due to its random initialization. As mentioned in
section 2.7, each partition is evaluated by its estimated objec-
tive function value. The second column of Table 1 presents the
mean and the standard deviation of these 100 quality
measures for the five patients. These results show a high varia-
bility of the KM objective function value. Consequently, a high
variability of the estimated clusters is visible on KM partitions,
as can be seen in Fig. 3 for the tissue section of patient #1. For
example, the lamina propria is represented by 2, 3, and 1 clus-
ters on the best (Fig. 3(a)), the most frequent (Fig. 3(b)), and
the worst (Fig. 3(c)) partitions, respectively. In addition, only

1% of KM results corresponds to the best partition, justifying
the routine application of KM replicates for spectral his-
tology.23,24 Since KM is a local search method, it converges to
a local minimum.25 Thus, there is no certainty that the best
KM partition is the optimal one.

The best, the most frequent, and the worst partitions esti-
mated by KM on the four remaining patients are available in
Fig. S2–S5 of the ESI.†

To overcome these KM limitations, MC is proposed to par-
tition data in an optimal way.

3.3 Setting of MC algorithm parameters

A critical phase of MC is the right choice of its parameters,
presented in section 2.4.2, in order to ensure the convergence
of the algorithm to the optimal solution. In this paper, a grid
search using k = 15 clusters was used to choose the parameters
varying as follows: P ∈ {10, 20, 30, 40, 50, 60, 70}, M ∈ {20, 40,
60, 80, 100}, ρ ∈ {0.1, 0.3, 0.5, 0.7, 0.9} and N ∈ {1, 5, 10,
15, 20}. For each setting of the parameters, the variability of
MC is evaluated over 10 replicates, using the acquired IR spec-
tral image of the patient #1 tissue section.

For this spectral dataset, we found that the smallest
population size P required to ensure the convergence of MC is
for ρ = 0.1 (data not shown). Hence, ρ was fixed at 0.1 in the
rest of this article.

The remaining parameters were selected by analyzing the
mean and standard deviation of the quality measure of the 10
estimated partitions. For each value of N, these results can be
represented by a 3D-map. Two kinds of map are observed as
shown in Fig. 4. Whatever the values of P and M, the first kind
is characterized by a variable mean and a high standard devi-
ation typical of the non-convergence of MC, as shown in
Fig. 4(a) for N = 1. In contrast, the second kind of map is com-
posed of a flat region defined by a constant mean and a tiny
standard deviation, as shown in Fig. 4(b) for N = 15. This
region is characteristic of the convergence of MC to the global
optimal solution. However, on this convergence region, the
smaller the P and M values, the shorter the computational
time. Thus, this region is summarized by its minimum values
of P and M and the results are presented in Table 2. Contrary
to the case of N ∈ {1, 5}, MC converges to the optimal partition
for N ∈ {10, 15, 20} in the tested parameter ranges. Thus,
the setting of parameters was driven by the computational
time shown in the last column of Table 2. Subsequently, the

Fig. 2 HE-stained image of normal human colon tissue of patient #1.
Its main histological tissue structures are annotated by numbers: (1) the
crypts, (2) the lamina propria, (3) the muscularis mucosae, (4) the sub-
mucosa and (5) the lymphoid aggregate. Scale bar indicates 100 μm.

Table 1 Mean f̄ and standard deviation σ of the partition quality measures computed over 100 replicates for KM, and 10 for MC, GKA and GABC. For
each patient, bold values represent the smallest f̄ among the four tested clustering methods

Patient

f̄ ± σ

KM MC GKA GABC

#1 21.0075 ± 0.1970 20.6118 ± 0.0008 20.6317 ± 0.0164 22.4859 ± 0.1769
#2 4.1730 ± 0.0628 3.9734 ± 0.0004 3.9918 ± 0.0208 4.4089 ± 0.0627
#3 11.4789 ± 0.2418 10.3126 ± 0.0027 10.3202 ± 0.0001 11.2471 ± 0.1049
#4 15.5702 ± 0.1684 15.2106 ± 0.0050 15.2366 ± 0.0230 16.8276 ± 0.1886
#5 5.4735 ± 0.0838 5.3722 ± 0.0004 5.3723 ± 0.0004 6.0431 ± 0.0679
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parameters of MC were fixed to ρ = 0.1, N = 15, P = 50, and
M = 20 since this setting minimizes the computational time.
The efficiency of this setting has been confirmed by the
optimal convergence of MC on the spectral images of the
remaining patients.

3.4 Efficiency of MC algorithm

In our study, MC is repeated 10 times with k = 15 clusters on
each tissue section. MC variability is evaluated by the mean
and the standard deviation of the 10 quality measures. These

results are summarized in the third column of Table 1. Com-
pared to KM clustering, MC estimates a better solution, since
its quality measure is smaller for all the patients. Furthermore,
MC is reproducible since its standard deviation is close to
zero. These results are consistent with the expectations since
MC is a global optimization method contrary to KM which is a
local search algorithm.

An example of the optimal partition estimated by MC for
patient #1 is given in Fig. 5. The main difference with the best
KM partition (Fig. 3(a)) is visible at the level of lamina propria

Fig. 3 Examples among the 100 KM partitions estimated for patient #1: (a) the best ( f = 20.638), (b) the most frequent ( f = 20.931), and (c) the
worst ( f = 21.771) partitions. Scale bars indicate 100 μm. The cluster assignments are detailed below each pseudo-color-coded image.

Fig. 4 Examples of grid search maps for (a) N = 1 and (b) N = 15, using ρ = 0.1. Each map represents the quality measure mean f̄, over 10 MC repli-
cates, as a function of the population size P and the number of iterations M. Error bars represent the standard deviation σ.

Paper Analyst

Analyst This journal is © The Royal Society of Chemistry 2016

Pu
bl

is
he

d 
on

 0
7 

A
pr

il 
20

16
. D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ity
 o

f 
H

ou
st

on
 o

n 
03

/0
5/

20
16

 1
8:

01
:0

4.
 

View Article Online

http://dx.doi.org/10.1039/c5an02227d


represented by two clusters by KM and one by MC. Other
small differences can be seen for the other main histological
structures.

The optimal partitions estimated by MC on the four
remaining patients are available in Fig. S2–S5 of the ESI.† In
some cases, KM clustering can converge to the optimal par-
tition as shown in Fig. S5 of the ESI† for patient #5. This event
is rare as it depends on the data structure, the chosen number
of clusters, and the KM initialization. On the contrary, MC
always converges to the optimal solution.

Other clustering algorithms based on metaheuristics have
been proposed such as Genetic k-means Algorithm (GKA)21

and Genetic Algorithm-Based Clustering (GABC).26 These two
algorithms were applied 10 times on each FTIR image. The
mean and standard deviation of their corresponding quality
measures are given in the columns 4 and 5 of Table 1. These
results show that GKA and GABC are less efficient and less
reproducible than the MC algorithm, since their mean and
standard deviation of quality measures are higher than those
of MC. However, since MC and GKA estimated close values of
the objective function f, their pseudo-color coded partitions
are very similar. On the contrary, the higher value of f for

GABC induces a completely different partition of the data.
These results are illustrated for patient #1 in Fig. S6 of the
ESI.†

An important characteristic of metaheuristics is the
computational time. Table 3 presents the mean and standard
deviation of the computational time of MC, GKA, and GABC
over 10 replicates. These data show that MC is four times
faster than GKA and GABC.

Several studies have shown the efficacy of metaheuristics
applied to IR spectral data. For example, genetic algorithms
have been developed for the supervised classification of
the acquired FTIR spectra of different species of bacteria,27

for the optimal selection of discriminant subsets of
wavelengths,24,28–30 and for the selection of the best sequence
of preprocessing steps applied to spectral data.28 To the best of
our knowledge, this is the first study presenting a metaheuris-
tics-based algorithm specifically developed for the clustering
of IR images.

The proposed MC has been proven effective to perform the
spectral histology of human normal colon tissues from
5 patients. To confirm the validity of our approach, the com-
parative study of KM, MC, GKA and GABC has been extended
to supplementary normal colon tissues from 10 other patients.
These results are available in Table S1 of the ESI.† Moreover,
MC is based on a general framework suitable to all kinds of
data with different cluster shapes. Indeed, a simple and
effective approach to adapt our MC algorithm to seek clusters
of different shapes is to change the distance metric of the
objective function f (X,W,C) (eqn (1)) used in both the memetic
algorithm and the local search operator. For example,
Minkowski31 and Mahalanobis32 metrics can be used for esti-
mating elliptic clusters. Other cluster shapes can be deter-
mined using kernel-based metrics.32,33 MC can thus be
applied to the acquired infrared images of human samples
from other organs with different physiopathological states,
without degrading its performance.

Table 2 MC convergence regions characterised by the number of KM
iterations N, the minimum population size P, the minimum number of
iterations M, the mean f̄ and the standard deviation σ of the quality
measures, and the mean computational time t̄ in seconds, over 10 repli-
cates. For a given N, “/” means that MC does not converge whatever the
values of P and M

N P M f̄ σ t̄

1 / / / / /
5 / / / / /
10 70 80 20.6115 0.0005 3906.3951
15 50 20 20.6118 0.0008 793.6144
20 40 40 20.6114 0.0004 1285.7603

Fig. 5 Optimal partition estimated by MC for patient #1 ( f = 20.611). Scale bar indicates 100 μm. The cluster assignments are detailed beside the
pseudo-color-coded image.
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4 Conclusion

In this study, an optimal memetic clustering (MC) combining
a genetic algorithm and a refinement by KM was developed.
Applied on the acquired FTIR images of normal human colon
tissue samples originating from five patients, this method out-
performed standard KM and two popular genetic algorithm-
based clustering techniques namely GKA and GABC. Com-
pared to these three methods, our algorithm reproducibly con-
verges to the optimal solution. In addition, MC is four times
faster than GKA and GABC. Owing to its general framework,
our algorithm may be applied for the spectral histology of any
kind of tissue and for the clustering of any kind of data.
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