Structure and Constraints for a Belief Network

To Diagnose Huntington Disease

Section 1: A Belief Network for Huntington Disease
A Bayesian belief network (BBN) is used to model a domain containing uncertainty in some manner. More specifically a BBN is a directed acyclic graph (dag) where each node represents a random variable. Each node contains the states of the random variable it represents and a probability table that describes the dependencies between the other variables.  Fig. WW depicts a belief network for Huntington disease which will be explained in the following.
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Huntington Disease (HD) is a progressive disorder of motor, cognitive, and psychiatric disturbances that are caused by the expansion of the CAG/polyglutamine tract in the HD-gene on chromosome 4p16. The number of CAG-repeats ranges from 10 to 121 (with a range of 10 to 26 being considered to be "normal”), and repeat length with patients from HD ranges from 35 to 121. The diagnosis of HD rests on positive family history, characteristic clinical findings, and on CAG-repeat length. The mean age onset of the disease is in the 35 to 44 years. DNA-based testing that determines the length of CAG-repeats in the HD-gene is widely available, and is 98.8% sensitive. For a more detailed discussion of HD see […].

Fig. WW depicts the structure of a belief network that expresses the dependencies between seven variables. Variables are represented as nodes in a belief network. Variables in believe networks can take different states. In general, belief networks can be used to predict the state of a variable based on observed evidence. The particular disease network captures the following variables whose states will be listed below.

The variable Huntington has states true and false, and its value is set to true correspond  to the event of becoming HD-phenotypical during lifetime.

The variables Pos_Fam_History represents the family history with respect to Huntington disease. It has 7 states  that will be explaned in the next section. 

The variable CAG_Rep represents knowledge with respect the number of CAG-repeats in the Huntington gene. It has states r10_35 (CAG repeats at least 10 and at most 35), r36_41 (CAG repeats at least 36 and at most 41), r42_47 (CAG repeats at least 42 and at most 47), and  r48_121 (CAG repeats of 42 and more).

The variable Age_HD_Onset corresponds to the age of becoming HD-symptomatic, and has 7 states that correspond to different ranges of onset, including a state that represents the fact that the onset does not occur in the lifetime of the patient.

The variables Psy_Dist, Chorea, and Abn_Cog represent clinical findings. They have states true and false corresponding to the presence / absence of psychiatric disturbances, Chorea, and abnormalities of cognition, respectively.

In general, the states of variables have to be exclusive and exclusive (one variable has to be in exactly one state); that is, if we consider the variable CAG_Rep

P(CAG_Rep=r10_35) + P(CAG_Rep=r36_41) + P(CAG_Rep=r42_47) + P(CAG_Rep=r48_121) = 1

Belief networks allow the expression of dependencies between variables, which are represented as links in the network. In the particular network the following dependencies have been represented:

· The number of CAG-repeats depends on the family history of the patients (link from Pos_Fam_History to CAG_Rep)

· The number of CAG-repeats determines if and when a patient get Huntington Disease (link from CAG_Rep to Huntington and to AGE_HD_Onset)

· Huntington disease causes psychiatric disturbances, Chorea, and abnormalities in cognition (links from Huntington to Psych_Dist, Chorea, Abn_Cog)

When links are specified in a belief network those dependencies have to be quantified by providing a probability table for each node of the network that specifies the probability of the variable in a particular state based on the state-information of the variables of its in-going links. For example, for the variable Huntington, which has only one in-going link (from CAG_rep), the following probabilities have to be provided for the depicted belief network:

P(Huntington=true|CAG_Rep=r10_35) “probability of Huntington assuming that the 

                                                                 CAG-count is at most 35”

P(Huntington=true|CAG_Rep=r36_41)

P(Huntington=true|CAG_Rep=r42_47)

P(Huntington=true|CAG_Rep=r48_121)

Similarly, for the other nodes of the network probability tables have to be generated. After all the probability tables for each variable have been generated, the network is compiled, and then can be used to make predictions. For example, let us consider that a DNA-test that determined that his CAG-count is 38, and we want to see how this new evidence effects the states of the other variables. Belief networks tools (such as NETICA, HUGI, PATHFINDER, for more see [KDD99]) provide interfaces to specify new evidence and to analyze its impact on the states of the other variables (very likely, this evidence will increase P(Huntington=true), and make HD-specific symptoms more likely, will and induce a particular probability distribution of the age of disease onset).

Section 2: Creating the Structure of a Belief Network

This section discusses the problem of generating the dependency graph of a belief network. Section 4, 5, and 6 address the problem of generating probability tables for a network of a given structure. Before we will start our discussions on those topics, it is necessary, for the subsequent discussions, to introduce a more formal view of Belief Networks. These more formal discussions will  focus on Bayesian Belief Networks that are currently supported by tools such as Hugin, Netica, and Pathfinder (for a more detailed discussion on available tools see […] and […]). Consequently, our focus is not describe recent advancements in the technology that have not found their expression in commercial tools, due to lack of time and due to implementation problems, but rather to focus on BBN that can be found in data mining and expert systems design tools. 

2.1 A More Formal View of Bayesian Belief Networks

A belief network describes relationship between variables that are represented as nodes in a belief network. Relationships between variables are represented as links in the belief-network, whose influence has to be quantified by providing probability tables for each node. 

More formally, a BBN is defined as follows:

· Definition: A BBN consists of a finite set of variables; a variable has the following information associated with it:

· A name that is used to uniquely reference it within the BBN

· A domain that defines the values the variable can have, which not necessarily have to be finite. Domains typically supported by BBNs include: INTEGER, REAL, Intervals of INTEGERS, Intervals of REALS, and finite sets of strings.

· A finite set of states and a mapping that associates each value in the variable’s domain with a state in the state set. Frequently, in the case of a discrete variables the set of states of the variables is identical to with the domain of the variable (although sometimes the domain of a discrete variable is mapped to a smaller set of states to reduce the complexity of the network). Continuous variables, on the other hand, have always to be discretized; that is, they have to be mapped into a finite set of states (usually intervals).

· A set of input variables; if a variable A has a link to variable B, then varialbe A has to be a member in the set of input variables of variable B. A variable’s input variables list the variables on which the variable’s state directly depends on (this fact implicitly induces a link from B to A in the dependency graph of the BBN).

· A probability table that gives the probability of the variable being in a particular state depending on the states of its input variables. Probability tables quantify the dependencies between a variable and its input variables. If a variable v with s states has input variable v1,…,vm which have s1,…,sm states, respectively, then v’s probability table must contain contains s*s1*…*sm probabilities. For example, if a variable v has states {true, false} and input variables v1 and v2 which have states {blue, yellow, red} and {hot, cold} respectively, then v’s probability table must contain the following 12 (2*3*2) probabilities:

P(v=true|v1=blue and v2=hot)

P(v=true|v1=red and v2=hot)

P(v=true|v1=yellow and v2=hot)

P(v=true|v1=blue and v2=cold)

P(v=true|v1=red and v2=cold)

P(v=true|v1=yellow and v2=cold)

P(v=false|v1=blue and v2=hot)

P(v=false|v1=red and v2=hot)

P(v=false|v1=yellow and v2=hot)

P(v=false|v1=blue and v2=cold)

P(v=false|v1=red and v2=cold)

P(v=false|v1=yellow and v2=cold)

· Moreover, for a given BBN a graph can easily be constructed that represents each variable as a node, and has a link for each input variable from the node corresponding to its input variable to the node that corresponds to the variable. We call this graph a BBN’s Dependency Graph. Some tools request that a BBN’s graph should not contain any cycles; that is, it must be a directed, acyclic graph. 

· Moreover, a given belief network assumes that a certain set of probabilities are known (which probabilities these exactly are depends on the structure of  the BBN’s dependency graph) which is the union of the probabilities that need to be specified in each variables’ probability table. We call this set of probabilities the BBN’s probability set. 

· Finally, for a given BBN and its given probability set a probability assignment function can easily derived (we just need to retrieve the values in the probability table); for a given BBN b this is a function computes the value of each probability in the probability set. More formally the set of probability tables of a BBN can be represented as a substitution that assigns a value to each probability in (b); that is, the b’s probability tables define a probability assignment function:

: (b) ( [0, 1]

It should be noted that for a given BBN b its dependency graph, its probability set, and its probability assignment functions can easily be constructed using the information that is associated with the variables of the BBN.

Definition: Let b be a BBN, then

(b) denotes b’s induced dependency graph and

(b) denotes b’s probability set.

(b) denotes b’s probability assignment function (a function (b) ( [0, 1])

Section 2.2: A Methodology for Designing Belief Networks

In general, designing a belief network consists of the following steps:

1. Identify the set of variables that is relevant for the task to be automated

2. Select the domains of the identified variables

3. Create a preliminary dependency graph of the variables identified in step 1, which is an undirected graph. If a dependency between variable A and B is observed, create an edge between A and B. Only direct dependencies should be represented in the preliminary dependency graph. If variable A depends on variable B, and variable B depends on variable C only, then although A indirectly depends on C, no edge between A and C should be generated.

4. Transform the preliminary dependency graph into a dependency graph by making the edges of the directed dependency graph directed. Three heuristics are useful to select on the direction of edges:

· Select directions based on causation; if state of variable A causes (possibly interacting with other variables) the state of variable B, create on edge from A to B. 

· Select direction based on available probabilities: For nodes with more than one edge, determine the direct, based on available probabilities. Example: If a preliminary dependency graph 

A---------B-----------C

is given; we have 4 possible choices in directing the edges ascending in B can be made; in each case the following probabilities have to be known. We only discuss

2 here, and depict the probabilities that have to be provided for the probability table

a) A( B (C

P(A), P(C), P(B|A and C), P(B|A and ~C), P(B|~A and C), P(B|~A and ~C)

b) A( B ( C

                  P(B), P(A|B), P(A|~B), P(A|C),P(A|~C)

· Select direction based on conditional independence; if in the case of the above example the relationship between of B and C is independent from the relationship of B and A, then solution b seems to be a better solution, because filling a table with probability values that are not really needed (there values can be computed making a conditional independence assumption) is a waste of time and resources.

If these heuristics give conflicting advice, direction based on conditional independence should have the highest weight, followed by availability, followed by causation.

5. Select the set of states for each variable; discrete variables are frequently mapped one to one to states, whereas continuous variables always have to be discretized. In general, it is desirable to have fewer states because it reduces the complexity of the BBN, and the quantity of probabilities that have to be acquired. However, having too few states can create problems with precision and quality of the decision making of the BBN. In general, distinguishing between states is only desirable if the distinction has at least a moderate impact on the precision of the network’s computation, because the network is sensitive to distinguishing the states. Moreover, distinguishing between states also is not very helpful, if the necessary probabilities are not or only partially known.

6. Create a probability tables for each variable of the network.

7. Test and debug the network, possibly redoing steps 1-6.

The experiments we made, applying the first five steps of the methodology for designing a believe network for Huntington disease are reported in the next subsection; whereas steps 6 and 7 of the design of the HD-disease profile will be discussed in more detail in Section 6.
Section 3: Generalized Belief Networks

Unfortunately, frequently, it is not possible to define belief networks precisely, because the necessary probabilities are unknown or only approximately known (e.g., someone might not know the precise value of a probability, but he/she might know that the particular probability is less than 0.5 or he/she might know that the value of one probability has to be less than the value of another probability in the same or a different table). In order to be able to describe this kind of knowledge with the goal to overcome some problems, which were mentioned in Section 2, we introduce Generalized Bayesian Belief Networks (GBBN). 

As discussed in Section 2, BBNs sometimes force us to specify probabilities we don’t know or only very vaguely. The main idea of GBBNs is to specify the probabilities we know (as we would do when using a BBN), and to constraint the remaining probabilities based on a set of constraints. 

A GBBN has the same structure as BBN (both have the same dependency graph) but uses (instead of probability tables) generalized probability tables to describe the dependencies between variables. Whereas probability tables assume that all the necessary probabilities (those in (b)) are known, a generalized probability table is more general in the sense that it just imposes constraints concerning the content of a particular probability tables, rather than giving precise probabilities. 

Definition: A generalized belief network (GBBN) gb with respect to a given BBN b is a 3-tuple gb=((b), (b), C) where C is a set of constraints on the values for the probabilities contained in the set (b). We call C gb’s generalized probability assignment function.

In general this definition allows for the specification of arbitrary constraints on the probabilities in (b) (e.g. (P(A) + P(B|A)**3<0.2)). 

A belief network is an implementation of a generalized belief network, if its probability tables satisfy all the constraints that are imposed by the corresponding generalized belief network. 

Remark: In contrast, to a BBN’s probability function that uniquely assigns a value in [0,1] to each probability in (b), a generalized probability function can be viewed as a random generator that assigns a value in [0,1] to each probability in (b). The values assigned by a generalized probability assignment function have to satisfy all the constraints in the constraint set C of the GBBN. Moreover, we assume that every legal probability assignment with respect to the set of constraints should have the “same chance” to be selected.
Definition: A BBN b is an implementation of a GBBN gb=((b), (b), C) if and only if

For every c in C: (c) is true

It should be noted that many implementation of the same generalized belief network exists, and that different implementations will not necessarily agree in their results (because they assume precise knowledge for what we don’t know or what we only understand vaguely; e.g. if there are two constraints specifying 0.2 < P(A) < 0.3; then assigning any value in (0.2, 0.3) would be a implementation of the generalized belief network; however, obviously, assigning different values in the probability table will lead to different prediction by different networks). 

Definition: We call E={bb1,…,bbn} an ensemble that implements a GBBN gb if and only if each b in E is an implementation of gb.

Idea: Our main approach to implement a GBBN gb=((b), (b), C) will be to randomly generate solutions for the system of equations in C (using genetic algorithms), and to construct an ensemble of BBNs for a set of solutions generated (each solution should have the same probability to be selected; that is, if we generate a sufficient number of BBNs we should be able to get a “reasonably good” approximation of the GBBN to be implemented). The ensemble of BBNs implementing the GBBN will be executed in parallel for a particular case, and average, lowest, highest observed probability will be reported as the result of executing the ensemble E.

In particular, we plan to employ the following methodology for the design and implementation of GBBNs for disease profiles:

1. Create the Dependency Graph of a Belief Network for the Disease Profile 

2. Acquire Constraints on entries of probability tables and map constraints into some internal form that is used as input for step 3.

3. Create m solutions randomly that satisfy the constraints (based on the information derived in step 1 and 2).

4. Automatically create m BBNs corresponding to the m solutions obtained.  

5. Develop an execution engine to execute ensembles of BBN (each BBN in the ensemble corresponds to a solution found in step 3). The execution engine runs the m BBNs in parallel for given piece of evidence, and summarizes the results of the multi-network execution in some understandable form. 

6. Develop/Use a tool that visualizes the probability distribution of the solutions that were obtained in step 3.

In summary, when following this methodology we generate the following information for each disease profile:

· A set of variables that a relevant for diagnosing the disease
· A dependency graph that specifies which variables depend on each other and which not.
· A generalized probability table that captures the available probabilistic knowledge for the diagnosing the disease. This table combined with the dependency graph and the variable set defines the GBBN for the disease profile.
· An ensemble of BBNs (all of which are implementations of the GBBN for the disease profile) that is capable of computing the probability of the disease based on findings and evidence of a particular case.
· Some meta-information concerning the (second order) distribution of probabilities in the probability table of BBNs implementing the GBBN.

Section 4: Designing a GBBN for a HD-Profile

This section describes our experiences in designing a GBBN for the HD-profile, and briefly compare our approach with an approach that directly uses BBN for knowledge caputure. The GBBN for Huntington disease, called GBBN33 in the following, is defined on the top of the following dependency graph, whose design already has been described in Section 3.3; that is, it uses the following variables, states and links, which have been depicted below:

After the dependency graph has been, defined in the next step the constraints with respect to the contents of the probability table had to be specified. The main source for deriving the constraints was the disease file itself, as well as information gathered from a meeting with a Huntington disease expert. This section discusses the problems in using the knowledge from these two sources to design GBBN33. 

(C0) “Prior of Huntington disease is between 3/100000 and 7/100000.” In the following

         HD represents the event of becoming HD-phenotypical in the lifetime.”

        0.00003 < P(HD) < 0.00007

(C1) The event r10_35 represents the event  that a person’s CAG-repeats are below 35; that implies that if genetic testing; r10_35 is equivalent to the event of testing negative

for the HD-mutation. 

        “The fact that HD is constrained also constrains the probability for a positive HD-mutation-test (1-r10_35), whose probability should be slightly larger because of the possibility of partial penetrace”:

        (C1a) 0.00003 <= P(HD) < (1-r10_35) 

        (C1b) (1-r10_35) < 0.0001 (higher than 0.00007 because of partial penetrance)

(C2)  “There is no occurrence of the disease with 10-35 CAG repeats”

         P(HD| r10 _35)=0

(C3) “There is a reduced penetrance of HD in the 36-41 range”

        0.87 < P(HD|r36_41) < 0.96

(C4) “There is a strong penetrance of HD in the higher ranges”

       0.96 < P(HD|42_47) < P(HD| r48_120) < 1.0

(C5) The constraints listed here deal with the importance of different symptom groups, namely Chorea and psychiatric disturbances, and abnormalities in cognition.

(C5a) “Chorea is quite suggestive for HD”
0.4 > P(HD |Chorea) > 0.1 

            (C5b) “Psychiatric disturbances have some significance for diagnosing HD”
P(HD |Psy_Dist)    > 0.01

(C5c) “Chorea is significantly more suggestive for HD disease than psychiatric disturbances, and psychiatric disturbances are significantly more suggestive for HD than abnormalities in cognition.”

(C5c1) P(Abn_Cog|not HD) > P(Psy_Dist|not HD) > P(Chorea|not HD) 

(C5c2) P(Chorea|HD) > P(Psy_Dist|HD)

(C5c3) P(HD|Chorea) > 2.2*P(HD|Psy_Dist)

(C5c4) P(HD |Psy_Dist) > 3*P(HD|Abn_Cog)

(C5d) “In diagnosing HD, the evidence of both Psy_Dist and Abn_Cog present is approx. equivalent to the evidence of solely Chorea being present (the product of probability-multipliers of Psy_Dist and Abn_Cog are within [0.65,1.15] of the probability multiplier of Chorea)!”

(C5d1) P(HD|Psy_Dist)/P(HD)*P(HD|Abn_Cog)/P(HD) < 

1.15 P(HD|Chorea) / P(HD)

(C5d2) 0.65 * P(HD|Chorea)/P(HD) < 

P(HD|Psy_Dist)/P(HD) *P(HD|Abn_Cog)/P(HD)

(C6)   “Chorea should occur more frequently than HD.”
          2*P(HD) < P(Chorea) 

(C7) The constraints listed here capture knowledge with respect to the age of onset of HD.

(C7a) “The probability of the age of onset being greater 100 is equivalent to

not becoming HD-symptomatic during lifetime.”

P(Ag-on=100+)=1-P(HD)

(C7b) “25% of patients display first symptoms after the age of 50.” 

0.23.5 <= (P(Ag-on=50-60) + P(Ag-on=60-100)) / P(HD) ) <= 0.265  

(C7c) “The mean age of onset of HD disease symptoms is in the 35-44 range”
38<  (25*P(Ag-on=20-30) + 35*P(Ag-on=30-40) + 45*P(Ag-on=40-50) +  

 55*P(Ag-on=50-60) + 68*P(Age-on=60-100))/P(HD)  < 42  

(C8) The age of onset depends on the number of CAG-repeats: “A higher number of CAG-repeats makes it more likely to become HD-symptomatic at an earlier age.” 

The approach chosen to capture the knowledge in the disease profile adds more states to the variable Pos_Fam_History  in the belief network that represents the fact of having a positive family history with respect to HD. The number of states of the variable were extended from the simple state set {yes, no} to following seven states: 

· Pos_Fam_History=no "no positive family history"

· Pos_Fam_History=ns0_20 "positive family history and symptom free and age 20 or less"

· Pos_Fam_History=ns20_40"positive family history and symptom free and age between 20 and 40”

· Pos_Fam_History=ns40_50 "positive family history and symptom free and age between 40 and 50"

· Pos_Fam_History=ns50_60 "positive family history and symptom free and age between 50 and 60"

· Pos_Fam_History=ns60_ "positive family history and symptom free and at least 60 yearsold"

· Pos_Fam_History=symp "positive family history and not symptom free"

Using this representation framework, we were able to express the following constraints with respect to symptom-free patients with a positive family history (approx. represents approximately equal):
(C9)    The knowledge in Table 3 has been expressed as follows:

           (C9a) 1 -  P(r10_35| Pos_Fam_History=ns0_20)=0.5

           (C9b) 1 -  P(r10_35| Pos_Fam_History=ns20_40) approx 0.47

           (C9c) 1 -  P(r10_35| Pos_Fam_History=ns40_50) approx 0.37

           (C9d) 1 -  P(r10_35| Pos_Fam_History=ns50_60) approx 0.24

           (C9e) 1 -  P(r10_35| Pos_Fam_History=ns60_)     approx 0.11

(C10) “Not having a positive family history makes it less likely to test positive for HD”

           P(r10_35|Pos_Fam_History=no) > P(r10_35)

(C11) “Being symptomatic with positive history makes it less likely to test negative for HD-mutation.”

P (r10_35 |Pos_Fam_History=symp ) < 0.5
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