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ABSTRACT 

This paper proposes a novel methodology for creating efficient 

polygon models for spatial datasets. Polygon models are essential 

in spatial data mining applications for the quantitative analysis of 

relationships and change between clusters. Moreover they can be 

utilized for representing and visualizing spatial clusters. However, 

there is not much research concerning the usage of polygons as 

cluster models for spatial clusters. There are algorithms, which 

can generate a representative polygon for a set of points. 

However, most of the proposed algorithms do not meet the 

requirements of spatial data mining applications such as removing 

outliers, dealing with separate regions with varying densities and 

working with different shapes of cluster, and lack support for 

automatically selecting proper input parameters. Moreover, 

quantitative evaluation measures that can guide the generation of 

polygons are missing. In this paper, we propose a comprehensive 

analysis framework that takes a spatial cluster as an input and 

generates polygon model for the cluster as an output. The 

framework uses pre-processing to remove outliers, detect 

subregions and novel post-processing algorithms to create a 

visually appealing, simple, and smooth polygon for each 

subregion in the cluster. The polygons themselves are generated 

using Characteristics shapes. The paper proposes two novel 

polygon fitness functions to automatically select the proper input 

parameter for Characteristic shapes and other polygon generating 

algorithms. Moreover, as a by-product, a novel emptiness measure 

is introduced for quantifying the presence of empty spaces inside 

polygons. We tested the methodology on several different datasets 

and verified that each step of the methodology is essential and 

effective for creating simple and accurate polygon models for 

spatial datasets. The novel fitness functions proved to be very 

effective for generating representative polygon models for clusters 

of differing characteristics. 

Categories and Subject Descriptors 

I.5.3 [Clustering]: Algorithms H.2.8 [Database Management]: 

Database Applications – data mining, spatial databases and GIS. 

General Terms 

Algorithms, Design, Experimentation. 

Keywords 

Spatial data mining, Polygon Models for Point Sets, Spatial 

Clustering, Polygon Fitness Function, Polygon Emptiness 

Measure 

 

1. INTRODUCTION 
Polygons serve an important role in the analysis of spatial data. In 

particular, polygons can be used as a higher order representation 

for spatial clusters, such as for defining the habitat of a particular 

type of animal, for describing the location of a military convoy 

consisting of a set of vehicles, or for defining the boundaries 

between neighborhoods of a city consisting of sets of buildings.   

It is attractive to use polygons for this purpose due to the 

following reasons. 

First, it is computationally much cheaper to perform certain 

calculations on polygons than on sets of objects. For example, 

polygons have been used to describe the functional regions of a 

city [17]. A given location can be assigned to one of those 

functional regions very efficiently by checking in which polygon 

the location is included. 

Second, relationships and changes between spatial clusters can be 

studied more efficiently and quantitatively by representing each 

spatial cluster as a polygon. Polygon analysis is particularly useful 

to mine relationships between multiple related datasets, as it 

provides a useful tool to analyze discrepancies, progression, 

change, and emergent events [1]. Polygon analysis is also useful 

for summarizing new trends in streaming spatial data [3], such as 

traffic data.   

Furthermore, polygons have been studied thoroughly in geometry. 

Therefore, they are mathematically well understood. There are 

many libraries and tools in various programming languages for 

manipulating polygons and other geometric objects (ArcGIS, 

CGAL, GeoTools etc.). Spatial extensions of popular database 

systems, such as ORACLE, Microsoft SQL Server, MySQL, and 

PostgreSQL support polygon search, polygon manipulation, and 

many other related geometric operations. 

However, there is not an established procedure in the literature on 

how to derive polygonal models from spatial clusters. The 

objective of the research described in this paper is to find an 

optimal set of polygons for two dimensional spatial clusters. To 

achieve this goal, we propose a three-step methodology that 

consists of: 

1) A Pre-processing step for removing outliers and 

detecting subregions in a cluster 

2) A Polygon-generating step for generating polygons for 

each subregion in a cluster with the aid of a polygon 

fitness function 
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3) A Post-processing step which deals with overlapping 

polygons and smoothens the generated polygons 

 

The input of this process is a spatial cluster containing a set of 

points and the output is a set of polygons—the model of the 

cluster.  In most cases, the result of this process is just one 

polygon representing the cluster. However, multiple polygons will 

be used to represent the cluster if the cluster has well-separated 

subregions. In general, we want to generate polygon models that 

represent the cluster as closely as possible, and at the same time 

we want these polygon models to be simple, consisting of straight, 

non-intersecting line segments without holes. However, it is not 

trivial to generate such representative polygons. As shown in 

Figure 1 (taken from [4]), many different polygons (or a set of 

polygons as in Figure 1e) can be generated for the same set of 

points. Therefore, it is desirable to define application specific 

criteria for evaluating different polygon models. Coming up with 

such criteria and evaluation measures is the focus of this paper. 

Depending on the application context, a different one of the 7 

shapes in Figure 1 may be desirable.  

 
Figure 1. Different shapes generated for the same set of points 

(taken from [4]). 

Although, using polygons is not the only option for modeling a 

spatial cluster (i.e. splines or polylines can also be used); this 

paper will only consider the usage of polygons as cluster models 

because of the advantages of using polygon models as discussed 

earlier. Moreover, in this paper, we will not consider holes inside 

polygons. 

Main contributions of this paper include: 

 A comprehensive three-step methodology for generating 

polygons from spatial clusters is proposed.   

 Two novel quantitative polygon fitness functions are 

introduced to guide the generation of polygons from 

point clouds, alleviating the parameter selection 

problem when using existing polygon generation 

methods. The proposed methodology uses Characteristic 

Shapes [7] to generate polygon models; however, we 

wish to emphasize that other polygon generation 

methods, such as Concave Hull algorithm [9] can be 

used in conjunction with those fitness functions.  

 An automated pre-processing procedure for removing 

outliers and detecting subregions in a spatial cluster is 

presented.  

 A novel emptiness measure is introduced that quantifies 

the presence of empty areas in a polygon. 

 Novel algorithms for smoothening polygons are 

proposed. 

The rest of the paper is organized as follows. In Section 2, we 

discuss the challenges that algorithms face which create polygon 

models for spatial clusters. In Section 3, we compare the existing 

methods for creating polygon models. Section 4 provides a 

detailed discussion of our methodology. We present the 

experimental evaluation in Section 5, and Section 6 concludes the 

paper.  

2. REQUIREMENTS FOR CREATING 

POLYGON MODELS  

   

a. Spatial Cluster b. Single Polygon 
model 

c. Multiple polygon 

models 

Figure 2. A spatial cluster with subregions and outliers. 

Let’s consider the artificial spatial cluster shown in Figure 2 

which contains some subregions and outliers. It is obvious that 

this cluster cannot be well represented with just one polygon; a 

separate polygon for each subregion needs to be generated as in 

Figure 2c; otherwise, a polygon with large empty space would be 

created as in Figure 2b. Using a single polygon cannot represent 

the density of the points in the cluster. If this polygon is used for 

statistical purposes for this cluster, incorrect statistics (larger area, 

less density, etc) will be obtained for the cluster. Thus, a good 

polygon model needs to allow generating multiple polygons for a 

cluster. On the other hand, determining the subregions is not a 

trivial task as varying densities inside a cluster makes this task 

quite difficult. The region on the right in Figure 2a can be 

considered as a single region or it can be divided into two 

subregions. However, most polygon generating algorithms cannot 

deal with varying densities as we will discuss in Section 3.  

Outliers pose another challenge, as most of the existing polygon 

generating algorithms create models which contain all the points 

of the spatial cluster. Therefore, not removing them will lead to 

large empty space in the polygon model, as can be seen in Fig. 2b. 

In summary, a methodology which creates polygons for spatial 

clusters has to be able to create multiple polygons, deal with 

outliers, varying densities in a cluster, and overlapping polygons1. 

In general, we want to create polygons as shown in Figure 2c. 

These polygons represent the shape of each subregion in the 

cluster quite well. Furthermore, the generated polygons are 

smooth and have small number of edges and cavities. Section 4 

will explain how we will accomplish this task.  

3. RELATED WORK 
Representing a set of points as polygons (or similar geometric 

shapes), creating the boundary of a set of points, or defining the 

perceived shape of a dot pattern has been a research area in 

computational geometry, computer graphics, computer vision, 

pattern recognition, and geographic information science for many 

years. 

Convex hulls are the simplest way to enclose a set of points in a 

convex polygon. However, convex hulls may contain large empty 

areas that are not desirable for good representative polygons. 

Creating polygon models based on Voronoi diagrams or Delaunay 

triangulations is another commonly used approach. Alani et al. [6] 

                                                                 

1 The discussion of this third challenge will be postponed until 

Section 4.3. 



describe a method for generating approximate regional extents for 

sets of points that are respectively inside and external to a region. 

However, the proposed method requires defining a set of points 

outside the given cluster so that cluster boundaries can be 

obtained. Matt Duckham et al. [7] propose a “simple, flexible, and 

efficient algorithm for constructing a possibly non-convex, simple 

polygon that characterizes the shape of a set of input points in the 

plane, termed a Characteristic shape”. The algorithm firstly 

creates the Delaunay triangulation of the point set—which 

actually is the convex hull of the point set—and then reduces it to 

a non-convex hull by replacing the longest outside edges of the 

current polygons  by inner edges of the Delaunay triangulation 

until a termination condition is met.  The Alpha shapes algorithm, 

introduced by Edelsbrunner et al. [5] also uses Delaunay 

triangulation as the starting step and generates a hull of polylines, 

enclosing the point set and this hull is not necessarily a closed 

polygon. Thus, the Alpha shapes algorithm requires post-

processing for creating polygons out of the polylines. Alpha 

shapes can deal with outliers which are points which are not 

connected to any of the generated polylines. However, the Alpha 

shapes algorithm does not work well with varying densities in the 

cluster. Melkemi et al. [10] introduced the A-shapes algorithm 

with the aim of curing the limits of Alpha shapes in dealing with 

varying densities. This method applies a different parameter for 

each region in the dataset whereas Alpha shapes algorithm uses 

the same parameter for the whole dataset. However, a different set 

of points outside the original point set needs to be available when 

this approach is used and this algorithm does not always create 

simple polygons.  

A. Ray Chaudhuri et al. [8] introduce s-shapes and r-shapes; the 

proposed algorithm firstly generates a staircase like shape called 

s-shape, which is determined using an s parameter and then 

reduces it to a smoother shape using the r parameter. The 

algorithm can cope well with varying densities in the point set. 

However, there is no easy way to estimate a good r parameter; the 

authors state that “to get a perceptually acceptable shape, a 

suitable value of r should be chosen, and there is no closed form 

solution to this problem”. 

A commercial algorithm, called Concave Hull [9], generates 

polygons by using a method that is similar to the “gift-wrapping 

algorithm” [14] used for generating convex hulls. It employs a k- 

nearest neighbors approach to find the next point in the polygon 

and creates a simple connected polygon unless the smoothness 

parameter k is too large and the points are not collinear.  

A density-based clustering algorithm, DContour [11] is the only 

algorithm which is known to use density contouring for 

generating polygonal boundaries of a point set. DContour uses 

Gaussian Kernel density estimation techniques to derive a density 

function and then applies contouring algorithms to create 

polygons from the generated non-parametric density function.  

However, when using this approach selecting the kernel width 

parameter for the density estimation approach is non-trivial; 

moreover, the approach does not work well in presence of varying 

densities in the dataset. 

Table 1. Capabilities of each algorithm 

Capability: 1 2 3 4 5 6 

Convex Hull No No No Yes Yes Yes 

Voronoi No No No Yes No Yes 

Characteristic 

shapes 
No No No Yes Yes Yes 

Alpha shapes Yes No Yes No Yes No 

s-shapes Yes Yes Yes No Yes No 

Concave hull No No No Yes Yes Yes* 

DContour Yes No Yes No Yes No 

A-shapes Yes Yes Yes Yes No No 

1: Can cope with outliers 

2: Can cope with varying densities in a cluster 

3: Can cope with separate regions 

4: Has easy to select parameters or no parameters required 

5: Does not require a separate set of points outside the cluster 

6: Creates simple polygons 

*unless the points are collinear 

 

Table 1 summarizes the capabilities of each algorithm. Following 

items are the most common problems with these algorithms: 

 Most of the algorithms cannot cope with varying densities  

 Many of the algorithms cannot cope with outliers 

 Many of the algorithms cannot cope with separate regions in 

a cluster 

 Some algorithms require a different set of points to be 

declared outside the cluster, which is not always available  

 Parameter selection is difficult for some algorithms 

In the next section, we will introduce a comprehensive three-step 

methodology that deals with all six requirements.  

4. METHODOLOGY 
In this section, we propose a three-step methodology that 

addresses the shortcomings of the existing polygon generating 

algorithms, and improve the overall quality of the generated 

polygons.   

4.1 Pre-processing 
The pre-processing step deals with the following two tasks: 

i. Outliers should be detected and removed before 

generating clusters, so that large empty areas inside 

polygons can be avoided. 

ii. Well-separated regions inside clusters should be 

identified. This step will decrease the amount of empty 

areas that are not relevant to the cluster. 

We will consider clustering algorithms for pre-processing since 

clustering is a natural solution for problems involving (i) and (ii). 

We reviewed the suitability of existing clustering algorithms for 

the preprocessing step, based on the following requirements:  



 It should be easily automated, that is, its parameters should 

easily be understood and selected or it should require no 

parameters at all. 

 It should be able to cope with varying densities in the cluster.  

 It should be able to detect regions of arbitrary shape.  

Considering the above requirements, we can eliminate many of 

the clustering algorithms such as representative-based clustering 

algorithms (K-MEANS, PAM), which cannot detect regions of 

non-convex shapes and are sensitive to outliers. Density-based 

clustering algorithms such as DBSCAN, CLIQUE, and 

DENCLUE can find clusters of having non-convex shapes, but 

cannot cope with varying densities and high dimensional data. 

Graph-based algorithms like Jarvis Patrick (JP) [12] clustering can 

cope with varying densities but it cannot cope with some datasets 

if there is a bridge between clusters as demonstrated by [2].  

We reviewed several clustering algorithms for the pre-processing 

task and selected SNN [2] and AutoClust [13] for this task (more 

details about the selection process can be found in [16]). In the 

remainder, of this section we give a little more details about the 

algorithms and why they were selected.  

4.1.1 SNN 
SNN (Shared Nearest Neighbors) [2] is a density-based clustering 

algorithm which assesses the similarity between two points using 

the number of nearest neighbors that they share. SNN clusters 

data as DBSCAN does, except that the number of shared k 

neighbors is used to access the similarity instead of the Euclidean 

distance. This allows the algorithm to deal with varying densities. 

Similar to DBSCAN, SNN is able to find clusters of different 

sizes, shapes, and can cope with noise in the dataset. Moreover, 

SNN copes better with high-dimensional data. 

4.1.2 AutoClust 
AutoClust [13] is a graph-based clustering algorithm, which 

makes use of Delaunay triangulation to cluster two-dimensional 

datasets. AutoClust does not require any parameters. Parameter 

values are revealed from the proximity structures of the Delaunay 

triangulation. Multiple bridges between clusters are detected and 

removed by using a 3-step algorithm that classifies edges in each 

step according to the statistical features of edges. AutoClust can 

identify clusters of differing densities even in presence of outliers 

and bridges between the clusters. 

Authors argue that border points between clusters have a larger 

standard deviation of edge lengths in Delaunay triangulation 

compared to the points inside the cluster since border points have 

both long edges connecting them to the points in a different 

cluster and short edges connecting them to the points inside the 

cluster. By using the standard deviation of edge lengths connected 

to points, border points and inner cluster points are identified.  

We propose using AutoClust when there is no previous 

knowledge of the dataset, as it has no parameters. On the other 

hand, SNN can be tuned according to the analysis task (amount of 

noise, nearest neighbor size can be set) when previous knowledge 

of the dataset is available as it has parameters to control the 

clustering process. Fortunately, the parameters are easy to 

understand and we were able to propose parameter selection 

procedure that works well with most spatial clusters, allowing to 

automate the pre-processing step.  

4.2 Generating Polygons 
The pre-processing step removes outliers and partitions clusters 

into well-separated subregions; therefore, the next step of the 

methodology, the polygon generation step is concerned with 

fitting a single polygon to a single point cloud. Figure 3 depicts 

three polygons that were created for the same cluster.  

 

Figure 3. Three different polygons generated for a cluster 

The generated polygon in Figure 3a covers the largest area, and 

has the smallest perimeter, the least number of edges and the 

smoothest shape. However, it is obviously not a good model for 

the cluster because it includes large empty areas that are not 

relevant to the cluster. On the other hand, the polygon in Figure 

3b has the largest perimeter, the most number of edges and covers 

the smallest area. Yet, it is also not a good representation for the 

cluster due to its ruggedness, as the polygon is quite complex. 

Additionally, this polygon has a potential overfitting problem as it 

is quite complex and therefore more sensitive to noise. Although 

this polygon does not have large empty areas, it has too many 

cavities which result in too many edges and sharp angles. If we 

use this polygon as the model for the cluster, having so many 

edges will make the model less efficient in terms of storage and 

processing costs. If we use the polygon model for clustering new 

samples, a new sample inside the cavities may not be assigned to 

this cluster although the sample is in the middle of many of the 

samples belonging to the cluster. 

The polygon in Figure 2c, on the other hand, balances the two 

objectives as it does not include large empty areas and has a low 

degree of ruggedness. In the following, a polygon generation 

framework will be introduced which fits a polygon P to a set of 

spatial objects D minimizing the two objectives, we introduced 

earlier; namely, generating smooth polygons that have a low 

emptiness with respect to D and a low complexity. Additionally, 

we require that all objects in D are inside the polygon P. More 

formally, we define the problem of fitting a polygon P to a set of 

spatial objects as follows: 

Let D be a set of spatial objects. Our goal is to find a polygon P 

that minimizes the following fitness function: 

  (P,D)= Emptiness(P,D) + C * Complexity(P) (1) 

subject to the following constraint: 

oD: inside(o,P)                                                       (2) 

where C is a parameter which assesses the relative importance of 

polygon complexity with respect to polygon emptiness; e.g. if we 

assign a large value of C, smooth polygons will be preferred. 



Emptiness(P,D) is a quantitative emptiness measure that assesses 

the degree to which P contains empty regions with respect to D. 

Complexity(P) measures the complexity of polygon P. 

 

In the following, we first introduce our novel emptiness measure. 

We then describe a polygon complexity measure that has been 

defined by some other work [15] which will be reused in our 

work; finally, we introduce different methods that fit polygons P 

to D, solving the optimization problem described in Eq. (1).  

4.2.1 Measuring the Emptiness of P with respect to D 
We have a surface, and we like to measure the emptiness in a 

surface with respect to spatial objects embedded into it. We call a 

subspace of the surface empty, if the density of the objects that are 

inside the subspace is low (typically, below a user-defined 

threshold). In general, we measure emptiness by computing the 

sum of the volumes/areas of the empty subspaces inside the 

surface over the volume/area of the surface itself.  

In this particular work, we are interested in measuring the 

emptiness of polygonal surfaces with respect to a set of spatial 

objects D; moreover, we assume that all objects in D are located 

inside the polygon P. Several approaches can be envisioned to 

approach this problem. One approach is to design a non-

parametric density function based on the objects belonging to D, 

and then, relying on a contouring algorithm, we can identify all 

contiguous regions inside P that are empty; that is, whose density 

is below a threshold ; next, we can measure emptiness by 

computing the sum of the areas occupied by empty regions over 

the area of the polygons P; more formally: 

(P,D)=(rP: contiguous(r)  empty(r) area(r))/area(P) 

 
Figure 4: Delaunay Triangulation of a Point Cloud 

However, in this paper we use a different approach, which is 

based on Delaunay triangulations; in general, as can be seen in 

Fig. 4, areas with very low density can be identified by large 

triangles in the Delaunay triangulation; that is, triangles whose 

area is above a certain size ; for example, if we use the average 

triangle size in DT(D) as the threshold, the area of the large 

triangle on the upper right would be identified as an empty area. 

We introduce an emptiness measure which assesses the emptiness 

of a polygon P with respect to a point cloud D. Let:  

P be a polygon whose emptiness has to be assessed, 

D a set of points in 2D that P is supposed to model, 

DT(D) the set of triangles of the Delaunay triangulation of D, 

 be the triangle area threshold, 

PCONV=(tDT(D) t) be the outer polygon of the DT(D); PCONV  acts 

as the surface into which the objects of D are embedded and it is 

also the convex hull of D.  

Our definition of emptiness of a polygon P with respect to a point 

cloud D is as follows: 

 

Emptiness(P,D):= (tDT(D)area(t)>^inside(t,P)  area(t)-))/area(PCONV)       (3) 

When assessing emptiness of P with respect to D, we go through 

the triangles inside P and add the differences between  and the 

area they cover, but only if the size of their area is above , and 

divide this sum by the area of the convex hull of D; be aware that 

pCONV is not the area P covers, but a usually larger polygon which 

is the union of all triangles of Delaunay triangulation which serves 

as the surface into which the object of D are embedded in. It 

should be noted that when measuring emptiness triangles that are 

not part of P trivially do not contribute to emptiness. 

 

4.2.2 Measuring Polygon Complexity 
We assess the complexity of polygons using the polygon 

complexity measure which was introduced by Brinkhoff et al. 

[15]; it defines the complexity of a polygon P as follows: 

Complexity(P) := 0.8 * ampl(P) * freq(P) + 0.2 * conv(P)  (4) 

where ampl(P) is amplitude of vibration defined as:  

ampl(P) := 1 – ( boundary(convexhull(P)) / boundary(P) ) 

 

and freq(P) is the frequency of vibration of a polygon p: 

freq(P) := 16 * (notchesnorm(P)-0.5)4 – 8 * 

(notchesnorm(P)0.5)2
 + 1 

where  notchesnorm(P) := notches(P) / (vertices(P)-3) 

and a notch is defined as a vertex with an interior angle greater 

than 180 degrees. Lastly, convexity of a polygon P is defined as: 

conv(P) := 1 – ( area(P) / area(convexhull(P)) ) 

According to this definition, polygons with too many notches, 

having significantly smaller areas and larger perimeters compared 

to their convex hulls are considered complex polygons. Most 

importantly, it is a suitable measure to assess the ruggedness of a 

polygon model generated. 

Figure 5 depicts the change of emptiness and complexity of the 

polygons generated using the Characteristic shapes algorithm for 

the cluster in Figure 3 using different chi parameters. Emptiness 

was computed by setting triangle area threshold  to 1.25 times 

the average triangle area in DT(D). 

 

Figure 5. Change of emptiness and complexity of polygons 

created for the same cluster using different parameters 
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As seen in Figure 5, emptiness and complexity of the polygons are 

inversely proportional. Larger chi parameters create polygons 

which are emptier but less complex and vice versa. We employ 

objective fitness function defined in (1) to find a balance between 

the two measures. 

4.2.3 A Second Polygon Fitness Function 
In this section, we introduce an alternative fitness function which 

balances the area and the perimeter of the generated polygon. 

Figure 6 shows the area and perimeter for different polygons 

created for the same cluster using the Characteristic shapes 

algorithm while changing the chi parameter of the algorithm. 

 

Figure 6. Change of area and perimeter of polygons created 

for the same cluster using different parameters. 

As depicted in the Figure 6, increasing the chi parameter creates 

polygons with larger areas and smaller perimeters. In order to find 

a balance between area and perimeter, we postulated that a good 

fitness function should be in the following form: 

 ( )       ( )             ( )   

The polygon minimizing  (P) will be considered as the fittest 

polygon. We have tested many different polygon fitness functions 

on a large benchmark of spatial clusters in this research; analyzing 

the results of this study, setting =1 and =2 proved to be the 

most effective, leading to:  

   ( )       ( )            ( )  (5) 

We claim that the fitness function   provides a good default 

setting also for balancing polygon emptiness and complexity. 

However, if application requires producing very smooth polygons 

or very tight polygons, we recommend using the fitness function  

with very large C values or very small C values, respectively.  

4.2.4 Generating Polygons  

At the moment, we use Characteristic shapes to generate polygons 

in conjunction with the two fitness functions in our methodology 

as this produces decent polygon models. The algorithm itself has a 

normalized parameter chi which has to be set to an integer value 

between 1 and 100. In order to find the value of chi which 

minimizes the employed fitness function (either  (P) or (P,D)) 

we exhaustively test all 100 chi values, and return the most fit 

polygon as the result. Runtime complexity of the Characteristics 

shape algorithm is O(n*log(n)). Thus, our methodology is 

guaranteed to generate the fittest polygon in O(n*log(n)) as we 

exhaustively test 100 parameter values.  

4.3 Post-processing 
In this section, we will discuss how to tune the generated 

polygons to make them smoother. While polygon generation step 

of the proposed methodology generates polygons that are 

representative of the clusters, it is possible that: 

1) some of the polygons generated for a spatial cluster 

might overlap.  

2) polygons may have edges that do add very little value to 

the model, such as: 

a. successive edges which are almost-parallel to 

each other  

b. very short edges  

In order to decrease the complexity of the generated polygons, we 

will post process the polygons in the following order: 

1. Merge overlapping polygons in a cluster  

2. Merge successive edges which are almost parallel and 

remove very short edges  

4.3.1 Merging Polygons 
Polygons are merged by creating a new polygon which is the 

union of all overlapping polygons. Figure 7 shows a polygon 

merge operation: 

  

(a) Two overlapping polygons  (b) A new polygon which is the 
union of 2 overlapping polygons 

 Figure 7: Merging polygons 

In Figure 7a, two polygons generated for the two subregions are 

shown. These polygons overlap and therefore they were merged 

obtaining a larger polygon (Figure 7b).  

4.3.2 Merging almost-parallel successive edges 
We define almost-parallel edges as two successive edges in a 

polygon which have less than a threshold degree of deviation from 

one edge to another. Based on experiments, we found that setting 

this threshold value to 15 degrees gives the best results. Figure 5 

shows three edges in a polygon where AB and BC are almost-

parallel edges. The edge BC is deviating less than 15 degrees from 

edge AB, thus it can be merged with AB without changing the 

generated shape significantly. While merging two edges, the 

connecting point of the two edges is removed (point B) from the 

polygon and remaining end points of the two edges (points A and 

C) are connected.  

 

Figure 8: Merging almost-parallel edges 
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Figure 9 describes the steps of the algorithm for merging two 

almost-parallel edges:  

foreach edge e(i) connecting points i and  i+1 in the polygon 

Calculate how much edge e(i+1) deviates from e(i) 

If deviation is less than Θ degrees 

Merge these edges by connecting points i an i+2 

Increase i by 1 to skip next point 

Figure 9. Pseudocode for merging two almost-parallel edges 

As shown in Figure 9, once a point is removed, we increase the 

counter i to skip the next edge in the polygon to avoid topological 

errors. 

4.3.3 Removing short edges 
We define short edges to have a length that is less than a threshold 

edge length. By default, we set this threshold value to 20% of the 

average edge length. Figure 10 shows three edges in a polygon 

and how to remove edges that are very short compared to other 

edges: 

 
Figure 10. Removing short edges 

Edge BC is too short; therefore it was removed from the polygon. 

Removing the short edge does not change the shape significantly. 

This process is similar to merging two almost-parallel edges, the 

connecting point of the short edge and the previous edge (point B) 

is removed and remaining end points of the two edges (points A 

and C) are connected.  

5. EXPERIMENTAL EVALUATION 
To evaluate our methodology, we created an artificial cluster 

which contains some outliers that consists of 4 separated regions 

which vary in density. The spatial cluster is depicted in Figure 11.  

 
Figure 11. Artificial cluster used in the first experiment. 

Figure 12 depicts a polygon that has been created using the 

Characteristic shapes algorithm without using any pre-processing. 

As can be seen, the generated polygon contain large empty spaces, 

and the polygons obtained for other chi values were equally bad, 

as Characteristic shapes creates a single polygon that contains all 

the points of the spatial  cluster. 

 
Figure 12. Polygon created by the Characteristic shapes 

algorithm without pre-processing 

5.1 Step 1: Pre-processing 
When we ran SSN and AutoClust on the cluster, both algorithms 

were able to detect subregions and eliminate outliers successfully. 

Figure 13 depicts the subregions detected by both algorithms.  

 

Figure 13. Pre-processing result for the cluster in Figure 11 

We experimentally found that when using SNN setting the nearest 

neighbors size parameter to 8 gave best results with most datasets. 

SNN was able to deal with clusters of varying densities, shapes 

and outliers successfully with the default parameter setting. 

When we used AutoClust algorithm, we obtained the same result;   

AutoClust does not have any parameters, yet it works very well on 

clusters of varying densities, and shapes in presence of noise.  

5.2 Step 2: Polygon Generation 
After detecting the 4 subregions, we generated a polygon for each 

subregion in the cluster using the Characteristic shapes algorithm 

in conjunction with fitness function   to select the chi-parameter 

values for each cluster.   

The fittest polygons with respect to fitness function   were 

obtained at chi=43 for subregion 1, chi=24 for subregion 2, 

chi=21 for subregion 3, and chi=20 for subregion 4. Figure 14 

depicts the generated polygons for each subregion; as can be seen 

the proposed methodology worked very well on all of the 

subregions and created a representative polygon for each. 

 



 

Figure 14: Polygons generated by Characteristic shapes using 

fitness function  . 

Table 2. Properties of each polygon in Figure 14 

 Area Perimeter Emptiness Complexity 

P1 4355 277 0.145 0.203 

P2 13007 727 0.108 0.1 

P3 6585 511 0.091 0.124 

P4 12212 679 0.107 0.084 

 

Next, to illustrate the benefits of the two fitness functions and 

their underlying measures, we quantitatively compare the 

polygons in Figure 14 with polygons that have been obtained by 

running Characteristic shape with chi=10 (Figure 15) and chi=80 

(Figure 16). Tables 2, 3, and 4 report the complexity, emptiness, 

perimeter, and area of each polygon in Figures 14, 15, and 16, 

respectively. For the emptiness calculation, we set  to 1.25 times 

the average area of the triangles in DT(D).  

 

Figure 15. Generated polygons for chi=10 

Table 3. Properties of each polygon in Figure 15 

 Area Perimeter Emptiness Complexity 

P1 2505 498 0.08 0.464 

P2 9528 866 0.093 0.258 

P3 4547 634 0.052 0.289 

P4 11478 706 0.107 0.122 

 

 

Figure 16. Generated polygons for chi=80 

Table 4. Properties of each polygon in Figure 16 

 Area Perimeter Emptiness Complexity 

P1 4696 268 0.162 0.015 

P2 16890 687 0.157 0.012 

P3 9661 479 0.168 0.016 

P4 15839 645 0.147 0.001 

 

For chi=10, the generated polygons are very tight for subregions 

1, 2 and 3, whereas for chi=80 the generated polygons are very 

large for subregions 2, 3 and 4. It can also be seen as the chi-

parameter value increases polygon complexity decreases, whereas 

polygon emptiness increases; for example, for the polygon created 

for the second area its emptiness increases from 0.093 to 0.108 to 

0.157, whereas the polygon complexity decreases from 0.464 to 

0.258 to 0.012.  It also can be observed that the polygon for 

chi=10 is much more complex than the polygon selected by 

fitness function  , but this significant increase in polygon 

complexity did not lead to a significant reduction in polygon 

emptiness which just dropped from 0.108 to 0.093.  Finally, for 

each of the four subregions a different value for parameter chi was 

optimal, which motivates the need to use fitness functions to 

guide parameter selection. 

We also created polygons using the fitness function  defined in 

equation 1 with the same dataset by setting C2 to 0.35 and 

obtained the polygons shown in Figure 17: 

                                                                 

2 Due to space limitations we will not report results for other C 

values, and also do not analyze the results in more detail; 

however, they have been reported at [18]. 



 

Figure 17. Polygons generating using fitness function  

By increasing/decreasing the C parameter less/more complex 

polygons can be created depending on application needs. In 

general, using   as the fitness function provides for more control 

over the polygons created. 

5.3 Step 3: Post-processing 
Although, the generated polygons in Figure 14 are good 

representatives of each region, they can be made smoother by 

applying the post-processing algorithms defined in our 

methodology. None of the polygons overlap, so we will not apply 

the polygon-merge operation. Besides, there are no very short 

edges in these polygons. However, there are some almost-parallel 

edges in polygons and when we merge those edges, we get the 

polygons depicted in Figure 18: 

 

Figure 18. Polygons after post-processing 

It is hard to see the difference visually, however the total number 

of edges in the polygon model decreased from 68 to 55. In more 

complex polygons with hundreds of edges, the change is more 

significant.  

5.4 Experiments on the Complex 8 dataset 
We tested our methodology on Complex 8 dataset. The clusters 

and generated polygons which were obtained by using fitness 

function   are shown in Figure 19a. We applied our post-

processing algorithms on these polygons. Polygons after the post-

processing step are shown in Figure 19b. When we merged the 

almost-parallel edges, the total numbers of edges for all polygons 

decreased from 376 to 258 which correspond to a 31% decrease. 

Yet, the polygons are almost same, none of the polygons’ area 

changed more than 1%. On the other hand, only 1 or 2 short edges 

were removed in each polygon.  

 
(a) Complex 8 dataset clusters and generated polygons 

 
(b) Polygons after post-processing 

Figure 19. Complex 8 dataset results 

In this section, we tested each step of our methodology and we 

observed that the proposed pre-processing algorithms were 

effective at detecting subregions and for removing outliers. We 

verified that pre-processing step is essential for generating 

acceptable polygon models. In polygon-generating step, we used a 

novel fitness function and generated very good polygon models. 

We also demonstrated the use of measuring emptiness, 

complexity, perimeter, and area of a polygon, to assess its quality 

to serve as a polygon model. Our post-processing functions 

proved to be effective at smoothing and simplifying the polygons 

without affecting their shapes significantly.  

6. CONCLUSION 
In this paper, we proposed a three-step comprehensive 

methodology for creating smooth simple polygons for spatial 

clusters. Our methodology employs pre-processing algorithms to 

remove outliers and detect subregions in a cluster. The Pre-

processing step ensures that the generated polygons in the second 

step of the methodology are good representatives of the cluster. 

We employ two different clustering algorithms for pre-processing, 

AutoClust and SNN.  

 

As popular polygon model generation algorithms have input 

parameters that are difficult to select, we introduced two novel 

fitness functions to automate parameter selection. We are not 

aware of any other work that uses this approach. The first fitness 

function balances the complexity of the polygon generated and the 

degree the polygon contains empty areas with respect to a point 

set D. The second fitness function seeks to find the “optimal” 

balance between the area and perimeter of the polygon generated.  

The methodology uses the Characteristic shape algorithm in 

conjunction with those two fitness functions. We also claim that 



the proposed fitness functions can be used in conjunction with 

other polygon generating algorithms, such as the concave hull 

algorithms in R and in PostGIS.   

 

We also proposed novel post-processing algorithms that merge 

overlapping polygons and make the generated polygons smoother. 

The complexity of the generated polygon models decrease 

dramatically as a result of our post-processing methods, yet the 

shapes of the polygons are not affected significantly.  

 

Each step of the methodology was tested with different datasets 

and our methodology proved to be effective at creating desired 

polygon models. SNN and AutoClust successfully detected 

subregions and removed outliers automatically. When used with 

our polygon fitness functions, the Characteristic shapes algorithm 

generated very accurate polygon models on the pre-processed 

clusters. Lastly, post-processing step simplified the generated 

polygon models quite significantly. 

 

As a future work, we plan to extend our methodology to allow for 

holes in polygons.  We also plan to generalize our fitness 

functions to be used in conjunction with other existing polygon 

generating algorithms. 
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