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Abstract. The issue of detecting optimal split points for linear regression trees is 
examined. A novel approach called Turning Point Regression Tree Induction 
(TPRTI) is proposed which uses turning points to identify the best split points. 
When this approach is used, first, a general trend is derived from the original 
dataset by dividing the dataset into subsets using a sliding window approach 
and a centroid for each subset is computed. Second, using those centroids, a set 
of turning points is identified, indicating points in the input space in which the 
regression function, associated with neighboring subsets, changes direction. 
Third, the turning points are then used as input to a novel linear regression tree 
induction algorithm as potential split points. TPRTI is compared in a set of ex-
periments using artificial and real world data sets with state-of-the-art regres-
sion tree approaches, such as M5. The experimental results indicate that TPRTI 
has a high predictive accuracy and induces less complex trees than competing 
approaches, while still being scalable to cope with larger datasets. 

Keywords: Prediction, Linear Regression Tree, Model Tree, Turning Point De-
tection 

1 INTRODUCTION 

Regression trees are widely used machine learning techniques for numerical pre-
diction. Among the regression trees, we may distinguish those that associate a con-
stant to each leaf node, for instance CART [2], and those that fit a less trivial model to 
each leaf node. Among the latter, we further distinguish a class of regression trees that 
fit a linear model to each leaf node, such as linear regression trees.  Linear regression 
tree induction has been intensely researched. One of the first approach, M5[12], in-
duces the tree using a CART-like splitting decision which is a binary split based on 
mean values and uses constant regression functions in the nodes; the attribute that best 
reduces the variance in the nodes is chosen for the split, and its mean value is selected 
as the split value. After the tree is fully developed M5 fits a linear model to each leaf-
node during pruning phase. This splitting method is also used by many regression 
approaches which associate non-constant models with the leaf-nodes. However, in 
conjunction with non-constant regression models, using mean values of attributes as 



split points and using variance reduction as an objective function does not necessarily 
obtain the best model [7]. 
 

To address this issue Karalic proposed RETIS [7] which fits a linear model in each 
node and uses minimization of the residual sum of squared errors (RSS) instead of the 
variance as splitting function. However, although the approach yields significantly 
better accuracy and smaller regression trees than M5 [12], it has been labeled “intrac-
table” because to find the best pair {split attribute/split value} all potential split values 
for each input attribute need be evaluated, making this approach too expensive even 
for medium-sized datasets. Therefore, many more scalable algorithms for inducing 
linear regression trees have been proposed [1, 6, 7, 11, 12, 15, 5, 17] which rely on 
heuristics, sampling, approximations, and different node evaluation functions to re-
duce the computational cost of the RETIS algorithm.  

 
Detecting turning points which indicate locations where the general trend changes 

direction can be useful in many applications. In this paper, we propose a new ap-
proach for Linear Regression Tree construction called Turning Point Regression Tree 
Induction (TPRTI) that infuses turning points into a regression tree induction algo-
rithm to achieve improved scalability while maintaining accuracy and low model 
complexity. TPRTI induces decision trees using the following procedure. First, a 
general trend is derived from the dataset by dividing the dataset into a sequence of 
subsets of equal size using a sliding window, and by associating a centroid with each 
subset. Second, using those centroids, a set of turning points is identified, indicating 
points in the input space in which the piecewise linear function associated with neigh-
boring subsets changes direction. Finally, the identified turning points are used in two 
novel top down linear regression tree induction algorithms as potential split points. 
The two algorithms which are called TPRTI-A and TPRTI-B are discussed in section 
2. 

 
Figure 1 illustrates our proposed approach to detecting turning points. The input da-
taset is shown in panel (A). In panel (B) the dataset is sorted by the input attribute and 
divided into subsets of equal size using a sliding window approach. In panel (C) the 
general trend in the dataset is derived by connecting the centroids of neighboring 
subsets, obtaining a piecewise linear function. Finally in panel (D), points m1 and m3 
are selected as turning points as they exhibit sharp turns in the piecewise linear func-
tion. The selected turning points are later fed to a linear regression tree algorithm as 
potential split points. Algorithm 1 gives the pseudo code of turning point detection 
algorithm.    
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16    Determine general trends by computing the centroids of 
each subset and connect them to obtain piecewise linear 
functions 

17    Identify turning points by analyzing the angle θ between 
neighboring subsets of the piecewise linear function 

18  Output the set of turning points 

The main contributions of the paper include: 

1. A novel approach for turning point detection which relies on window sub-setting is 
introduced. 

2. Two novel linear regression tree induction algorithms called TPRTI-A and TPRTI-
B which incorporate turning points into the node evaluation are introduced. 

3. State of the art linear regression tree algorithms are compared with each other and 
with TPRTI-A and TPRTI-B for a challenging benchmark involving 12 datasets. 

4. The experimental results indicate that TPRTI is a scalable algorithm that is capable 
of obtaining a high predictive accuracy using smaller decision trees than other ap-
proaches. 

The rest of the paper is organized as follows.  Section 2 contains the description of 
our proposed methods for linear regression trees. In section 3 we show results of ex-
perimental study and we conclude in Section 4. 

Table 1. Notation used in the remaining of the paper 

K 
User defined overlapping parameter characterizing the number of examples pertaining to two consecutive 

subsets.  

S  Size of each subset 

θ Angle at a centroid  

β  User-defined threshold angle such that if cosθ  < cosβ then the centroid with angle θ is a turning point 

StpXY Set of turning points in the XY-plane  

Stp  Union of all StpXY (for all planes) 

Stp_left Turning Points set for left sub-node such that Stp=Stp_left U Stp_right 

Stp_right Turning Point set for right sub-node such that Stp=Stp_left U Stp_right 

RSS Residual Sum of Squared errors 

 

2 THE TPRTI APPROACH 

Linear regression algorithms can be divided into three groups: The first group fits a 
constant regression model to each intermediate node. M5 [12] is an example of this 
approach. The second group fits a more complex regression model to each node; usu-
ally at least a model is needed per input attribute. RETIS [7] is one such example 
since it fits multiple regression models per input attribute; one regression model for 
each distinct value of each input attribute. The third group uses linear regression 
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As pointed out earlier, many second group approaches like RETIS yield more ac-
curate, and shorter linear regression trees but do not scale well to large dataset.  Like-
wise the third group approaches resolve the scalability issue of RETIS but at a cost to 
accuracy and/or model complexity. 

 
In this paper we use the term “look-ahead RSS” to mean the following: First, the 

dataset associated with current node is split into two sub-sets; one pertaining to each 
sub-node. Second, each sub-node is fitted with a linear regression model and the Re-
sidual Sum of Squared errors (RSS) are computed for both nodes. Next, a weighted 
sum of both RSS is computed. This is done for all potential split pairs {attribute vari-
able, attribute value} available. One such split is retained and the rest discarded. 
Likewise, we use the term “split point” to designate the pair {split attribute, split at-
tribute value}. We also use it to refer to the actual point in the plane, or point in the 
input space. When used as a point in a plane it refers to the pair (xq ,y) where xq is one 
of the input variables, q ∈ {1,..p}. When used to mean a point in the input space, it 
refers to a tuple; (x,y) where x is an input vector (x1, ..xp) and y the associate re-
sponse. Key notations used in the remaining of the paper are provided in table1. Algo-
rithm1 presents the turning point detection approach. We provide next, in section 2.2 
detailed description of how turning points are computed. 

2.2 Centroids and turning points computation  

First, a general trend is derived from the dataset by sorting the examples based on 
the input attributes, by dividing the dataset into subsets of equal size using a sliding 
window, and by associating a centroid with each subset. Second, using those cen-
troids, a set of turning points is identified, indicating points in the input space in 
which the piecewise linear function—which was obtained by connecting centroids of 
neighboring subsets—significantly changes direction. 

 
The input attributes to the algorithm are real valued attributes that are either dis-

crete or continuous. Lines 8, 9, and 10 in algorithm 1 project the dataset onto the p 
xky-planes (k=1,..,p). For the remaining of the lines, line 11 to 17 we consider one 
plane at a time. Line 10 ensures that the dataset associated with the plane is sorted 
with respect to the input attribute. Lines 11, 12, and 13 treat the case of discrete at-
tributes. First, the algorithm queries the distinct values of the discrete attribute. It then 
computes the centroids for each attribute. Next, each centroid is labeled turning point.  

Lines 14 to 17 treat the case where the input attribute is continuous. There are three 
user-defined parameters K, S, β that need to be set. Let assume that a centroid has 
angle θ.  β is a user-defined angle such that if cosߠ < cos ߚ then the centroid is a turn-
ing point. K is the overlapping parameter characterizing the number of examples per-
taining to two consecutive subsets. S is the size of each subset. In line 15 subsets of 
equal size S are created using the sorted dataset as follows: S0 is composed of the first 
S examples. At any given step i, (i>0), the examples in subset Si are determined by 
dropping the first K examples in Si-1 and by adding the next K new examples. When 



 

K=S, the subsets are disjoint. When 0<K< S the subsets overlap. In line 17 turning 
points are computed for each plane by analyzing the angle at each centroid.  

2.3 Node Evaluation 

We introduce TPRTI-A, which is a mixture of first group and second group ap-
proach in that its node evaluation avoids exhaustive search by evaluating only a sup-
plied list of turning points. We also introduce TPRTI-B which is a mixture of all 3 
groups in that it uses a two-step node evaluation. It avoids exhaustive search by eval-
uating only a supplied set of turning points. It first fits a model to current node, and 
uses a simple evaluation function which is the distance of each turning point to the 
fitted model, to select the turning point which distance is the largest. TPRTI-A and 
TPRTI-B differ by their node evaluation function. They both use as input, a set of 
predetermined turning points. 
 
2.3.1 Node evaluation for TPRTI-A 
The first approach, TPRTI-A, evaluates all turning points by a look-ahead strategy 
and selects the one that yields the minimum RSS.  

Algorithm 2: Node evaluation for TPRTI-A  
1 Inputs  
2  StpXY: Set of turning points in the XY-plane 
3  Stp: Union of all StpXY (for all planes) 
4  TPXY(x,y): Turning point in the XY-plane with  
  coordinate (x,y) 
5  If stopping criteria is reached then 
6    Return 
7  For each StpXY in Stp  
8   For each TPXY(x,y)in StpXY  

9     Split data in SLeft and Sright   
10   Compute look-ahead weighted RSS 
11 Select the turning point (x•,y•)that minimizes 
  Weighted RSS for the split  
12 Split Stp into Left_Stp, and Right_Stp based on x•  

2.3.2 Node evaluation for TPRTI-B  
The second approach, TPRTI-B, is a multi-step evaluation approach. With this ap-
proach, first the current node is fitted with a model and the distances of the turning 
points (actual tuples) to the fitted model are computed. The turning point for which 
the distance to the model is the largest is selected as split point. Next, each coordinate 
(value of input attributes) of the split point needs be evaluated by a look-ahead RSS 
minimization method to determine the best pair {split variable, split value}. That is, in 
contrast to TPRTI-A, only a single split value per input attribute and not a set of split 
values is considered; reducing runtime complexity. Figure 3 illustrates the general 
idea. In figure 3, the dotted line represents a linear model F fitted to current node. In 
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to evaluate a node is O(p2Nt). If TPRTI-B is used the distance of each turning point in 
the data space to the fitted curve cost  O(p) which leads to O(pt) for the t turning 
points. O(p2N) is needed to evaluate each of the p input attribute, and O(p2N) is as 
well needed to fit a model to current node; obtaining: O(pt+p2N+Np3) =O(p2N(p+1)) . 
With M5, the split point is the mean point of each p variable. Hence, t=p obtaining 
O(p3N); In the worst case, RETIS will test each value of each variable leading to 
t=pN ; thus O(p3N2). TPRTI-A worse case happens when each centroid is a turning 
point; which leads to t=pm hence O(p3Nm). Table 2 summarizes the runtime com-
plexity of each approach. 

Table 2. Node Runtime complexity of TPRTI in comparison to M5 and RETIS 

 
RETIS TPRTI-A TPRTI-B M5 

Runtime complexity O(p3N2) O(p3Nm) O(p2N(p+1))   O(p3N) 

2.5 Stopping criteria: 

RETIS, M5 and TPRTI share the following stopping criteria 

 The algorithm stops if the number of examples in the node is less than a minimum 
number set by user.  

 The algorithm stops if the subsequent split sub-nodes do not improve the error 
function more than a minimum value set by user. 

 However, TPRTI has an additional stopping condition: The algorithm may termi-
nate if there is no more turning point in the node dataset to evaluate. 

3 EMPIRICAL EVALUATION  

In this section results of extensive experimental study of TPRTI-A and TPRTI-B are 
provided. We compare both algorithms with each other and against the well-known 
M5 [12], SECRET [5], GUIDE [9], and RETIS [7] algorithms in term of accuracy, 
scalability and model complexity. The experimental result published in [5], for 
GUIDE and SECRET, two state-of-the-art scalable linear regression tree induction 
algorithms are used in this study for comparison. The GUIDE and SECRET algo-
rithms were built to be both fast and accurate. Model complexity results for previous-
ly used datasets were not available for comparison. We performed all the experiments 
reported in this paper on a 64-bit PC  i7-2630 CPU at 2Ghz running Windows 7. Da-
tasets and extended version of this paper are available at [19]. 

3.1 Datasets 

Five artificial and 7 real-world datasets were used in the experiments; Table 3 and 
4 give a summary for the 12 datasets. The last column in both tables contains in pa-
renthesis the number of attributes. 



Table 3. Artificial datasets.  

Dataset Description 

 

Number of 

examples 

dataset #1 

 

x1, x2 are the input variables and y the output variable; x1 ∈ R ,x2 ∈ R, y∈ R 

ቐ
ܻ ൌ െ 2 ∗ 1ݔ ݂݅ 0 ൑ 1ݔ ൏ 100 ܽ݊݀ 2ݔ ൌ 0

ܻ	 ൌ െ700 ൅ 5 ∗ 1ݔ ݂݅ 100 ൑ 1ݔ ൏ 200 ܽ݊݀ 2ݔ ൌ 0
ܻ ൌ 300 െ 3 ∗ 2ݔ ݂݅ 0 ൑ 2ݔ ൏ 100 ܽ݊݀ 1ݔ ൌ 200

 

300 (3) 

 

dataset #2 x1 ∈ ሾ0,250ሿ and  x2=0, and y ∈  ܴ 

൜
ݕ ൌ ;1ݔ ݂݅ 0 ൑ 1ݔ ൏ 50

ݕ ൌ 100 െ ;1ݔ ݂݅ 50 ൑ 1ݔ ൏ 250 

2500 (3) 

 

CART 

dataset 

This dataset was found in [2]with 10 predictor attributes:X1 ϵ {−1, 1} with equal probabil-

ity that X1 =1 or X1 = -1; Xi ϵ {−1, 0, 1},  with i ϵ {2 . . . 10}  and the predicted attribute y 

determined by 

൜
ܻ	 ൌ 	3	 ൅ 	3ܺ2	 ൅ 	2ܺ3	 ൅ 1ݔ	݂݅						4ܺ	 ൌ 1
ܻ	 ൌ 	െ3 ൅ 	3ܺ5	 ൅ 	2ܺ6 ൅ ܺ7 ݂݅ ݔ ൌ െ1 

A random noise ߝ  between [-2 and 2] was added to Y 

750 (11) 

 

3DSin 

dataset 

This dataset has two continuous predictor attributes x1, x2 uniformly distributed in interval 

[−3, 3] determined by Y = 3 sin(X1) sin(X2). 

500(3) 

 

Fried 

dataset 

 

This dataset has 10 continuous predictor attributes with independent values uniformly 

distributed in the interval [0, 1] Y = 10 sin(πX1X2) + 20(X3−0.5)2 + 10X4+5X5;A ran-

dom noise ߝ between [-1;1] was added 

700(11) 

 

Table 4. Real world dataset.  

Dataset Description 
Number of examples  

(number of attributes) 

Abalone  
This dataset was obtained from UCI [16] machine learning 
repository.  4177 (8) 

Auto-mpg 
This dataset obtained from UCI [16] repository. Tuples with 
missing data were removed. 392 (8) 

Boston Housing This dataset obtained from UCI[16]  repository  506 (14) 
Kin8nm  This dataset was obtained from the DELVE [4]repository.  8192 (9) 

Normalized Auto-
mpg 

This is the auto-mpg dataset from UCI [16]  repository that has 
been normalized with z-score values 392 (8) 

STOCK 

This dataset is from SatLib[14]. The dataset contains 950 
examples. However, the first tuple was removed because it did 
not appear correctly formatted 949 (10) 

Tecator Dataset This dataset originated from the StatLib [14] repository.  240 (11) 

3.2 Experimental Methodology 

All the experiments were done with a 10-fold cross validation and repeated 10 times 
with different seeds for each run. The average values are reported in table 7 along 
with corresponding standard deviation. Five artificial datasets were used three of 
which were previously used and results for GUIDE and SECRET are available in [5]. 
We also used 7 real world datasets of which 6 were previously used and results for 
GUIDE and SECRET available in [5]. The datasets which have not been previously 
used are dataset#1, dataset#2 and the normalized auto mpg dataset. We implemented 
TPRTI making use of R software [13] libraries. We run M5 using Weka [18]. R and 



 

Weka are publicly available software. Our implementation of RETIS relies on run-
ning TPRTI-A with all input attributes set as discrete attributes.  

3.2.1 Input parameters and stopping rules used for the experiments.  

Table 5. Input and stopping parameters for TPRTI 

  TPRTI-A TPRTI-B 

  Input parameters *Stopping rules Input parameters Stopping rules 

  
Subset 

Size 
cos β 

Min. Node 

Size (in %)

Min. RSS  

imp.  ( in%) 

Subset 

size 
cos β 

Min. Node 

Size (in %) 

Min. RSS imp. 

(in %) 

Dataset #1 3 0.8 10 10 3 0.8 10 10 

Dataset #2 9 0.8 10 10 9 0.8 10 10 

CART 5 0.8 10 10 5 0.8 10 10 

3DSin 4 0.8 10 10 5 0.8 10 10 

Fried 3 0.85 10 10 3 0.85 10 10 

Abalone 55 0.8 10 10 21 0.8 10 10 

Auto mpg 4 0.85 10 10 4 0.85 10 10 

Boston Housing 14 0.8 12 12 14 85 12 12 

Normalized  auto 

mpg (z-score) 
4 0.85 10 10 4 0.85 10 10 

Stock Data 4 0.8 10 10 13 0.85 10 10 

Tecator 8 0.8 10 10 21 0.7 10 10 

Kin8nm 250 0.95 3 1 250 0.95 3 1 

*Stopping rules: The stopping parameters set for TPRTI-A are same parameters 
used for RETIS.  

 
For each dataset, different input parameters and stopping rules were used for 

TPRTI-A, and TPRTI-B. Table 5 summarizes the parameters used for each dataset 
where cosβ is the cosine threshold used to determine the turning points, “Min. Node 
Size” is the minimum required size of a node expressed as 100*(current node 
size)/(initial dataset), and “Min. RSS imp.” is the minimum improvement of the sum 
of the weighted RSS of both sub-nodes required to split a node. It is expressed as 
100*(Parent RSS - weighted sum of children nodes RSS)/Parent RSS. 

The input parameter “Subset Size” is used to subdivide the input data into subsets 
of equal size in order to compute the centroids.  RETIS was run without post pruning.  



3.3 Results 

Accuracy was measured by the MSE (Mean Squared Error). Model Complexity was 
measured by the number of leaf-nodes. However, a bad model may have small num-
ber of leaf-nodes. Thus complexity was slightly redefined as number of times an ap-
proach obtained the combination (best accuracy, fewest leaf-nodes). Both the number 
of leaf-nodes and MSE are provided as μ ± c where μ is the average MSE (or number 
of leaf-node) and c the standard deviation over several runs. Let μ1 ± c1 and μ2 ± c2 be 
two results such that μ1 < μ2. We consider a tie between the two results if μ1 + c1 > μ2. 
Both Accuracy and number of leaf-nodes are reported in table 7 with the number of 
leaf-nodes in parenthesis. The main findings of our study are: 

3.3.1 On Accuracy  

Table 6. Comparison between TPRTI-A, TPRTI-B and state-of-the-art approaches with respect 
to accuracy  

   M5 TPRTI-A TPRTI-B RETIS GUIDE SECRET 

TPRTI-A (6/5/1) - (4/6/2) (4/6/0) (5/1/2) (4/2/2) 

TPRTI-B (4/6/2) (2/6/4) - (3/7/0) (5/1/2) (1/4/3) 

 
TPRTI-A, and TPRTI-B are compared with the approaches in the columns. The 

number in each cell denotes (number of wins/number of ties/number of losses). For 
example, (6/5/1) in the first column of the first row means that TPRTI-A is more ac-
curate than M5 on 6 datasets, ties M5 on 5 datasets and loses on 1 dataset. Overall, 
TPRTI yields comparable result as or slightly better result than RETIS. It has better 
accuracy than GUIDE and SECRET. 

Table 7. Accuracy results 

  M5 RETIS GUIDE SECRET TPRTI-A TPRTI-B 

Dataset #1 
446.8996 ±36.45 

(11±0.00) 
0.000 ±0.0000  

(3±0.00) N.A N.A 
0.089 ±0.0000  

(3±0.00) 
0.089 ±0.0000  

(3±0.00) 

Dataset #2 
4.75 ±0.239 
 (11±0.00) 

0.000 ±0.0000  
(2±0.00) N.A N.A 

0.000 ±0.0000  
(2±0.00) 

0.000 ±0.0000  
(2±0.00) 

CART 
0.0932 ±0.0009  

(2±0.00) 
0.085 ±0.0125  

(4.1±0.32) N.A N.A 
0.07614 ±0.0100  

(4.1±0.32) 
0.098±0.33  
(6.1±0.32) 

3DSin 
0.0015 ±0.0002 

(20±0.00) 
0.01 ±0.0074 

 (4±0.00) 
0.0448 

±0.0018 
0.0384 

±0.0026 
0.0074 ±0.01  

(4±0.00) 
0.0063 ±0.01  

(3±0.00) 

Fried 
4.888 ±0.1536  

(3±0.00) 
4.773 ±0.3893  

(3±0.00) 
1.21 

±0.0000 1.26 ±0.010
3.1114 ±0.80 

 (4±0.00) 
1.4968 ±0.60 
 (6.7±0.48) 

Abalone 
4.6910 ±0.586  

(2±0.00) *N.A 4.63 ±0.04 4.67 ±0.04
4.3806 ±2.71  

(4±0.00) 
4.1527±2.59 
 (5.1±0.45) 

Auto mpg 
8.5073 ±0.3105  

(5±0.00) 
8.8470 ±7.2183  

(3.1±0.32) 
34.92 

±21.92 15.88 ±0.68
7.6021 ±6.33  

(5±0.00) 
8.4493 ±6.39  

(4.6±0.52) 

Boston 
Housing 

28.8397 
±30.8896 
(10±0.00) 

24.569±20.090  
(4.2 ±0.92) 40.63 ±6.63 24.01 ±0.69

16.0922±10.29  
(5.5±0.53) 

19.6237 ±9.24  
(4.8±0.92) 

Normalized 
Auto mpg  
(z-score) 

0.1396 ±0.0051 
 (5±0.00) 

0.1186±0.0895  
(4.0 ±0.00) N.A N.A 

0.1169 ±0.07  
(3.8±0.63) 

0.1342 ±0.09 
 (4.7±0.82) 



 

Stock Data 
1.0389 ±0.1008 

(19±0.00) 
11.977±7.884  

(3.9 ±0.32) 1.49 ±0.09 1.35 ±0.05
0.2067 ±0.10 

 (3±0.47) 
4.8867 ±3.09  

(4.9±0.88) 

Tecator 
9.4513 ±2.9519 

(6±0.00) 
6.6310±6.3036  

(5.4 ±0.51) 13.46 ±0.72 12.08 ±0.53
2.8315 ±1.412  

(3.1 ±0.31) 
7.1266 ±8.20  

(6.4±0.70) 

Kin8nm 
0.0303 ±0.0009 

(24±0.00) *N.A. 
0.0235 

±0.0002 
0.0222 

±0.0002 
0.0303 ±0.001 

(5.33±0.57) 
0.0227±0.0020 

(25.5±0.17) 

*N.A is used to express the fact that the program runs more than 3 hours without 
outputting a result or runs out of memory whereas N.A is used to express the fact that 
the result is not available. 

3.3.2 On Model Complexity  
In this study we consider a linear regression model to have a good model com-

plexity when it is both accurate and has a small number of leaf-nodes. Table 8, which 
is compiled from table 7, presents the number of cases where an approach obtained 
both best accuracy and fewest nodes at the same time. 

Table 8. Number of time an approach obtained the combination (best accuracy, fewest leaf 
nodes) for a dataset 

M5 TPRTI-A TPRTI-B RETIS GUIDE SECRET 

0 5 3 5 N.A N.A 

 
RETIS and TPRTI-A won the combination (best accuracy, fewest leaf-nodes) five 

times while M5 never won, and TPRTI-B won 3 times. This suggests that TPRTI hold 
comparable model complexity as RETIS.  

3.3.3 On Scalability With Respect to Dataset Size 
We use a direct comparison of runtime in seconds for TPRTI-A, TPRTI-B, and 
RETIS because they were implemented and run in the same machine. We use an indi-
rect comparison to compare the different approaches. The indirect comparison con-
sists of setting a baseline dataset size, and measuring the percent increase in runtime 
in relation to percent increase in baseline dataset size. Figure 4 summarizes our find-
ings. TPRTI-B outperforms M5 consistently on all dataset sizes and number of input 
attribute. This suggests that TPRTI-B is a more scalable approach than M5. This is 
because models generated by TPRTI tend to have fewer nodes. On small to medium 
size dataset there is no significant difference between TPRTI and SECRET. Overall 
SECRET outperforms TPRTI consistently on all dataset size. Figure 5 summarizes 
our result for the direct comparison. In figure 5, Panel (A) shows that RETIS has the 
worst performance even on dataset with small number of input attribute. Panel (B) 
provides evidence that as the number of input attribute increases, performance de-
creases. Panel(C) and (D) demonstrate that TPRTI-B consistently outperform TPRTI-
A.  
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evaluation were introduced and experimental results indicate that TPRTI is a scalable 
algorithm that is capable of obtaining a high predictive accuracy using smaller deci-
sion trees than other approaches. 

 
FUTURE WORK 

 We are investigating how turning point detection can also be used to induce better 
classification trees.  
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