
Using Turning Point Detection to Obtain Better
Regression Trees

Paul K. Amalaman, Christoph F. Eick and Nouhad Rizk

pkamalam@uh.edu, ceick@uh.edu, nrizk@uh.edu

Department of Computer Science,
University of Houston, Houston, Texas 77204-3010, USA

Abstract. The issue of detecting optimal split points for linear regression trees is
examined. A novel approach called Turning Point Regression Tree Induction
(TPRTI) is proposed which uses turning points to identify the best split points.
When this approach is used, first, a general trend is derived from the original
dataset by dividing the dataset into subsets using a sliding window approach
and a centroid for each subset is computed. Second, using those centroids, a set
of turning points is identified, indicating points in the input space in which the
regression function, associated with neighboring subsets, changes direction.
Third, the turning points are then used as input to a novel linear regression tree
induction algorithm as potential split points. TPRTI is compared in a set of ex-
periments using artificial and real world data sets with state-of-the-art regres-
sion tree approaches, such as M5. The experimental results indicate that TPRTI
has a high predictive accuracy and induces less complex trees than competing
approaches, while still being scalable to cope with larger datasets.

Keywords: Prediction, Linear Regression Tree, Model Tree, Turning Point De-
tection

1 INTRODUCTION

Regression trees are widely used machine learning techniques for numerical pre-
diction. Among the regression trees, we may distinguish those that associate a con-
stant to each leaf node, for instance CART [2], and those that fit a less trivial model to
each leaf node. Among the latter, we further distinguish a class of regression trees that
fit a linear model to each leaf node, such as linear regression trees. Linear regression
tree induction has been intensely researched. One of the first approach, M5[12], in-
duces the tree using a CART-like splitting decision which is a binary split based on
mean values and uses constant regression functions in the nodes; the attribute that best
reduces the variance in the nodes is chosen for the split, and its mean value is selected
as the split value. After the tree is fully developed M5 fits a linear model to each leaf-
node during pruning phase. This splitting method is also used by many regression
approaches which associate non-constant models with the leaf-nodes. However, in
conjunction with non-constant regression models, using mean values of attributes as

split points and using variance reduction as an objective function does not necessarily
obtain the best model [7].

To address this issue Karalic proposed RETIS [7] which fits a linear model in each
node and uses minimization of the residual sum of squared errors (RSS) instead of the
variance as splitting function. However, although the approach yields significantly
better accuracy and smaller regression trees than M5 [12], it has been labeled “intrac-
table” because to find the best pair {split attribute/split value} all potential split values
for each input attribute need be evaluated, making this approach too expensive even
for medium-sized datasets. Therefore, many more scalable algorithms for inducing
linear regression trees have been proposed [1, 6, 7, 11, 12, 15, 5, 17] which rely on
heuristics, sampling, approximations, and different node evaluation functions to re-
duce the computational cost of the RETIS algorithm.

Detecting turning points which indicate locations where the general trend changes

direction can be useful in many applications. In this paper, we propose a new ap-
proach for Linear Regression Tree construction called Turning Point Regression Tree
Induction (TPRTI) that infuses turning points into a regression tree induction algo-
rithm to achieve improved scalability while maintaining accuracy and low model
complexity. TPRTI induces decision trees using the following procedure. First, a
general trend is derived from the dataset by dividing the dataset into a sequence of
subsets of equal size using a sliding window, and by associating a centroid with each
subset. Second, using those centroids, a set of turning points is identified, indicating
points in the input space in which the piecewise linear function associated with neigh-
boring subsets changes direction. Finally, the identified turning points are used in two
novel top down linear regression tree induction algorithms as potential split points.
The two algorithms which are called TPRTI-A and TPRTI-B are discussed in section
2.

Figure 1 illustrates our proposed approach to detecting turning points. The input da-
taset is shown in panel (A). In panel (B) the dataset is sorted by the input attribute and
divided into subsets of equal size using a sliding window approach. In panel (C) the
general trend in the dataset is derived by connecting the centroids of neighboring
subsets, obtaining a piecewise linear function. Finally in panel (D), points m1 and m3
are selected as turning points as they exhibit sharp turns in the piecewise linear func-
tion. The selected turning points are later fed to a linear regression tree algorithm as
potential split points. Algorithm 1 gives the pseudo code of turning point detection
algorithm.

Fig. 1. Pan
into overla
eral trend

Algorithm
1 Input
2 pla
3 Xk:
4 y:
5 Outpu
6 Tur
7
8 Proje
9 For e
10 Sor
11 if
12 C
13 L
14 els
15 U

a
s

nel (A) represe
apping subsets
in the dataset. I

m 1: Deter
ts
ane (Xk,Y)
 real valu
target var

uts
rning point

ect dataset
each plane
rt the data
Xk discret
Compute cen
Label centr
se
Use a slidi
attribute t
small value

nts hypothetica
of equal size. (

In panel (D) m1

rmining tu

where Xk’s
ued discret
riable

ts set

t onto each
(Xk,Y)
a per attri
te attribut
ntroids for
roids as tu

ing window
to split th
es of Xk

 to

al dataset in a p
(C) Centroids a
 and m3 are det

urning poi

 are input
te or conti

h plane (Xk

ibute Xk
te then
r each dist
urning poin

of fixed s
he data int
the larges

plane (x,y). (B)
are joined by str
tected as turning

ints

t attribute
inuous vari

k,Y)

tinct value
nts

size subset
to neighbor
st value of

The dataset is
raight lines to f
g points

es (k=1,2,.
iable

e of Xk

ts for the
ring subset
f Xk

subdivided
form a gen-

..p)

input
ts from

16 Determine general trends by computing the centroids of
each subset and connect them to obtain piecewise linear
functions

17 Identify turning points by analyzing the angle θ between
neighboring subsets of the piecewise linear function

18 Output the set of turning points

The main contributions of the paper include:

1. A novel approach for turning point detection which relies on window sub-setting is
introduced.

2. Two novel linear regression tree induction algorithms called TPRTI-A and TPRTI-
B which incorporate turning points into the node evaluation are introduced.

3. State of the art linear regression tree algorithms are compared with each other and
with TPRTI-A and TPRTI-B for a challenging benchmark involving 12 datasets.

4. The experimental results indicate that TPRTI is a scalable algorithm that is capable
of obtaining a high predictive accuracy using smaller decision trees than other ap-
proaches.

The rest of the paper is organized as follows. Section 2 contains the description of
our proposed methods for linear regression trees. In section 3 we show results of ex-
perimental study and we conclude in Section 4.

Table 1. Notation used in the remaining of the paper

K
User defined overlapping parameter characterizing the number of examples pertaining to two consecutive

subsets.

S Size of each subset

θ Angle at a centroid

β User-defined threshold angle such that if cosθ < cosβ then the centroid with angle θ is a turning point

StpXY Set of turning points in the XY-plane

Stp Union of all StpXY (for all planes)

Stp_left Turning Points set for left sub-node such that Stp=Stp_left U Stp_right

Stp_right Turning Point set for right sub-node such that Stp=Stp_left U Stp_right

RSS Residual Sum of Squared errors

2 THE TPRTI APPROACH

Linear regression algorithms can be divided into three groups: The first group fits a
constant regression model to each intermediate node. M5 [12] is an example of this
approach. The second group fits a more complex regression model to each node; usu-
ally at least a model is needed per input attribute. RETIS [7] is one such example
since it fits multiple regression models per input attribute; one regression model for
each distinct value of each input attribute. The third group uses linear regression

models in
fication p
[5], GUID
be disting
plexity, a
sizes incr
since the
complex
model co
tween bo
group of

2.1 Ill

Many
and we w
example.
fection to
good nod
dataset#2
without u
[0,250]:

It is c

proaches,
to introdu
tests each

n the leaves, b
problem in or
DE [9], and SU
guished by ho
and runtime c
rease. To eva

e evaluation fu
models and lo

omplexity but
th ends of the
algorithms is

lustrating the

widely used f
will refer to th

As pointed o
o induce linea
de evaluation c
2 whose instan
using any no

clear that the
, like M5, will
uce further po
h distinct valu

but at each nod
rder to use m
UPPORT [3],

ow well it perf
complexity, w
aluate a node,
function in ea
ow accuracy. T
it comes at t

e spectrum lie
illustrated nex

e limitations o

first group alg
hem as “varia

out in [7] varia
ar regression tr
criterion. To i
nces were gen
oise, assumin

x1 ∈ ሾ0,250ሿ

൜
ݕ ൌ ;1ݔ 	

ݕ ൌ 100 െ

best split val
l split at x1=1

ossible split to
e of the input

Fig. 2. Illustr

de transforms
more efficient

 are examples
forms with res
which is how

the first grou
ach node is th
The second gr
the expense o
es the third gro
xt.

of the varianc

gorithms use v
ance-based ap
ance based al
rees that are o
illustrate this
nerated with r
g a uniform

ሿ and x2=0, a

															݂݅	0 ൑
;1ݔ 								݂݅	50

lue is located
125 (the mean
o the data in th

variable x1, s

rating the imper

 the regression
node evaluat

s of such appr
spect to mode
scalable the

up is computa
he simplest; h
roup has a mu
f a higher cos
oup. The majo

ce based-app

variance as no
pproaches”. M
lgorithms have
optimal becau
point let us c

respect to the
distribution

and y ∈	 ܴ

൑ 1ݔ ൏ 50
0 ൑ 1ݔ ൏ 250

d at x1=50. T
n value of x1)
he left node. R
selects the opt

rfection of M5

n problem int
tion function.
oaches. Each
l accuracy, m
approach is w
ationally more
however it of
uch better accu
st node evalu
or limitation o

proaches

ode evaluation
M5 [12] is on
e a fundamen

use the varianc
onsider a data
function defin
of input valu

0

The variance
leading to the
RETIS howev
timal split valu

to a classi-
SECRET
group can

model com-
when data
e efficient
ften yields
uracy, and

uation. Be-
of the first

n function
ne such an
ntal imper-
ce is not a
aset called
ned below
ues x1 in

based ap-
e necessity
ver, which
ue 50.

As pointed out earlier, many second group approaches like RETIS yield more ac-
curate, and shorter linear regression trees but do not scale well to large dataset. Like-
wise the third group approaches resolve the scalability issue of RETIS but at a cost to
accuracy and/or model complexity.

In this paper we use the term “look-ahead RSS” to mean the following: First, the

dataset associated with current node is split into two sub-sets; one pertaining to each
sub-node. Second, each sub-node is fitted with a linear regression model and the Re-
sidual Sum of Squared errors (RSS) are computed for both nodes. Next, a weighted
sum of both RSS is computed. This is done for all potential split pairs {attribute vari-
able, attribute value} available. One such split is retained and the rest discarded.
Likewise, we use the term “split point” to designate the pair {split attribute, split at-
tribute value}. We also use it to refer to the actual point in the plane, or point in the
input space. When used as a point in a plane it refers to the pair (xq ,y) where xq is one
of the input variables, q ∈ {1,..p}. When used to mean a point in the input space, it
refers to a tuple; (x,y) where x is an input vector (x1, ..xp) and y the associate re-
sponse. Key notations used in the remaining of the paper are provided in table1. Algo-
rithm1 presents the turning point detection approach. We provide next, in section 2.2
detailed description of how turning points are computed.

2.2 Centroids and turning points computation

First, a general trend is derived from the dataset by sorting the examples based on
the input attributes, by dividing the dataset into subsets of equal size using a sliding
window, and by associating a centroid with each subset. Second, using those cen-
troids, a set of turning points is identified, indicating points in the input space in
which the piecewise linear function—which was obtained by connecting centroids of
neighboring subsets—significantly changes direction.

The input attributes to the algorithm are real valued attributes that are either dis-

crete or continuous. Lines 8, 9, and 10 in algorithm 1 project the dataset onto the p
xky-planes (k=1,..,p). For the remaining of the lines, line 11 to 17 we consider one
plane at a time. Line 10 ensures that the dataset associated with the plane is sorted
with respect to the input attribute. Lines 11, 12, and 13 treat the case of discrete at-
tributes. First, the algorithm queries the distinct values of the discrete attribute. It then
computes the centroids for each attribute. Next, each centroid is labeled turning point.

Lines 14 to 17 treat the case where the input attribute is continuous. There are three
user-defined parameters K, S, β that need to be set. Let assume that a centroid has
angle θ. β is a user-defined angle such that if cosߠ < cos ߚ then the centroid is a turn-
ing point. K is the overlapping parameter characterizing the number of examples per-
taining to two consecutive subsets. S is the size of each subset. In line 15 subsets of
equal size S are created using the sorted dataset as follows: S0 is composed of the first
S examples. At any given step i, (i>0), the examples in subset Si are determined by
dropping the first K examples in Si-1 and by adding the next K new examples. When

K=S, the subsets are disjoint. When 0<K< S the subsets overlap. In line 17 turning
points are computed for each plane by analyzing the angle at each centroid.

2.3 Node Evaluation

We introduce TPRTI-A, which is a mixture of first group and second group ap-
proach in that its node evaluation avoids exhaustive search by evaluating only a sup-
plied list of turning points. We also introduce TPRTI-B which is a mixture of all 3
groups in that it uses a two-step node evaluation. It avoids exhaustive search by eval-
uating only a supplied set of turning points. It first fits a model to current node, and
uses a simple evaluation function which is the distance of each turning point to the
fitted model, to select the turning point which distance is the largest. TPRTI-A and
TPRTI-B differ by their node evaluation function. They both use as input, a set of
predetermined turning points.

2.3.1 Node evaluation for TPRTI-A
The first approach, TPRTI-A, evaluates all turning points by a look-ahead strategy
and selects the one that yields the minimum RSS.

Algorithm 2: Node evaluation for TPRTI-A
1 Inputs
2 StpXY: Set of turning points in the XY-plane
3 Stp: Union of all StpXY (for all planes)
4 TPXY(x,y): Turning point in the XY-plane with
 coordinate (x,y)
5 If stopping criteria is reached then
6 Return
7 For each StpXY in Stp
8 For each TPXY(x,y)in StpXY

9 Split data in SLeft and Sright
10 Compute look-ahead weighted RSS
11 Select the turning point (x•,y•)that minimizes
 Weighted RSS for the split
12 Split Stp into Left_Stp, and Right_Stp based on x•

2.3.2 Node evaluation for TPRTI-B
The second approach, TPRTI-B, is a multi-step evaluation approach. With this ap-
proach, first the current node is fitted with a model and the distances of the turning
points (actual tuples) to the fitted model are computed. The turning point for which
the distance to the model is the largest is selected as split point. Next, each coordinate
(value of input attributes) of the split point needs be evaluated by a look-ahead RSS
minimization method to determine the best pair {split variable, split value}. That is, in
contrast to TPRTI-A, only a single split value per input attribute and not a set of split
values is considered; reducing runtime complexity. Figure 3 illustrates the general
idea. In figure 3, the dotted line represents a linear model F fitted to current node. In

this hypo
TP3. We
Its coordi
variable,

Fig. 3. To
node. TP2
model F.

Algorithm
1 If s
2 Re
3 Fit
4 For
5 Co
6 Sele
7 For
8 Spl
9 Com
10 Sele
 poi
11 spl

In line
largest di
2.3.1 exc
Hence th
rithm 1,
cause line

2.4 Ru

We comp
examples
total num
O(p2N); I

othetical node,
assume d1 <

inates x1= x21,
split value} th

illustrate the n
2 is selected as

m 3: Node
stopping cr
eturn
current no
each turni

ompute dist
ect tp_max
each input

lit data in
mpute look-
ect the tur
int
lit Stp in

e 3 a model F
istance to F. L
cept that here
e turning poin
is formed of
e 3 needs to co

untime Comp

pute the runtim
s in the node,

mber of turning
If TPRTI-A m

, the turning p
d2 and d3 < d
,and x2= x22 ne
hat best minim

node evaluation
split point beca

evaluatio
riteria is

ode with li
ing point t
tance to F
the point

t coordinat
n SLeft and S
-ahead weig
rning point

Left_Stp,

is fitted to the
Line 7 to 11 a

the points ar
nts set Stp, alt
points with th
ompute the di

plexity

me cost to eva
m the number
g points. Assu

method is used

oint set has th
d2. Hence TP2
eed next, to be

mizes RSS. Al

of TPRTI-B; th
ause it is the tu

on for TPR
reached th

inear model
tp in Stp

with the l
te of tp_ma
Sright
ghted RSS
t that mini

and Right_

e node. Lines
are similar to
re represented
though compu
heir coordina
istance to F in

aluate a node.
r of subsets, p
uming N>>p,
d, all the turni

hree turning po
2(x21,x22,y2) is
e evaluated to
lgorithm 3 sum

he dotted line i
urning point fur

RTI-B
hen

l F

largest dis
ax

imizes weig

_Stp

s 4, 5, and 6 s
what was pre

d in the actual
uted as presen

ates in the dat
n the entire spa

Let N be the t
p the number o

evaluating ea
ing points are

oints TP1, TP
s chosen as spl
o select the pai
mmarizes the

is a model fitted
rther away from

stance to F

ghted RSS a

select the poin
esented for TP
l space; not in
nted previousl
ta space. This
ace.

total number o
of input attribu
ach split candi
e evaluated an

P2 and
lit point.
ir {split
concept.

d to current
m the fitted

F

as split

nt with the
PRTI-A in
n a plane.
ly in algo-
s is so be-

of training
utes, and t
idate costs
nd the cost

to evaluate a node is O(p2Nt). If TPRTI-B is used the distance of each turning point in
the data space to the fitted curve cost O(p) which leads to O(pt) for the t turning
points. O(p2N) is needed to evaluate each of the p input attribute, and O(p2N) is as
well needed to fit a model to current node; obtaining: O(pt+p2N+Np3) =O(p2N(p+1)) .
With M5, the split point is the mean point of each p variable. Hence, t=p obtaining
O(p3N); In the worst case, RETIS will test each value of each variable leading to
t=pN ; thus O(p3N2). TPRTI-A worse case happens when each centroid is a turning
point; which leads to t=pm hence O(p3Nm). Table 2 summarizes the runtime com-
plexity of each approach.

Table 2. Node Runtime complexity of TPRTI in comparison to M5 and RETIS

RETIS TPRTI-A TPRTI-B M5

Runtime complexity O(p3N2) O(p3Nm) O(p2N(p+1)) O(p3N)

2.5 Stopping criteria:

RETIS, M5 and TPRTI share the following stopping criteria

 The algorithm stops if the number of examples in the node is less than a minimum
number set by user.

 The algorithm stops if the subsequent split sub-nodes do not improve the error
function more than a minimum value set by user.

 However, TPRTI has an additional stopping condition: The algorithm may termi-
nate if there is no more turning point in the node dataset to evaluate.

3 EMPIRICAL EVALUATION

In this section results of extensive experimental study of TPRTI-A and TPRTI-B are
provided. We compare both algorithms with each other and against the well-known
M5 [12], SECRET [5], GUIDE [9], and RETIS [7] algorithms in term of accuracy,
scalability and model complexity. The experimental result published in [5], for
GUIDE and SECRET, two state-of-the-art scalable linear regression tree induction
algorithms are used in this study for comparison. The GUIDE and SECRET algo-
rithms were built to be both fast and accurate. Model complexity results for previous-
ly used datasets were not available for comparison. We performed all the experiments
reported in this paper on a 64-bit PC i7-2630 CPU at 2Ghz running Windows 7. Da-
tasets and extended version of this paper are available at [19].

3.1 Datasets

Five artificial and 7 real-world datasets were used in the experiments; Table 3 and
4 give a summary for the 12 datasets. The last column in both tables contains in pa-
renthesis the number of attributes.

Table 3. Artificial datasets.

Dataset Description

Number of

examples

dataset #1

x1, x2 are the input variables and y the output variable; x1 ∈ R ,x2 ∈ R, y∈ R

ቐ
ܻ ൌ െ 2 ∗ 1ݔ ݂݅ 0 ൑ 1ݔ ൏ 100 ܽ݊݀ 2ݔ ൌ 0

ܻ	 ൌ െ700 ൅ 5 ∗ 1ݔ ݂݅ 100 ൑ 1ݔ ൏ 200 ܽ݊݀ 2ݔ ൌ 0
ܻ ൌ 300 െ 3 ∗ 2ݔ ݂݅ 0 ൑ 2ݔ ൏ 100 ܽ݊݀ 1ݔ ൌ 200

300 (3)

dataset #2 x1 ∈ ሾ0,250ሿ and x2=0, and y ∈ ܴ

൜
ݕ ൌ ;1ݔ ݂݅ 0 ൑ 1ݔ ൏ 50

ݕ ൌ 100 െ ;1ݔ ݂݅ 50 ൑ 1ݔ ൏ 250

2500 (3)

CART

dataset

This dataset was found in [2]with 10 predictor attributes:X1 ϵ {−1, 1} with equal probabil-

ity that X1 =1 or X1 = -1; Xi ϵ {−1, 0, 1}, with i ϵ {2 . . . 10} and the predicted attribute y

determined by

൜
ܻ	 ൌ 	3	 ൅ 	3ܺ2	 ൅ 	2ܺ3	 ൅ 1ݔ	݂݅						4ܺ	 ൌ 1
ܻ	 ൌ 	െ3 ൅ 	3ܺ5	 ൅ 	2ܺ6 ൅ ܺ7 ݂݅ ݔ ൌ െ1

A random noise ߝ between [-2 and 2] was added to Y

750 (11)

3DSin

dataset

This dataset has two continuous predictor attributes x1, x2 uniformly distributed in interval

[−3, 3] determined by Y = 3 sin(X1) sin(X2).

500(3)

Fried

dataset

This dataset has 10 continuous predictor attributes with independent values uniformly

distributed in the interval [0, 1] Y = 10 sin(πX1X2) + 20(X3−0.5)2 + 10X4+5X5;A ran-

dom noise ߝ between [-1;1] was added

700(11)

Table 4. Real world dataset.

Dataset Description
Number of examples

(number of attributes)

Abalone
This dataset was obtained from UCI [16] machine learning
repository. 4177 (8)

Auto-mpg
This dataset obtained from UCI [16] repository. Tuples with
missing data were removed. 392 (8)

Boston Housing This dataset obtained from UCI[16] repository 506 (14)
Kin8nm This dataset was obtained from the DELVE [4]repository. 8192 (9)

Normalized Auto-
mpg

This is the auto-mpg dataset from UCI [16] repository that has
been normalized with z-score values 392 (8)

STOCK

This dataset is from SatLib[14]. The dataset contains 950
examples. However, the first tuple was removed because it did
not appear correctly formatted 949 (10)

Tecator Dataset This dataset originated from the StatLib [14] repository. 240 (11)

3.2 Experimental Methodology

All the experiments were done with a 10-fold cross validation and repeated 10 times
with different seeds for each run. The average values are reported in table 7 along
with corresponding standard deviation. Five artificial datasets were used three of
which were previously used and results for GUIDE and SECRET are available in [5].
We also used 7 real world datasets of which 6 were previously used and results for
GUIDE and SECRET available in [5]. The datasets which have not been previously
used are dataset#1, dataset#2 and the normalized auto mpg dataset. We implemented
TPRTI making use of R software [13] libraries. We run M5 using Weka [18]. R and

Weka are publicly available software. Our implementation of RETIS relies on run-
ning TPRTI-A with all input attributes set as discrete attributes.

3.2.1 Input parameters and stopping rules used for the experiments.

Table 5. Input and stopping parameters for TPRTI

 TPRTI-A TPRTI-B

 Input parameters *Stopping rules Input parameters Stopping rules

Subset

Size
cos β

Min. Node

Size (in %)

Min. RSS

imp. (in%)

Subset

size
cos β

Min. Node

Size (in %)

Min. RSS imp.

(in %)

Dataset #1 3 0.8 10 10 3 0.8 10 10

Dataset #2 9 0.8 10 10 9 0.8 10 10

CART 5 0.8 10 10 5 0.8 10 10

3DSin 4 0.8 10 10 5 0.8 10 10

Fried 3 0.85 10 10 3 0.85 10 10

Abalone 55 0.8 10 10 21 0.8 10 10

Auto mpg 4 0.85 10 10 4 0.85 10 10

Boston Housing 14 0.8 12 12 14 85 12 12

Normalized auto

mpg (z-score)
4 0.85 10 10 4 0.85 10 10

Stock Data 4 0.8 10 10 13 0.85 10 10

Tecator 8 0.8 10 10 21 0.7 10 10

Kin8nm 250 0.95 3 1 250 0.95 3 1

*Stopping rules: The stopping parameters set for TPRTI-A are same parameters
used for RETIS.

For each dataset, different input parameters and stopping rules were used for

TPRTI-A, and TPRTI-B. Table 5 summarizes the parameters used for each dataset
where cosβ is the cosine threshold used to determine the turning points, “Min. Node
Size” is the minimum required size of a node expressed as 100*(current node
size)/(initial dataset), and “Min. RSS imp.” is the minimum improvement of the sum
of the weighted RSS of both sub-nodes required to split a node. It is expressed as
100*(Parent RSS - weighted sum of children nodes RSS)/Parent RSS.

The input parameter “Subset Size” is used to subdivide the input data into subsets
of equal size in order to compute the centroids. RETIS was run without post pruning.

3.3 Results

Accuracy was measured by the MSE (Mean Squared Error). Model Complexity was
measured by the number of leaf-nodes. However, a bad model may have small num-
ber of leaf-nodes. Thus complexity was slightly redefined as number of times an ap-
proach obtained the combination (best accuracy, fewest leaf-nodes). Both the number
of leaf-nodes and MSE are provided as μ ± c where μ is the average MSE (or number
of leaf-node) and c the standard deviation over several runs. Let μ1 ± c1 and μ2 ± c2 be
two results such that μ1 < μ2. We consider a tie between the two results if μ1 + c1 > μ2.
Both Accuracy and number of leaf-nodes are reported in table 7 with the number of
leaf-nodes in parenthesis. The main findings of our study are:

3.3.1 On Accuracy

Table 6. Comparison between TPRTI-A, TPRTI-B and state-of-the-art approaches with respect
to accuracy

 M5 TPRTI-A TPRTI-B RETIS GUIDE SECRET

TPRTI-A (6/5/1) - (4/6/2) (4/6/0) (5/1/2) (4/2/2)

TPRTI-B (4/6/2) (2/6/4) - (3/7/0) (5/1/2) (1/4/3)

TPRTI-A, and TPRTI-B are compared with the approaches in the columns. The

number in each cell denotes (number of wins/number of ties/number of losses). For
example, (6/5/1) in the first column of the first row means that TPRTI-A is more ac-
curate than M5 on 6 datasets, ties M5 on 5 datasets and loses on 1 dataset. Overall,
TPRTI yields comparable result as or slightly better result than RETIS. It has better
accuracy than GUIDE and SECRET.

Table 7. Accuracy results

 M5 RETIS GUIDE SECRET TPRTI-A TPRTI-B

Dataset #1
446.8996 ±36.45

(11±0.00)
0.000 ±0.0000

(3±0.00) N.A N.A
0.089 ±0.0000

(3±0.00)
0.089 ±0.0000

(3±0.00)

Dataset #2
4.75 ±0.239
 (11±0.00)

0.000 ±0.0000
(2±0.00) N.A N.A

0.000 ±0.0000
(2±0.00)

0.000 ±0.0000
(2±0.00)

CART
0.0932 ±0.0009

(2±0.00)
0.085 ±0.0125

(4.1±0.32) N.A N.A
0.07614 ±0.0100

(4.1±0.32)
0.098±0.33
(6.1±0.32)

3DSin
0.0015 ±0.0002

(20±0.00)
0.01 ±0.0074

 (4±0.00)
0.0448

±0.0018
0.0384

±0.0026
0.0074 ±0.01

(4±0.00)
0.0063 ±0.01

(3±0.00)

Fried
4.888 ±0.1536

(3±0.00)
4.773 ±0.3893

(3±0.00)
1.21

±0.0000 1.26 ±0.010
3.1114 ±0.80

 (4±0.00)
1.4968 ±0.60
 (6.7±0.48)

Abalone
4.6910 ±0.586

(2±0.00) *N.A 4.63 ±0.04 4.67 ±0.04
4.3806 ±2.71

(4±0.00)
4.1527±2.59
 (5.1±0.45)

Auto mpg
8.5073 ±0.3105

(5±0.00)
8.8470 ±7.2183

(3.1±0.32)
34.92

±21.92 15.88 ±0.68
7.6021 ±6.33

(5±0.00)
8.4493 ±6.39

(4.6±0.52)

Boston
Housing

28.8397
±30.8896
(10±0.00)

24.569±20.090
(4.2 ±0.92) 40.63 ±6.63 24.01 ±0.69

16.0922±10.29
(5.5±0.53)

19.6237 ±9.24
(4.8±0.92)

Normalized
Auto mpg
(z-score)

0.1396 ±0.0051
 (5±0.00)

0.1186±0.0895
(4.0 ±0.00) N.A N.A

0.1169 ±0.07
(3.8±0.63)

0.1342 ±0.09
 (4.7±0.82)

Stock Data
1.0389 ±0.1008

(19±0.00)
11.977±7.884

(3.9 ±0.32) 1.49 ±0.09 1.35 ±0.05
0.2067 ±0.10

 (3±0.47)
4.8867 ±3.09

(4.9±0.88)

Tecator
9.4513 ±2.9519

(6±0.00)
6.6310±6.3036

(5.4 ±0.51) 13.46 ±0.72 12.08 ±0.53
2.8315 ±1.412

(3.1 ±0.31)
7.1266 ±8.20

(6.4±0.70)

Kin8nm
0.0303 ±0.0009

(24±0.00) *N.A.
0.0235

±0.0002
0.0222

±0.0002
0.0303 ±0.001

(5.33±0.57)
0.0227±0.0020

(25.5±0.17)

*N.A is used to express the fact that the program runs more than 3 hours without
outputting a result or runs out of memory whereas N.A is used to express the fact that
the result is not available.

3.3.2 On Model Complexity
In this study we consider a linear regression model to have a good model com-

plexity when it is both accurate and has a small number of leaf-nodes. Table 8, which
is compiled from table 7, presents the number of cases where an approach obtained
both best accuracy and fewest nodes at the same time.

Table 8. Number of time an approach obtained the combination (best accuracy, fewest leaf
nodes) for a dataset

M5 TPRTI-A TPRTI-B RETIS GUIDE SECRET

0 5 3 5 N.A N.A

RETIS and TPRTI-A won the combination (best accuracy, fewest leaf-nodes) five

times while M5 never won, and TPRTI-B won 3 times. This suggests that TPRTI hold
comparable model complexity as RETIS.

3.3.3 On Scalability With Respect to Dataset Size
We use a direct comparison of runtime in seconds for TPRTI-A, TPRTI-B, and
RETIS because they were implemented and run in the same machine. We use an indi-
rect comparison to compare the different approaches. The indirect comparison con-
sists of setting a baseline dataset size, and measuring the percent increase in runtime
in relation to percent increase in baseline dataset size. Figure 4 summarizes our find-
ings. TPRTI-B outperforms M5 consistently on all dataset sizes and number of input
attribute. This suggests that TPRTI-B is a more scalable approach than M5. This is
because models generated by TPRTI tend to have fewer nodes. On small to medium
size dataset there is no significant difference between TPRTI and SECRET. Overall
SECRET outperforms TPRTI consistently on all dataset size. Figure 5 summarizes
our result for the direct comparison. In figure 5, Panel (A) shows that RETIS has the
worst performance even on dataset with small number of input attribute. Panel (B)
provides evidence that as the number of input attribute increases, performance de-
creases. Panel(C) and (D) demonstrate that TPRTI-B consistently outperform TPRTI-
A.

Fig. 4. Ind
percent inc

The pa
Turning P
regression
accuracy
rithms ca

direct Runtime
crease in runtim

Fig. 5. Direct r

4 CON

aper proposes
Point Regress
n tree inductio
and low mod

alled TPRTI-A

comparison: Pe
me with baseline

runtime compa

NCLUSION

a new approa
sion Tree Ind
on algorithm

del complexity
A and TPRTI-

ercent increase
e size set to 250

rison among TP

N

ach for Linear
uction (TPRT
to achieve im

y. Two novel l
-B which inco

in baseline dat
0 examples

PRTI-A, TPRT

r Regression T
TI) that infuse

mproved scalab
linear regress
orporate turnin

taset size and th

TI-B and RETIS

Tree construct
es turning poi
bility while m
ion tree induc
ng points into

he resulting

S

tion called
ints into a

maintaining
ction algo-
o the node

evaluation were introduced and experimental results indicate that TPRTI is a scalable
algorithm that is capable of obtaining a high predictive accuracy using smaller deci-
sion trees than other approaches.

FUTURE WORK

 We are investigating how turning point detection can also be used to induce better
classification trees.

REFERENCES

1. W.P. Alexander and S.D. Grimshaw. Treed regression. Journal of Computational and Gra

aphical Statistics, 5:156-175, 1996.
2. L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression

Trees.Wadsworth, Belmont, 1984.
3. P. Chaudhuri, M.-C. Huang, W.-Y. Loh, and R. Yao. Piecewise-polynomial regression

trees. Statistica Sinica, 4:143–167, 1994.
4. DELVE repository of data http://www.cs.toronto.edu/~delve/ as of 12/04/2012
5. Alin Dobra, Johannes Gehrke SECRET:a scalable linear regression tree algorithm

SIGKDD-2002.
6. J. Friedman. Multivariate adaptive regression splines (with discussion). Annals of Statis-

tics, 19:1-142, 1991.
7. A. Karalic. Employing linear regression in regression tree leaves. In European Conference

on Artificial Intelligence, pages 440-441, 1992.
8. Li, K.C., Lue, H.H., Chen, C.H. Interactive Tree-Structured Regression via Principal Hes-

sian Directions. Journal of the American Statistical Association, vol. 95, pp. 547-560,
2000.

9. W.-Y. Loh. Regression trees with unbiased variable selection and interaction detection.
Statistica Sinica, 12:361-386, 2002

10. Loh, W.-Y., and Shih, Y.-S. (1997). Split Selection Methods for Classification Trees. Sta-
tistica Sinica, Vol.7, 1997, pp. 815-840

11. D. Malerba, F. Esposito, M. Ceci, and A. Appice. Top-down induction of model trees with
regression and splitting nodes. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 26(5):612-625, 2004.

12. J. R. Quinlan. Learning with Continuous Classes. In 5th Australian Joint Conference on
Artificial Intelligence, pages 343–348, 1992.

13. http://www.r-project.org/ The R Project for Statistical Computing official website as of
8/8/2012

14. StatLib repository (Dataset Archive) at http://lib.stat.cmu.edu/datasets/ as of 12/04/2013
15. L. Torgo. Functional models for regression tree leaves. In Proc. 14th International Confer-

ence on Machine Learning, pages 385–393. Morgan Kaufmann, 1997.
16. UCI repository at http://archive.ics.uci.edu/ml/datasets.html as of 12/04/2012.
17. David S. Vogel, Ognian Asparouhov, Tobias Scheffer. Scalable Look-Ahead Linear Re-

gression Trees KDD’07, August 12–15, 2007, San Jose, California, USA.
18. http://www.cs.waikato.ac.nz/ml/weka/ Weka software official website as of 8/8/2012
19. http://www2.cs.uh.edu/~UH-DMML/index.html

