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Abstract. Existing data mining techniques mostly focus on finding global 
patterns and lack the ability to systematically discover regional patterns.  Most 
relationships in spatial datasets are regional; therefore there is a great need to 
extract regional knowledge from spatial datasets. This paper proposes a novel 
framework to discover interesting regions characterized by “strong regional 
correlation relationships” between attributes, and methods to analyze 
differences and similarities between regions. The framework employs a two-
phase approach: it first discovers regions by employing clustering algorithms 
that maximize a PCA-based fitness function and then applies post processing 
techniques to explain underlying regional structures and correlation patterns. 
Additionally, a new similarity measure that assesses the structural similarity of 
regions based on correlation sets is introduced. We evaluate our framework in a 
case study which centers on finding correlations between arsenic pollution and 
other factors in water wells and demonstrate that our framework effectively 
identifies regional correlation patterns.  

Keywords: Spatial Data Mining, Correlation Patterns, Regional Knowledge 
Discovery, Clustering, PCA. 

1   Introduction 

Advances in database and data acquisition technologies have resulted in an 
immense amount of geo-referenced data, much of which cannot be adequately 
explored using current methodologies. The goal of spatial data mining is to automate 
the extraction of interesting and useful patterns that are not explicitly represented in 
geo-referenced datasets. Of particular interest to scientists are techniques which are 
capable of finding scientifically meaningful regions and representing their associated 
patterns in spatial datasets, as such techniques have many immediate applications in 
medicine, geosciences, and environmental sciences, such as the association of 
particular cancers with environmental pollution of sub-regions, the detection of crime 
zones with unusual activities, and the identification of earthquake hotspots. Since 
most relationships in spatial datasets are geographically regional [15], there is a great 
need to discover regional knowledge in spatial datasets. Existing spatial data mining 
techniques mostly focus on finding global patterns and lack the ability to 
systematically discover regional patterns. For example, a strong correlation between a 
fatal disease and a set of chemical concentrations in water wells might not be 
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detectable throughout Texas, but such a correlation pattern might exist regionally 
which is also a reflection of Simpsons' paradox[16]. This type of regional knowledge 
is crucial for domain experts who seek to understand the causes of such diseases and 
predict future cases. Another issue is that regional patterns have a scope that—
because they are not global—is a subspace of the spatial space. This fact complicates 
their discovery because both subspaces and patterns have to be searched. Work by 
Celik et al. [4] assumes the presence of an apriori given regional structure (e.g. a grid) 
and then searches for regional patterns. One unique characteristic of the framework 
presented in this paper is that it searches for interesting subspaces by maximizing a 
plug-in reward-based interestingness function and then extracts regional knowledge 
from the obtained subspaces.  

This paper focuses on discovering regional correlation patterns that are associated 
with contiguous areas in the spatial subspaces, which we call regions. Interesting 
regions are identified by running a clustering algorithm that maximizes a PCA-based 
fitness function. PCA is used to guide the search for regions with strong structural 
relationships. Figure 1 shows an example of discovered regions along with their 
highest correlated attribute sets (HCAS). For example, in Region 1 a positive 
correlation between Boron (B), Fluoride (F), and Chloride (Cl), and between Arsenic 
(As), Vanadium (V), and Silica (SiO2), as well as a negative correlation between 
Silica (SiO2) and Molybdenum (M) can be observed. As can be seen in the Figure 1, 
some of those sets differ quite significantly between regions, emphasizing the need 
for regional knowledge discovery.  

Also a new similarity measure is introduced to estimate the structural similarity 
between regions based on correlation sets that are associated with particular regions. 
This measure is generic and can be used in other contexts when two sets of principal 
components have to be compared. 

 
 

Fig. 1. An Example of Regional Correlation Patterns for Chemical Concentrations in Texas 
 
The main contributions of the paper are: 
1. A framework to discover interesting regions and their regional correlation patterns.  
2. A PCA-based fitness function to guide the search for regions with well-defined PCs 
3. A generic similarity measure to assess the similarity between regions quantitatively. 
4. An experimental evaluation of the framework in a case study that centers on 

indentifying causes of arsenic contamination in Texas water wells.  



The remainder of the paper is organized as follows: In section 2, we discuss related 
work. In section 3, we provide a detailed discussion of our region discovery 
framework, the PCA-based fitness function and HCAS similarity measure. Section 4 
presents the experimental evaluation and section 5 concludes the paper. 

2   Related Work  

Principal Component Analysis (PCA): PCA is a multivariate statistical analysis 
method that is very commonly used to discover highly correlated attributes and to 
reduce dimensionality. The idea is to identify k principal  components for an d-
dimensional dataset (k<<d) that explain a large portion of the dataset’s variance, e.g. 
more than 80%, which allows the reduction of the dataset’s dimensionality from d to 
k dimension without much information loss. PCA is widely used for data mining and 
some PCA-based clustering methods have been developed in the past [13, 14].  PCA 
has also been extensively applied extensively in the field of face recognition [18]. The 
authors in [20] proposed a supervised PCA model called SPPCA, whereby they 
extended PCA to incorporate label/class information into the projection phase.  
 
Correlation Clustering: Correlation clustering aims at grouping the data into 
correlation clusters such that the objects in the same cluster exhibit a certain density 
and objects are all associated with the same arbitrarily oriented hyperplane of 
arbitrary dimensionality [1]. The 4C algorithm [3] combines PCA and DBSCAN in 
order to identify correlation connected clusters that are subgroups of data points 
exhibiting similar correlations. One drawback of the 4C algorithm is that the user 
must choose proper values for many algorithm parameters. Correlation clustering is 
similar to our work in that it deals with the identification of correlation clusters; 
however, our framework uses an external PCA-based plug-in fitness function for 
clustering, and it is applicable in conjunction with any clustering algorithm that 
supports plug-in fitness functions, whereas 4C is dependent on the DBSCAN 
clustering framework. For example, our framework could be used in conjunction with 
the agglomerative clustering algorithm MOSAIC [5] which discovers arbitrary shaped 
regions. Moreover, correlation clusters are not necessarily contiguous in the attribute 
space, whereas our approach identifies contiguous regions in the spatial subspace that 
display strong principal components with respect to the non-spatial attributes.  

3   Methodology 

We now present the methods our regional pattern discovery framework utilizes 
during the region discovery and post processing phases as illustrated in Figure 2.  



 
 

Fig. 2. Regional Pattern Discovery Framework 

3.1.   Region Discovery Framework 

We employ the region discovery framework that was proposed in [10, 11]. The 
objective of region discovery is to find interesting places in spatial datasets—regions 
occupying contiguous areas in the spatial subspace. In this work, we extend this 
framework to find regional correlation patterns. The framework employs a reward-
based evaluation scheme to evaluate the quality of the discovered regions. Given a set 
of regions R={r1,…,rk} with respect to a spatial dataset O ={o1,…,on}, the fitness of R 
is defined as the sum of the rewards obtained from each region rj (j = 1,… ,k): 
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where i(cj) is the interestingness of the region rj—a quantity based on domain interest 
to reflect the degree to which the region is “newsworthy”. The framework seeks for a 
set of regions R such that the sum of rewards over all of its constituent regions is 
maximized. In general, the parameter β controls how much premium is put on region 
size. The size(rj)β component in q(R), (β≥1) increases the value of the fitness 
nonlinearly with respect to the number of objects in the region rj. A region reward is 
proportional to its interestingness, but given two regions with the same value of 
interestingness, a larger region receives a higher reward to reflect a preference given 
to larger regions. Rewarding region size non-linearly ensures merging neighboring 
regions whose PCs are structurally similar.  
 
The CLEVER Algorithm: We employ the CLEVER [10] clustering algorithm to 
find interesting regions in the experimental evaluation. CLEVER is a representative-
based clustering algorithm that forms clusters by assigning objects to the closest 
cluster representative. The algorithm starts with a randomly created set of 
representatives and employs randomized hill climbing by sampling s neighbors of the 
current clustering solution as long as new clustering solutions improve the fitness 
value. To battle premature convergence, the algorithm employs re-sampling: if none 
of the s neighbors improves the fitness value, then t more solutions are sampled 
before the algorithm terminates. In short, CLEVER searches for the optimal set of 
regions, maximizing a given, plug-in fitness function q(R), which in our case is the 
PCA-based fitness function. 



3.2.   PCA-based Fitness Function for Region Discovery 

The directions identified by PCA are the eigenvectors of the correlation matrix. Each 
eigenvector has an associated eigenvalue that is a measure of the corresponding 
variance and the PCs are ordered with respect to the variance associated with that 
component in descending order. Ideally, it is desirable to have high eigenvalues for 
the first k PCs, since this means that a smaller number of PCs will be adequate to 
account for the threshold variance which overall suggests that a strong correlation 
among variables exists[14]. Our work employs the interestingness measure in 
definition 1 to assess the strength of relationships between attributes in a region r: 

 
Definition 1:  (PCA-based Interestingness – iPCA(r) )  
Let λ1, λ2,…,λk be the eigenvalues of the first k PCs, with k being a parameter: 

2 2
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PCA-based fitness function then becomes: 
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The fitness function rewards high eigenvalues for the first k PCs. By taking the 
square of each eigenvalue we ensure that regions with a higher spread in their 
eigenvalues will obtain higher rewards—reflecting the higher importance assigned in 
PCA to higher ranked principal components. For example; a region with eigenvalues 
{6, 2, 1…} will get a higher reward than a region with eigenvalues {4, 3, 2…} even 
though the total variance captured in both cases is about the same.  

We developed a generic pre-processing technique to select the best k value for the 
PCA-based fitness function for a given dataset that is based on a variance threshold: 
the smallest k is chosen so that the variance captured in the first k principal 
components is greater than this threshold. First, the algorithm applies PCA to the 
global data and determines the global k value (kg) for a given variance threshold 
which serves as an upper bound for k. Then, it splits the spatial data into grids 
(random square regions), applies PCA to each grid, and determines the k value for 
each region based on the variance threshold obtaining {kr1,…,krs}. The algorithm next 
selects the most frequent kr value in the set of regional k-values as the final result—to 
be used in the fitness function. For datasets with strong regional patterns, the chosen k 
is expected to be lower than kg: fewer PCs capture the same variance in the regional 
data, because regional correlation is stronger than global correlation.  

Our fitness function repeatedly applies PCA during the search for the optimal set 
of regions, maximizing the eigenvalues of the first k PCs in that region. Having an 
externally plugged in PCA-based fitness function enables the clustering algorithm to 
probe for the optimal partitioning and encourages the merging of two regions that 
exhibit structural similarities. This approach is also more advantageous than applying 
PCA once or multiple times on the data, since the PCA-based fitness function is 
applied repeatedly to candidate regions to explore each possible region combination. 



3.3.   Correlation Sets, HCAS and Region Similarity 

Highest correlated attribute sets (HCAS) are sets of correlation sets (CSs) which are 
signed sets of the attributes that are highly correlated. CSs are constructed from the 
eigenvectors of principal components (PCs). An attribute is added to the correlation 
set of a PC, if the absolute value of the PC coefficient of that attribute is above a 
threshold α along with the sign of the coefficient. The threshold α is selected based on 
the input from domain experts. For example, let’s assume that α=0.33 for PC1 in 
Table 1, a correlation set {Mo-,Cl+,SiO4+} is constructed, since only the absolute 
values of these attributes’ coefficients are above α (depicted in bold in the table). In 
this set, Mo is negatively correlated with both Cl and SiO4, whereas Cl and SiO4 are 
positively correlated.  

 
Table 1. Eigen-Vectors of first k PCs (k=3) 

 
Variables  PC1 PC2 PC3 

As -0.323 -0.452 -0.34 
Mo -0.346 0.062 0.46 
V -0.301 -0.463 -0.243 
B 0.138 -0.247 -0.177 
F 0.325 0.177 0.356 

SiO2 -0.165 -0.389 -0.299 
Cl 0.394 -0.295 0.148 

SiO4 0.363 -0.277 0.194 
TDS -0.243 -0.323 0.173 
WD 0.097 -0.233 -0.226 

 
 
 
 
 
 
 
 
 
 
 
 
 
Next, CS and HCAS will be defined formally, and similarity measures for 

correlation sets and regions will be introduced.  
 
Definition 2:  (Correlation Sets – CS) 
A CS is a set of signed attributes that capture correlation patterns. 
 
Definition 3: (Highest Correlated Attribute Sets – HCAS) 
HCAS are sets of correlation sets and they are used to summarize correlation 
relationships of regions. 
 
Each region has a HCAS of cardinality k since our framework retains only k PCs. 
Each CS is associated with a single PC (principal component). HCAS are constructed 
for each region to summarize their regional correlation patterns. HCAS are used to 
describe and compare the correlation patterns of regions. 
 
Example:  For the PCA result in Table1 the following HCAS will be generated:  

{{Mo-,Cl+,SiO4+}, {As-,V- SiO2-}, { As- Mo+, F+}} 
 
Next, we define operations to manipulate CS. 



Definition 4: (Operations on CSs) 
Two operations are defined on CSs. They are; 

1. csign (“complement sign”) changes the signs of a CS. 
                   e.g. csign({  A+, B-, C- })={ A-, B+, C+ } 

2. uns (“unsign”) removes the signs of attributes  in  a CS.  
                  e.g. uns({ A+, B- ,C- })= { A, B, C } 
 
Definition 5: (Correlation Sets Similarity – simCS) 
The similarity between two correlation sets, CSi and CSj, is estimated using following 
equation: 
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simCS(CSi, CSj) is assessed  by comparing CSi with CSj and comparing CSi with 

csign(CSj) and by taking the maximum set size obtained for the two intersections and 
dividing it by the number of objects in the union of unsigned CSi and CSj. Basically, 
simCS(CSi, CSj)  takes two factors into consideration when comparing two CSs:  

   1. Agreement with respect to attributes that contribute to variance. 
   2. Agreement in correlation with respect to common attributes.  

 
Examples: 

a. simCS({A-.B-},{A+,B+})=1 
b. simCS({A+,B+},{A+,B-})=0.5  
c. simCS({A+,B+,C+,D+,E+},{A+,B+,C-,D-,E-})=0.6 

 
Next, we define a similarity measure to assess the similarity of two regions with 

respect to their k PCs. Let us assume that the HCASs of region R1 and region R2 are 
{CS1,…,CSk} and {CS'1,…,CS’k}, respectively, and that the principal components of 
the regions have eigenvalues λ1,…,λk and λ’1,…, λ’k, respectively. 
 
Definition 6: (PC Similarity Matrix – PCS) 
Let PCS be a k x k similarity matrix whose entries pcs(i, j) store the similarity 
between ith correlation set of region R1 and jth correlation set of region R2 weighted by 
the eigenvalues of the associated principal components.  

PCS(i,j)=simCS(CSi, CS’j)*δI,j. (5) 
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We use δij to weigh in the contribution of a correlation set of a PC to the overall 
similarity based on its eigenvalue. If the eigenvalue is high, then its contribution when 
assessing similarity between regions is higher compared to other sets with lower 
eigenvalues. Next, using PCS, we introduce the regional similarity measure. 



Definition 7: (Regional Similarity – SimR) 
Let perm(k) be the set of all permutations of numbers 1,..k, the similarity between two 
regions R1 and R2 is defined as follows: 

1 k1 2 y=(y ,....y ) perm(k)
1
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This similarity function computes an injective mapping from k principal 
components of region R1 to k principal components of region R2 which maximizes 
correlation set similarity weighted by the eigenvalues of the associated principal 
components. After the best injective mapping ψ has been determined, similarity is 
computed by adding the similarities of principal component i of region R1 with ψ(i) in 
region R2 for i=1,…,k. Basically, simR( ) finds the best one-to-one mapping that 
aligns the principal components of the two regions to provide the best match with 
respect to the similarity.  It should be noted that k is usually very small; typically 2-6, 
rarely larger than 10; therefore, maximizing similarity over all permutations usually 
can be done quickly.  For larger k values, some greedy, approximate versions of the 
similarity function can be developed. 
 
Example: Let us assume that the PCS of two regions (R1 and R2) is as follows: 
(k=3 and S1, S2, S3 belongs to region R1 and T1, T2, T3 belongs to region R2): 
 

PCS T1 T2 T3 
S1  0.4 0.1 0.1 
S2 0.0 0.1 0.3 
S3 0.1 0.2 0.0 

 
Since k is 3, there will be 6 one-to-one mappings between the principal 

components of the two regions. The similarity calculations that will be conducted to 
determine the similarity of R1 and R2 are shown below: 

 
R1            Mappings        R2            Calculations 

 
 
In this case, the 2nd mapping {S1 T1, S2 T3, S3 T2} maximizes the sum of 

similarities.  
So, we obtain SimR(R1, R2) = 0.9 



3.4. Post Processing via Regression Analysis  

We additionally employ regression analysis models in the post processing phase to 
analyze regional dissimilarities. We use the OLS (Ordinary Least Squares) regression 
to investigate the impact of our independent variables on the dependent variable (e.g. 
arsenic concentration in arsenic experiments). OLS was chosen because it minimizes 
the mean squared error; thus, it is the best liner efficient estimator [19]. Our 
framework first applies regression analysis on global data (global regression); then, 
after it discovers regions, it retrieves the top k regions ranked by their interestingness 
and applies regression analysis on those regions (regional regression). The results of 
regional regression are compared with the results of global regression to reveal 
regional differences  

4   Experimental Evaluation 

4.1. A Real World Case Study: Texas Water Wells Arsenic Project 

Arsenic is a deadly poison and even long-term exposure to very low arsenic 
concentration can cause cancer [17]. So it is extremely crucial to understand the 
factors that cause high arsenic concentrations to occur. In particular, we are interested 
in identifying other attributes that contribute significantly to the variance of arsenic 
concentration. Datasets used in the experiments were created using the Texas Water 
Department Ground Water Database [17] that samples Texas water wells regularly. 
The datasets were generated by cleaning out duplicate, missing and inconsistent 
variables and aggregating the arsenic amount when multiple samples exist. Our 
dataset has 3 spatial and 10 non-spatial attributes. Longitude, Latitude and Aqufier ID 
are the spatial attributes and Arsenic(As), Molybdenum(M), Vanadium(V), Boron(B), 
Fluoride(F), Silica(SiO2), Chloride(Cl), Sulfate(SiO4) are 8 of the non-spatial 
attributes which are chemical concentrations. The other 2 non-spatial attributes are 
Total Dissolved Solids (TDS) and Well Depth (WD). The dataset has 1,653 objects.  

4.2. Experimental Parameters 

Table 2 summarizes the common parameters used in all experiments and the ones 
specific to the individual experiments. These parameter values were chosen after 
many initial experiments as the parameter settings that provide the most interesting 
results. β is a parameter of the region discovery framework which controls the size of 
the regions to be discovered. s and t are the parameters of CLEVER algorithm. 
min_regon_size is a controlling parameter to battle the tendency towards having very 
small size regions with maximal variance. Regions with size below this parameter 
receive a reward of zero.  
 



Table 2. The parameters used in the experiments 
 

Common parameters  s=50, t=50, α=0.33      
Experiment 1 min_region_size = 8, β= 1.7 
Experiment 2 min_region_size = 9,  β= 1.6 
Experiment 3 min_region_size = 20, β= 1.7 
Experiment 4 min_region_size = 16, β= 1.6 
Experiment 5 min_region_size = 16, β= 1.01 

 
In our pre-processing phase to select the best k value for the experiment, we use 

70% variance as the threshold, a percentage based on the comments from domain 
experts who maintain that this is a good threshold for detecting correlations among 
chemical concentrations. Other feedback from domain experts for the Water Pollution 
Experiment suggested that the arsenic dataset is not globally highly correlated; hence, 
setting the variance threshold to 70% is a good fit. The preprocessing phase, using 
70% as the threshold, indicated that 3 or 4 are the best values for k.  We report the 
results for k=3 in this section. The threshold used in constructing correlation sets of 
HCAS was chosen in accordance with domain experts’ feedback as 0.33.  

4.3. HCAS and Similarity Results 

HCASs for the experiment 1 are shown in Table 3 which lists the top 5 regions ranked 
by their interestingness values. These sets suggest that there are regional patterns 
involving highly correlated attributes, whereas globally (Texas-wide) almost all 
attributes are members of HCAS and are equally correlated; a situation which fails to 
reveal strong structural relationships. Analyzing the correlation sets and region 
similarity helps us to identify regions that display variations over space. For example, 
with respect to the second principal component of region 15 we observe a positive 
correlation between Molybdenum and Vanadium and a negative correlation between 
Molybdenum and Fluoride neither of which exists globally, Moreover, the negative 
correlation between Molybdenum and Fluoride only exist in region 15 and is not 
observed in the other four regions. In general, such observations are highly valuable 
to domain experts, because they identify interesting hypotheses and places for further 
investigation. Table 4 shows the regional similarity matrix and Table 5 depicts the 
similarity between the 5 regions and the global data (Texas). 
 

Table 3: HCAS sets for the Top Ranked Regions 
 

Region ID HCAS  Sets for the first 3 PCs 
Texas {As-,Mo-,B-,Cl-,SO4-} {As+,V+,Fl+,SiO2+} {As-, Mo-,SiO2+} 
Region 0 {Cl-,SO4-} {As-,Mo-,V-} {Fl-,SiO2-} 
Region 1 {B+,FL+, Cl+,SO4+} {As-, V-,SiO2-} {Mo+,SiO2-} 
Region 13 {B+, Cl+,SO4+} {As+, Mo-,SiO2+ } {As-,Mo-,V-} 
Region 21 {Mo+, B+, SiO2- } {As-, V-, Cl+} {As+,Fl+,Cl+,SO4+} 
Region 15 {B-,Cl-,SO4-} {Mo-,V-,Fl+} {As-,V-,SiO2-} 

 



Table 4. Similarity Matrix of Regions for Experiment 1 
 

 Region 0 Region 1 Region 13 Region 21 Region 15 
Region 0 0.00 0.61 0.88 0.62 0.65 
Region 1 0.61 0.00 0.90 0.64 0.59 
Region 13 0.88 0.90 0.00 0.40 0.92 
Region 21 0.62 0.64 0.40 0.00 0.40 
Region 15 0.65 0.59 0.92 0.40 0.00 

 
 

Table  5. Similarity Vector of Regions to Global Data (Texas) for Experiment 1 
 

Exp#1 Region 0 Region 1 Region 13 Region 21 Region 15 
Global 0.59 0.70 0.84 0.59 0.66 

 
Discussion: The HCAS similarity matrix and similarity vector in Tables 4 and 5 
reveal that the HCAS similarity measure capture the true similarity between 
correlation patterns of regions. For example, we observe that region 13 and region 15 
are the most similar regions. This is the result of following mappings: 
 
{B+, Cl+, SO4+}       {B-, Cl-, SO4- }   ( PC1 of Region 13  PC1  of Region 15 mapping ) 
{As+, Mo-, SiO2+}   {As-, V-, SiO2-}  ( PC2 of Region 13  PC3  of Region 15 mapping ) 
{As-, Mo-, V- }        {Mo-, V-, Fl+ }     ( PC3 of Region 13  PC2  of Region 15 mapping ) 
 

The discovered regions also maximize the cumulative variance captured through 
the first k principal components. The variance values for the top 5-ranked regions in 
experiment 2 are given in Table 6. The global data has a 57% cumulative variance 
which indicates that the attributes in the global data are not very highly correlated. 
But the regions discovered by our approach capture a much higher variance which is 
an indication that our framework successfully discovers regions with highly 
correlated attributes. 

 
Table 6. Cumulative Variance Captured by the first k PCs in Experiment 2 

 
Region Variance Captured Size 

Texas 57.10% 1655 
Region 48 84.81% 30 
Region 28 77.19% 19 
Region 17 73.15% 39 
Region 22 72.30% 16 
Region 32 70.39% 44 

 
 
 
 
 
 
 
 

One could argue that any method that divides data into sub-regions increases the 
variance captured since lower numbers of objects are involved. This is true to some 
extend but additional experiments that we conducted suggest that the regions 
discovered by the region discovery framework are significantly better than randomly 
selected regions. In particular, we ran experiments where we created regions at 



random and computed the variance captured for those regions. Due to space 
limitations, we only provide a brief summary of the results here. The highest variance 
captured using random regions is 72% with 16 objects whereas in our approach it is 
84% with 30 objects. In general, the regional variance captured using our framework 
was at an average 9.2% higher than the variance captured by random regions.   

4.4. Post Processing via Regression Analysis Results 

The post processing phase first applies regression analysis to the global data by 
selecting Arsenic as the dependent variable and the other 7 chemical variables as the 
independent variables. The OLS regression result shows that Molybdenum, 
Vanadium, Boron, and Silica increase the arsenic concentration, but Sulfate and 
Fluoride decrease it Texas-wide. Next, it retrieves the list of the top-ranked regions 
and applies the regression analysis to regions. The result of the global regression and 
one example of regional regression analysis are shown in Tables 7 and 8, respectively. 

 

Table  8. Regression Result for Region 10 
 

As Coef. Std.Er t P>|t| 
Mo 0.7297 0.2731 2.67 0.013 
V 0.234 0.031 7.52 0 
B -0.007 0.004 -1.74 0.094 
Fl -4.996 3.4254 -1.46 0.156 

SiO2 -0.071 0.0886 -0.8 0.428 
Cl 0.0138 0.0071 2.91 0.066 

SiO4 -0.019 0.0142 -3.34 0.192 
const 7.3982 4.0134 1.84 0.076 
R-squared –Value                             95.03% 
Adjusted R-squared Value            93.73% 

Table  7. Regression Result for Global Data 
 

As Coef. Std.Er t P>|t| 
Mo 0.101 0.0204 4.95 0 
V 0.211 0.0048 43.55 0 
B 0.0027 0.0003 9.49 0 
Fl -0.6693 0.159 -4.34 0 

SiO2 0.0726 0.0115 6.3 0 
Cl 0.0008 0.0008 0.97 0.331 

SiO4 -0.001 0.0007 -1.87 0.062 
const -1.696 0.4902 -3.46 0.001 
R-squared –Value:                                 68% 
Adjusted R-squared Value                 68% 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 



Discussion: R-Squared value is equal to 68.3% for the state of Texas, which means 
68.3% of the arsenic variance can be explained by other 7 chemical variables for 
Texas-wide data. R-squared value increased from 68% to 93.73% in Region 10, 
which indicates that in this region there exist stronger correlations between arsenic 
and the other variables. Also globally, Chloride (Cl) and Sulfate (SiO4) are not 
significant as predictors for arsenic concentration; but in this region, they are 
significant. Conversely, Boron, Fluoride, and Silica are globally significant and 
highly correlated with arsenic, but this is not the case in Region 10. This information 
is very crucial to domain experts who seek to determine the controlling factors for 
arsenic pollution, as it can help to reveal hidden regional patterns and special 
characteristics for this region. For example, in this region, high arsenic level is highly 
correlated to high Sulfate and Chloride levels, which is an indication of external 
factors that play a role in this region, such as a nearby chemical plant or toxic waste. 
Our framework is able to successfully detect such hidden regional correlations.  

Our approach can be viewed as using different regression function for different 
regions which shows similarity to the approach used in Geographically Weighted 
Regression (GWR) [12]. In GWR, a weight function which is a function of spatial 
location is used to differentiate regression functions for different locations, whereas in 
our work we first discover highly correlated regions maximizing a PCA-based based 
fitness function and then create regional regression functions for each region.  

The global and regional regression results show that the relationship of the arsenic 
concentration with other chemical concentrations spatially varies and is not constant 
over space which proves the need for regional knowledge discovery. In other words, 
there are significant differences in arsenic concentrations in water wells across 
regions in Texas. Some of these differences are found to be due to the varying impact 
of the independent variables on the arsenic concentration. In addition, there are 
unexplained differences that are not accounted for by our independent variables, 
which might be due to external factors, such as toxic waste or the proximity of a 
chemical plant.  

4.5. Implementation Platform and Efficiency 

The components of the framework described in this paper were developed using an 
open-source, Java-based data mining and machine learning framework called 
Cougar^2[6], which has been developed by our research group. All experiments were 
performed on a machine with 1.79 GHz of processor speed and 2GB of memory.  

The parameter β is the most important factor with respect to run time. The run 
times of the experiments with respect to the β values used are shown in Figure 3. For 
example for β=1.01, it takes about 30 minutes to run the experiment, whereas it takes 
about 2 hours to run for β =1.6.  

We observed that more than 70% of the computational resources are allocated for 
determining regional fitness values when discovering regions. Even though our 
framework repeatedly applies PCA to each explored region combination until no 
further improvement is made, it is still efficient compared to approaches in which 
PCA is applied that  many times using other statistical tools.  



 
 

Fig. 3. Run Times vs. β Values  

5   Conclusion 

This paper proposes a novel framework to discover regions and automatically extract 
their corresponding regional correlation patterns that are globally hidden. Unlike other 
research in data mining that uses PCA, our approach centers on discovering regional 
patterns and provides a comprehensive methodology to discover such patterns. The 
proposed framework discovers regions by employing clustering algorithms that 
maximize a PCA-based fitness function and our proposed post-processing techniques 
derive regional correlation relationships which provide crucial knowledge for domain 
experts. We also developed a generic pre-processing method to select the best k value 
for the PCA-based fitness function for a given dataset.  

Additionally, a new similarity measure is introduced to estimate the structural 
similarity between regions based on correlation sets that are associated with particular 
regions. This similarity measure is generic and can be used in other contexts when 
two sets of objects have to be compared based on other information (e.g. 
eigenvectors) that has been derived from their first k principal components.  

The proposed framework was tested and evaluated in a  real world case study that 
analyzes regional correlation patterns among arsenic and other chemical 
concentrations in Texas water wells. We demonstrated that our framework is capable 
of effectively and efficiently identifying globally hidden correlations among variables 
along with the sub-regions that are interesting to the domain experts.  

As far as the future work is concerned, we are planning to conduct extensive 
comparative study of our regional patterns and the co-location patterns reported in 
[10] for the same dataset. We are also working on developing different PCA-based 
fitness functions that put more emphasis on the dependent variable with the goal of 
developing regional regression techniques.  
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