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Abstract. Analyzing trajectories is important and has many applica-
tions, such as surveillance, analyzing tra�c patterns and hurricane path
prediction. In this paper, we propose a unique, non-parametric trajec-
tory density estimation approach to obtain trajectory density functions
that are used for two purposes. First, a density-based clustering algo-
rithm DENTRAC that operates on such density functions is introduced.
Second, unique post-analysis techniques that use the trajectory density
function are proposed. Our method is capable of ranking trajectory clus-
ters based on di�erent characteristics of density clusters, and thus has
the ability to summarize clusters from di�erent perspectives, such as
the compactness of member trajectories or the probability of their oc-
currence. We evaluate the proposed methods on synthetic tra�c and
real-world Atlantic hurricane datasets. The results show that our simple,
yet e�ective approach extracts valuable knowledge from trajectories that
is di�cult to obtain with other approaches.

Keywords: Spatial Data Mining, Non-Parametric Density Function,
Mining Spatial Trajectory Datasets, Density-based Trajectory Clustering

1 Introduction

We are living in a digital world where data is generated and collected ubiqui-
tously. One large portion of this data captures motion patterns of objects and
events over time. Summarizing and understanding motion patterns is important
as it is instrumental to solve many important problems in our society, such as
for understanding the spread of the bird �u or for better road planning. Conse-
quently, the application of data mining techniques to trajectory data has gained
signi�cant importance in recent years.

This paper centers on clustering spatial trajectories and on the post-analysis
of trajectory clusters. Most recent work in this �eld [9,14,8,11] proposes novel
trajectory distance functions and then uses traditional clustering algorithms to
cluster the trajectory data. In general, trajectory data can be categorized into
spatio-temporal trajectories that contain spatial information and time and spa-
tial trajectories that solely contain spatial information. The work presented in



this paper solely focuses on mining spatial trajectories. First, a novel density
based clustering algorithm DENTRAC (DENsity based TRAjectory Clustering)
is introduced that operates on trajectory density functions that are generated
using non-parametric density estimation techniques. The density of arbitrary
trajectory in space is computed by summing the in�uences from all trajectories
in the dataset. DENTRAC uses a unique randomized hill climbing procedure
that �nds local maxima of the density function by exposing trajectories to mi-
nor, random changes. Clusters are then formed by grouping trajectories that
are associated with the same local maximum. Second, unique post-analysis for
trajectory clusters are proposed, that compute representative trajectories from
clusters, which estimate the probability of a trajectory belonging to a particu-
lar cluster, and which characterize clusters based on the shape of the density
function. The main contributions of this paper include:

1. A non-parametric density estimation technique for trajectories is proposed.
2. A novel, density-based trajectory clustering algorithm named DENTRAC is

introduced. To the best of our knowledge, DENTRAC is the only trajectory
clustering algorithm that operates on an explicit trajectory density function.

3. Unique post-analysis techniques are proposed that use the trajectory density
function to extract valuable knowledge to characterize spatial clusters.

4. The proposed methods are evaluated on synthetic tra�c and real-world At-
lantic hurricane datasets.

The rest of the paper is organized as follows. Section 2 discusses related work.
Section 3 introduces the trajectory density function, our trajectory clustering
framework and the proposed methods for the post-analysis of trajectory clus-
ters. Finally, section 4 evaluates the proposed trajectory mining techniques and
section 5 summarizes our �ndings.

2 Related work

Distance-based clustering algorithms can be used for trajectory clustering once a
proper distance/similarity measure is de�ned. For instance, Nanni and Pedreschi
[10] proposed a distance function for trajectories and used k-means and hierar-
chical agglomerative clustering techniques to cluster trajectories. Lee et al. [8]
proposed an approach that clusters line-segments �rst; then, from those clusters
sub-trajectories are generated. Pelekis et al.[13] introduced a distance metric for
trajectories using fuzzy sets to model uncertainty of trajectories and to compute
representative, grid-based trajectories for clusters. Morris and Trivedi [9] eval-
uated the trajectory clustering performance of seven clustering algorithms with
six di�erent distance functions on six trajectory datasets.

Researchers also investigated the use of density-based approaches for tra-
jectory clustering. Several DBSCAN[5]-style density-based clustering algorithms
for trajectory clustering have been proposed in the literature. Palma [12] used
DBSCAN to discover interesting places within trajectory datasets. Nanni and
Pedreschi[11] developed a trajectory clustering algorithm called TF-OPTICS



which supports interactive search to �nd the best clustering. BSNTC [14] de-
�nes the density of trajectories using k-nearest neighbor queries. Di�erent from
DBSCAN, DENCLUE [6] uses a non-parametric based density function to clus-
ter the objects in space. However, none of the presented density-based trajectory
clustering algorithms employs non-parametric density functions to enhance the
clustering performance; to �ll this gap, this paper proposes a methodology for
trajectory clustering that operates on non-parametric density functions and it
also proposes a trajectory clustering algorithm called DENTRAC which operates
on the proposed density functions.

3 Trajectory Mining with Density Functions

3.1 Trajectory Density Estimation

In the this section, we introduce a density estimation approach that generates
a density function ψTRDS from a trajectory dataset TRDS. The density of a
trajectory is determined by the in�uence from its neighboring trajectories. The
in�uence of an object on the density of another object can be modeled by a
Gaussian kernel function that gives more weight to the nearby objects and less
weight to objects that are far away. Assume a trajectory TRi in a trajectory
dataset TRDS = {TR1, TR2..., TRn}, the in�uence of a trajectory TRi∈ TRDS
on another trajectory TR is de�ned as:

finfluence(TR, TRi) = e−
d(TR,TRi)

2

2∗σ2 (1)

In the above equation, d is the distance function that measures the distance
between trajectories TR and TRi; di�erent trajectory distance functions can be
used in this generic in�uence function such as the Fréchet distance [2] and the
Hausdor� distance [1].

The parameter σ determines the width of the Gaussian kernel; it determines
how quickly the in�uence of a point on other points decreases with distance. In
our non-parametric density estimation approach, the density ψTRDS(TR) of a
trajectory TR is computed by summing the overall in�uences of all trajectories
in the trajectory dataset TRDS; that is:

ψTRDS(TR) =

n∑
i=1

finfluence(TR, TRi) (2)

3.2 The DENTRAC Trajectory Clustering Algorithm

In this section, a novel clustering algorithm DENTRAC is proposed to cluster
the objects in TRDS based on ψTRDS . As we will see later, di�erent hills of the
density landscape correspond to di�erent clusters and objects that are on the
same hill belong to the same cluster. DENTRAC uses a randomized hill climbing
to identify local maxima of ψTRDS ; the hill climbing procedure is applied sepa-
rately to each object in the dataset to be clustered, creating pairs (u, v) where



u is an object in the dataset and v is the result of the hill climbing process; v
will be called density attractor in the following. Fig. 1 gives an example of a
one-dimensional density function that has been de�ned for a single continuous
attribute whose values range between x1 and x4; as can be seen the density
function has 3 local maxima and DENTRAC will identify 3 clusters that oc-
cupy regions [x1, x2], [x2, x3] and [x3, x4], respectively in the one-dimensional
attribute space. The hill climbing procedure is applied to the objects of the
dataset and objects that are associated with the same density attractor are put
into the same cluster; for example, the objects having round shape form Cluster2.
Finally, it is interesting to compute the volume of a hill, which can be viewed as
a proxy for the likelihood of a cluster; e.g. the depicted volume of Cluster3 can
be computed as follows:

ˆ x4

x3

ψTRDS(x)dx (3)

Fig. 1. A one-dimensional density function

Ideally, if we have two objects u and u′ located on the same hill, the hill climb-
ing procedure should terminate for each object with the same density attractor.
Unfortunately due to rounding errors and other complications, it is very unlikely
that the hill climbing will compute exactly the same density attractor. To cope
with this problem DENTRAC uses a hierarchical, agglomerative clustering algo-
rithm that generates clusters based on the distances between density attractors
v from set of pairs (u, v) that were generated by the hill climbing procedure,
merging clusters that are in close proximity of each other. �close proximity� is
approximated by a density attractor distance threshold named dth, preventing
clusters to be merged whose density attractor distance is above dth. In summary,
the agglomerative clustering algorithm merges objects whose density attractors
are in close proximity of each other. Algorithm 1 gives the pseudo-code for DEN-
TRAC.



Algorithm 1

Input: TRDS, trajectory distance threshold dth

1. Generate ψTRDS

2. D := Ø
3. FOR EACH u ∈ TRDS DO

(a) Apply hill climbing procedure to u that terminates with v;
(b) Add (u, v) to D

4. Apply Agglomerative clustering to D merging clusters whose density attractor
distance is below dth.

5. Return the result of the agglomerative clustering algorithm;

Algorithm 2

Input: trajectory t, radius r "determines neighborhood size"

1. current := t;
2. RUN FOREVER

(a) Create p trajectories TSET in the neighborhood of current;
(b) Let p′ the trajectory in TSET with the highest density;
(c) IF ψ(current) ≥ ψ(p′) THEN EXIT RETURNING current ELSE current :=

p′;

3.3 Hill Climbing Procedure

The goal of the hill climbing procedure is to associate density attractors with
the objects in the dataset. DENCLUE's hill climbing procedure [6] computes
density attractors from point objects by determining the density function max-
imum gradient, and then moves a predetermined step-width in the direction of
the maximum gradient. However, this approach is not feasible for trajectories,
because it is computationally impossible to compute derivatives of the trajectory
density function; in other words, it is infeasible to compute gradients due to the
complexity of trajectories and their associated distance functions. Consequently,
DENTRAC relies on an iterative, randomized hill climbing procedure that gen-
erates p trajectories in the neighborhood of the current trajectory, and continues
this process as long as the trajectory density increases. Algorithm 2 gives the
pseudo-code of the randomized hill climbing procedure.

The hill climbing procedure generates trajectories in the neighborhood of the
current trajectory by conducting small random changes on the current trajec-
tory. This is implemented by randomly inserting, deleting, or changing points
in the trajectory, with new points been selected at random within a radius r of
the modi�ed point. r is an input parameter that determines the granularity of
trajectory changes. Fig. 2 illustrates the three types of change the hill climbing
procedure uses to alter the current trajectory. In particular:



� In the case of replacement a point on the trajectory is picked at random and
replaced with a randomly selected point within the radius r of the picked
point.

� In the case of deletion a randomly selected point is deleted from the trajec-
tory

� In the case of insertion, a insertion point is selected at random and a new
point with a radius r of the selected point is inserted into the trajectory.
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Fig. 2. Three types of change to a trajectory by the hill climbing procedure. (a) re-
placement, (b) deletion and (c) insertion

Fig. 3 demonstrates how the randomized hill climbing procedure works for
two trajectories R and B that end up to be in the same cluster. In this example,
trajectory R and B are assumed to be on the same hill of a density function
and the local maxima of that hill is between the two trajectories. Trajectory R
moved to R′ after several iterations of the hill climbing procedure and eventually
stopped on the top of the density hill denoted by trajectory R”. Similarly, the
trajectory B moved to B′ and �nally stopped at trajectory B” on the top of
the density hill. If the distance between trajectories R” and B” is less than a
prede�ned density attractor distance threshold dth, trajectories R and B will be
in the same cluster.

3.4 Complexity of DENTRAC

The time complexity of DENTRAC depends on the time complexity three fac-
tors:the non-parametric density estimation function, the hill climbing procedure
and the agglomerative clustering algorithm that merges the density attractors.
The density function estimates the density of a trajectory by summing all in�u-
ences from other trajectories in the dataset. Thus the complexity for the density
estimation function is O(n · O(D)) where n is the number of trajectories and
O(D) is the time complexity of the trajectory distance function. An iteration in
the hill climbing procedure creates p trajectories randomly in the neighborhood
of the current trajectory and their density are compared with that of the current
trajectory; If, at an average, it takes k iterations for this procedure to converge
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Fig. 3. An example of applying the randomized hill climbing procedure to two trajec-
tories to �nd density attractors.

to its density attractor, the density function will be evaluated p · k times. Since
the hill climbing procedure will be performed on all trajectories in the dataset,
the overall time complexity is O(p ·k ·n2 ·O(D)). After the density attractors are
computed, a distance matrix between all density attractors can be pre-computed,
the complexity for generating the distance matrix is O(n2 · O(D)).Finally, the
single-link agglomerative clustering algorithm merges pairs of clusters in each
iteration and has a complexity of O(n2)�merge-candidates are determined by
accessing the pre-computed distance matrix. Putting all things together, the time
complexity for ihe DENTRAC algorithm is O(p · k ·n2 ·O(D)+n2 ·O(D)+n2).

3.5 Post Analysis for Trajectory Clusters

After clusters have been obtained by DENTRAC, the question arises how those
clusters can be utilized to extract useful knowledge for domain experts. In this
subsection, we will introduce computational procedures, measures and displays
that create useful summaries of clustering results. In Section 5 we will demon-
strate how these post-analysis techniques can be used to create valuable back-
ground knowledge for hurricane and tra�c trajectories.

An issue�that has been excessively explored by past research�is to generate
summary trajectories for the objects belonging to a cluster. In general, clusters
partition a given attribute space into disjoint regions. In our approach, the den-
sity attractor is a unique choice as a cluster summary as it represents the most
likely trajectory for the region of the trajectory space that is occupied by the
cluster. Moreover, density attractors can be e�ectively computed from a density
function without the need to introduce complicated averaging procedures, as
the sweeping procedure that has been proposed by Lee et al. [8]. Another useful
choice as a summary is the cluster medoid�the member in a cluster that has the
smallest distance to the other objects in the cluster. A cluster medoid identi�es
a representative of the most frequent group in the cluster. However medoids lack
the �averaging� capabilities that are typically associated with cluster summaries.
So far, our analysis ignored the density of the objects in the cluster that itself



provides valuable information; a higher density indicates a higher likelihood of
the trajectory to occur. From individual densities, we can compute average den-
sities of the objects that belong to a cluster and it is also worthwhile analyzing
the relationship between cluster average density and the density of the density
attractors, which indicates how close the objects in the clusters are to the lo-
cal maximum associated with the cluster. As our clustering approach creates
clusters that solely include objects on a single hill of the density functions, high
di�erences between density attractor density and average density indicate that
most objects in the cluster are on the foot of the hill, whereas small di�erences
indicate that objects in the cluster are near the top of a hill.

Due to the fact that density functions assess likelihoods, other more unique
summaries can be created from clusters that are generated from density func-
tions. For example, we might be interested to rank hurricane trajectory clusters
based on the likelihood that hurricanes in a particular group occur in the future
based on past experience; this capability would come in very handy for predict-
ing future hurricanes. We claim that such a ranking can be performed, although
there are multiple approaches to do that. The �rst and most natural choice is
to rank clusters based on the density of their members and density attractors.
However, just using the elevation ignores other characteristics of a particular
density function, most importantly the density volume of the hill; e.g. we could
have a very steep hill that occupies a very small area of the attribute space
and a slightly lower maximum density very big hill that occupies a large por-
tion of the attribute space; shouldn't the latter cluster that is associated with a
very big hill be considered more important to characterize frequently occurring
hurricanes? This raises the question, how do we measure the density volume of
the hill? The challenge is to come with a size measure for the portion of the
attribute space a cluster occupies and to deal with the fact that the value of the
density function changes as we move in the spatial region that is occupied by
the cluster. In general, as clusters occupy a larger regions of the attribute space
their members have larger intra attribute distances; therefore, we propose the
following measure to assess the volume of their density function hill:

De�nition 1. Let C be a cluster, dintra(C) is the average intra cluster distance

of C and ψ(C) is the average object density of cluster C, the density volume of

cluster C is de�ned as:

DensityV olume(C) = dintra(C) ∗ ψ(C) (4)

4 Experimental evaluations

In this section, we apply the methodologies described in section 3 to an arti�cial
tra�c dataset and a hurricane dataset. We used Hausdor� distance[1] as the
distance function in the following experiments. Unfortunately, there is no well-
accepted measure for the quality of trajectory clustering. The distance-based
measures used for traditional clusters are not suitable for evaluating trajectory
clustering because they are biased to the trajectory distance function being used.



To evaluate our approach, we use a K-Medoids [7] style trajectory clustering al-
gorithm taking the trajectory distance measures as an input as the baseline algo-
rithm. We visually compare the DENTRAC clustering results with the baseline
results to illustrate the improvement of DENTRAC over the baseline algorithm;
moreover, some results will be evaluated using visual inspection

4.1 Datasets

We use one synthetic dataset and one real-world dataset. The Oldenburg tra�c
dataset is a synthetic dataset generated by a network-based moving objects
generator [4] which is downloaded from the Internet1. The dataset contains 501
trajectories and 14,807 points. This dataset simulates the traces of 501 vehicles
moving in the street network of city Oldenburg, Germany. We con�gured the
dataset generator to create heavy tra�c on the highway system and streets near
the center of the city. Statistics of the dataset is given in Table 1.

Table 1. Statistics of the Oldenburg dataset

No. of Trajectories 501

Hausdor� Distance Between Trajectories

Maximum 26292.95

Minimum 206.46

Average 10133.92

Standard Deviation 4291.36

The real-world dataset consists of tracks of historical tropical storms and
hurricanes in the north Atlantic basin2 from year 1950 to 2008. A trajectory is
a sequence of center locations of a storm that were recorded every 6 hour (0000,
0600, 1200, 1800 UTC). This dataset has 638 trajectories and 19,788 points.

The experiments were run on a PC equipped with the Intel i7 920 2.67GHz
quad-core CPU and 12GB memory. Programs are implemented in Java us-
ing the open source Cougar^2 data mining and machine learning development
framework[3].

4.2 Results for the Oldenburg Tra�c Data

We rank the DENTRAC clusters by the average intra-cluster distance to �nd
clusters of similar tra�c routes. The parameter setting for the DENTRAC clus-
tering algorithm, the hill climbing procedure parameter σ is selected based on
the average k-nearest neighbor distances of the dataset and the K is from 1 to 5

1 The generator and data �les are publicly available at http://www.fh-
oow.de/institute/iapg/personen/brinkho�/generator/

2 Available under �Atlantic Tracks File 1851-2008� at
http://www.nhc.noaa.gov/pastall.shtml#hurdat



(σ = 1400, 1574, 2000, 2244 and, 2446). We also used four di�erent trajectory
density threshold (dth = 0.5σ, 1.0σ, 1.5σand 2.0σ) to get di�erent clustering
results and only the best result (σ = 1574 and dth = 1σ) is presented here due
to the limited space. For the baseline algorithm, we run the k-medoid algorithm
with k=25 for 30 times, each time starts with a di�erent random seed, and the
3 clusters, of the same run, having the lowest average intra-cluster distance are
reported

Fig. 4 is a comparison between clusters generated by the baseline and the
DENTRAC algorithm. Clusters 1, 2 and 3 in the �gure are the lowest intra-
cluster distance clusters generate by each algorithm (intra-cluster distance: clus-
ter 1 < cluster 2 < cluster 3). Table 2 listed the size and the average intra-cluster
distance of the clusters. The trajectories picked up by the same DENTRAC clus-
ter are more similar and closer in distance to each other than trajectories of the
baseline cluster. Furthermore, most trajectories in the DENTRAC clusters share
a part of the section with other trajectories in the same cluster which is not the
case for the baseline clusters. The main reason is that the DENTRAC groups
trajectories into one cluster if their density attractors are close. Trajectories
sharing the same path are more likely to have the same density attractor be-
cause the overlapped section of the trajectories is normally a local maximum in
a density function. Consequently, they will be grouped into the same cluster by
DENTRAC.

Fig. 4. Visualizations of clusters for the baseline (left) and DENTRAC (right) on the
Oldenburg dataset. (Red lines are medoids in the left �gure and density attractors in
the right �gure)

4.3 Post analysis by cluster average density and the density of

density attractors

In this experiment, we perform the post-analysis on the DENTRAC clusters
created in the previous section by ranking the clusters based on the density of
density attractor to �nd clusters passing through the busiest sections of streets
in the Oldenburg tra�c dataset.



Table 2. The size and average intra-cluster distance (Hausdor� Distance) for clusters
in Fig. 4.

Cluster size Average Intra-cluster distance

baseline-1 14 2910

baseline-2 15 3609

baseline-3 13 4882

DENTRAC-1 7 1462

DENTRAC-2 16 2706

DENTRAC-3 9 2881

The trajectories passing the high tra�cs areas in our synthetic Oldenburg
dataset are identi�ed by the clusters of high density attractor densities as shown
in Fig. 5. Fig. 5 visualizes the top 3 clusters ranked by the density attractor den-
sity. Blue trajectories are cluster members and the red trajectory is the density
attractor of the cluster, the rest of the dataset are plotted in light gray color
as a background. The �rst cluster consists of trajectories using the highway on
the west-side of the city; the second and third clusters are trajectories passing
the major roads around the center of the city Oldenburg. Moreover, the den-
sity attractors shown in the �gure further distinguish the di�erence between the
second and the third cluster. The density attractor of the second cluster is on
the road of the east-side of the downtown whereas the density attractor of the
third cluster is located on the street of the southern-east of the downtown. This
di�erence clearly points out that the trajectories of the second and third clusters
are actually grouped by di�erent dense tra�c areas.

Fig. 5. Member trajectories (thin blue) and density attractors(thick red) of the top
3 clusters (left to right) ranked by the density attractor density for the Oldenburg
dataset.

The x-axis in the Fig. 6 is the average intra-cluster distance and the y-
axis is the density di�erence between the density of density attractor and the
average cluster density (normalized by the maximum density attractor density).
It shows that the density di�erence is positive correlated to the average intra-
cluster distance and the correlation coe�cient is 0.757. The di�erence between
the density attractor density and the average cluster density of a cluster is a



good indicator for the level of stretched out of the member trajectories in a
cluster. It is because the smaller the di�erence is, the less changes are needed for
a trajectory to reach its density attractor during the hill climbing procedure. In
other words, these trajectories are closer to the top of a hill of a density function
and intuitively the average distance between them should be therefore closer to
the density of the density attractor.

Fig. 6. Positive linear relationship between the average intra-cluster distance and the
density di�erence between the density attractor and the average cluster density.

4.4 Results of Atlantic Hurricane Tracks Data

We applied DENTRAC to the hurricane tracks dataset to �nd the most likely
hurricane zones and compare our results with the clustering result generated by
TRACLUS, as well as the �ground truth� from the National Hurricane Center
(NHC). According to the NHC, the peak hurricane season for the Atlantic Basin
is from mid-August to late October. Historically, September is the month that
has more hurricanes than any other month. The upper-left �gure3 in Fig. 7 was
obtained from the website of NHC, and is the most likely zones and typical hur-
ricane tracks in September. The upper-right �gure is the frequent sub-trajectory
clustering of the same dataset created by TRACLUS (taken directly from the
TRACLUS paper [8]4). The �gures on the second row are visualizations of the
top three clusters created by DENTRAC (σ = 4.0, dth = 4.0, lsdt = 0.5) ranked
by the density volume de�ned by formula 4. The input dataset for DENTRAC
were trajectories formed by connecting high density line-segments (top 50% in

3 Climatological Areas of Origin and Typical Hurricane Tracks by Month from the
National Hurricane Center, http://www.nhc.noaa.gov/pastpro�le.shtml#ori

4 We were not able to obtain the TRACLUS source code from the authors, thus we
use the �gure they published in their paper for comparison.



this example) that were obtained by applying an additional pre-processing step
to the original dataset.

Comparing the clusters of DENTRAC with the �gure downloaded from NHC,
we can see that there is a good match between the 3 clusters and the most likely
zones (orange zones) in NHC's �gure. In particular, the trajectories in the �rst
cluster are away from the coast and the trajectories in the third cluster are closer
to the coast. The same pattern of hurricane tracks can be found in the NHC's
�gure too. The comparison above indicates that we can assess the likelihood of
trajectories by ranking clusters based on their density volume.

The red lines in the upper-right �gure are representative trajectories of clus-
ters found by TRACLUS. There are seven frequent sub-trajectories clusters pre-
sented in the TRACLUS's �gure and their representative trajectories are some-
what similar to the prevailing hurricane tracks depicted by the NHC's �gure
(white arrow-lines). However, we would like to point out that the results ob-
tained by DENTRAC with the proposed post processing technique can provide
more information than the cluster representatives created by TRACLUS:

1. The density volume of the DENTRAC clusters can be used to rank the
probability of the hurricane clusters and this ranking cannot be provided by
TRACLUS.

2. The member trajectories of the DENTRAC cluster are on the same hill of
the density function so the space they occupied depicts the region covered by
the high density trajectories. In the hurricane experiment, they represent the
most likely zone of hurricanes. The TRACLUS's cluster representatives are
not able to capture the concept of a zone that is covered by the trajectories
of multiple hurricanes.

5 Conclusion and future works

In this paper, we proposed a novel density-based trajectory clustering algorithm
DENTRAC that operates on a non-parametric trajectory density function. DEN-
TRAC uses a unique, randomized hill climbing algorithm that exposes trajec-
tories to small random changes to �nd local maxima of the density function.
To the best of our knowledge, DENTRAC is the only trajectory clustering al-
gorithm, operating on an explicit trajectory density function. Moreover, post-
analysis techniques that extract meaningful summaries from density clusters
and the underlying density function were proposed and evaluated. Using our
non-parametric density based approach, we are able to use density attractors
as the representative trajectory for trajectory clusters. We also demonstrated
how characteristics of the density function, such as the density volume of a local
maximum of the density function, can be used to obtain probability rankings
of clusters. Finally, the experimental evaluation showed that by using our ap-
proach meaningful clusters and summary data can be obtained for trajectories
and they provide valuable background knowledge with respect to the trajectories
analyzed.



Fig. 7. NHC Visualizations of the most likely zones and typical hurricane tracks for
September (upper-left), the TRACLUS [8] frequent sub-trajectory clustering result
(upper-right), and the top 3 frequent sub-trajectory clusters ranked by the density
volume generated by DENTRAC (2nd row).

Future work of this research is to embed other distance functions such as the
Fréchet distance function, into our approach. More works can also be done in
the area of trajectory and sub-trajectory likelihood assessment and prediction.
A more long term plan is to investigate techniques that increase the speed of the
hill climbing procedure employed; particularly, if trajectories consist of a large
number of poly-lines as the current hill climbing procedure is quite slow in such
a case.
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