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Abstract The motivation for regional association rule mining and scoping is driven
by the facts that global statistics seldom provide useful insight and that most relation-
ships in spatial datasets are geographically regional, rather than global. Furthermore,
when using traditional association rule mining, regional patterns frequently fail to
be discovered due to insufficient global confidence and/or support. In this paper,
we systematically study this problem and address the unique challenges of regional
association mining and scoping: (1) region discovery: how to identify interesting
regions from which novel and useful regional association rules can be extracted;
(2) regional association rule scoping: how to determine the scope of regional associa-
tion rules. We investigate the duality between regional association rules and regions
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where the associations are valid: interesting regions are identified to seek novel
regional patterns, and a regional pattern has a scope of a set of regions in which the
pattern is valid. In particular, we present a reward-based region discovery framework
that employs a divisive grid-based supervised clustering for region discovery. We
evaluate our approach in a real-world case study to identify spatial risk patterns from
arsenic in the Texas water supply. Our experimental results confirm and validate
research results in the study of arsenic contamination, and our work leads to the
discovery of novel findings to be further explored by domain scientists.

Keywords Association rule mining and scoping · Region discovery · Clustering ·
Spatial data mining

1 Introduction

Rapid advances in databases and data acquisition technologies have resulted in an
immense amount of spatial data. Efficient knowledge discovery requires various
spatial data mining techniques to automatically find novel and useful patterns from
large-scale spatial datasets [15, 20, 23, 29, 35, 37, 40, 41, 47]. Of particular interests
to scientists is to find scientifically meaningful regions and their associated patterns,
for example, identification of earthquake hot spots, revealing high-risk zones that
particular cancers associated with environmental pollutions, and the detection of
crime zones.

The motivation for regional association rule mining and scoping is driven by the
facts that global statistics seldom provide useful insight and that most relationships in
spatial datasets are geographically regional, rather than global. It has been pointed
out in the literature [19, 33, 39] that “whole map statistics are seldom useful,” that
“most relationships in spatial data sets are geographically regional, rather than global”
and that “there is no average place on the Earth’s surface”—a county is not a
representative of a state, and a state is not a representative of a country. Therefore,
it is not surprising that domain experts are most interested in discovering hidden
patterns at a regional scale rather than a global scale [19, 31, 32].

Here is an example to illustrate the discrepancies between regional and global
associations. Table 1 describes the well data of a county that includes Zone A and
Zone B. let us consider an association rule that suggests a well X, up to 251.5-ft deep,
is associated with dangerous arsenic concentration as follows,

depth(X, 0 − 251.5) → arsenic_level(X, dangerous).

Assuming the minimum confidence threshold is 70%, this pattern would not have
enough confidence ( 1,000

2,000 = 50% < 70% threshold) to be identified globally in the
county. However, the same rule holds in Zone A because its confidence, 400

500 =
80%, is above the 70% threshold. Notice that this rule does not hold in Zone
B, due to its low confidence ( 600

1,500 = 40%). Hence a well up to 251.5-ft deep is
positively associated with high arsenic contamination in Zone A, but is negatively
associated with dangerous arsenic concentration at the county level. This reversal
of an association in the global dataset is also known as spatial heterogeneity [41] or
Simpson’s Paradox in statistics [14].
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Table 1 Contingency tables
between well depth and
arsenic concentration

Well depth Dangerous Safe Total

(0, 251.5] 1,000 1,000 2,000
(251.5, ∞) 1,200 800 2,000
Total 2,200 1,800 4,000

ZoneA (0, 251.5] 400 100 500
(251.5, ∞) 1,050 450 1,500

ZoneB (0, 251.5] 600 900 1,500
(251.5, ∞) 150 350 500
Total 2,200 1,800 4,000

Unfortunately, traditional association rule mining frequently fails to discover
regional patterns due to insufficient global confidence and/or support. A common
approach to alleviate the problem is to use a small support threshold. However,
this approach usually suffers from a combinatorial explosion in the number of
rules generated. Furthermore, for a given dataset, the number of regions as well
as the regions themselves are not known a priori. This raises two questions: how
to measure the interestingness of a set of regions and how to search for interesting
regions. One popular approach is to select regions to be mined based on a previously
given structure, such as a grid structure using longitude and latitude, or based
on political/demographical boundaries, such as counties within a state. But the
boundaries of the so-constructed regions usually do not match the natural boundaries
of the interesting patterns.

Another unique phenomenon is that regional association rules, by definition, only
hold in a subspace but not in the global space; therefore, regional association rules
may only be discovered in a particular subspace of the global space. In this paper,
we systematically study this problem and address the special challenges for regional
association mining and scoping: (1) region discovery: how to identify interesting
regions from which novel and useful regional association rules can be extracted;
(2) regional association rule scoping: how to determine the scope of regional associ-
ation rules. Our preliminary work on regional association rule mining was published
in [10] and on regional association rule scoping was published in [11]. In this paper,
we integrate two originally separated procedures and investigate the duality between
regional association rules and regions in which the associations are valid. Interesting
regions are identified to seek novel regional patterns, and a regional pattern has a
scope that is the set of regions in which the pattern is valid. We design and implement
a reward-based framework, utilizing plug-in fitness functions to accomplish two
complementary objectives: seeking regions to discover regional association rules, and
then identifying regions in which regional association rules are valid. Such regions
provide a quantitative measure of how significant a regional association rule is in the
global space.

Our contributions To our best knowledge, this paper is the first attempt to propose
a structured framework for regional association rule mining and scoping. Firstly,
we present a reward-based region discovery framework to search for regions that
maximize an external fitness function. We formulate region discovery as a clustering
problem to maximize a fitness function that incorporates what domain experts
consider interesting. Each cluster is assigned a “reward” value that reflects the
cluster’s interestingness. In this work, the region discovery framework is used to
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identify regions from which regional association rules are mined, and the framework
is used to determine the scope of a regional association rule as well. Secondly, we
have designed and implemented a new divisive, grid-based supervised clustering
algorithm to identify interesting regions, corresponding to different fitness functions.
The clustering algorithm searches for clusters to find interesting regions of arbitrary
shapes and scales. Finally, we empirically evaluate the effectiveness of our frame-
work in a real-world case study that centers on identifying spatial risk patterns related
with arsenic pollution in the Texas water supply. Our experimental results not only
confirm and validate research results in the geosciences, but also lead to the discovery
of novel findings that need to be further studied by domain scientists.

Figure 1 illustrates the procedure of our approach with a real example from our
case study. Interesting regions are identified using a grid-based supervised clustering
algorithm and a fitness function designed for the identification of arsenic hot
spots. An interesting association rule a, Wells with nitrate concentration lower than
0.085 mg/l have dangerous arsenic concentration, is discovered from an arsenic hot
spot area in the South Texas with 100% confidence. The scope of the association rule
a is further identified using another fitness function designed for regional association
rule scoping. The scope of the associate rule is a larger area that aligns with the
Texas Gulf Coast. Further study shows that this regional association rule a cannot be
discovered at the Texas state level due to its insufficient confidence (less than 50%)
on a global scale.

The reminder of this paper is organized as follows. Section 2 reviews related work.
Section 3 introduces the framework of regional association rule mining and scoping.

Fig. 1 An example for
regional association rule
mining and scoping
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Section 4 describes the algorithms used in the framework. Section 5 presents the
experimental results of a real-world application on identifying arsenic spatial risk
patterns in the Texas water supply, and we conclude the paper in Section 6.

2 Related work

The areas most relevant to our work are on hot-spot discovery and spatial association
rule mining.

2.1 Hot-spot discovery

Hot spots are traditionally defined as the clusters of “more than usual interest,
activity, or popularity” with respect to spatial coordinates [28]. Hot-spot discovery
has been investigated in spatial statistics and data mining research.

In spatial statistics, detection of hot spots using a variable resolution approach
[7] is investigated to minimize the effects of spatial superposition. In [44], a region-
growing method for hot-spot discovery is described, which selects seed points first
and then grows clusters from these seed points by adding neighbor points as long as
a density threshold is satisfied. The definition of hot spots is extended in [24] using
circular zones for multiple variables. Getis and Ord propose a popular method to find
hot spots in spatial datasets relying on the G∗ Statistic [18, 34]. G∗ Statistic detects
local pockets of spatial association, and the value of G∗ depends on an a priori given
scale of the packets and is calculated for each object individually. Visualizing the
results of G∗ calculations graphically reveals hot spots (aggregates of objects with
values of G∗ higher than expected) and cold spots (aggregates of objects with values
of G∗ lower than expected). Note that such aggregates are not formally defined
clusters since the G∗-based method has no built-in clustering capabilities. Instead,
hot spots are inferred from visualization and manual selection.

An alternative approach for hot-spot discovery relies on clustering in data mining.
Wang et al. [47] introduce a “region-oriented” clustering algorithm to select hot
spots to satisfy certain conditions such as density. Their approach uses statisti-
cal information, for example, means and standard deviations, instead of a fitness
function to evaluate a cluster. Eick et al. [15, 16] propose Supervised Clustering
to maximize cluster purity while keeping the number of clusters low. This paper
applies Supervised Clustering to a new problem to find interesting regions (hot spots)
that maximize a given fitness function. In this paper, we define two plug-in fitness
functions for hot-spot discovery with respect to a class attribute and for identifying
the scope of a regional association rule, respectively.

2.2 Spatial association rule mining

Spatial association rule mining [5, 23, 27] applies association rule mining [1] to spatial
datasets. Extended from the definition of traditional association rule mining, a spatial
association rule takes the form of

P1 ∧ P2 ∧ ... ∧ Pm → Q1 ∧ Q2 ∧ ... ∧ Qn (sup%, con%).
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It denotes an association relation among a set of predicates Pi (i = 1, ..., m) and
Q j ( j = 1, ..., n), containing at least one spatial predicate. Spatial predicates may
represent topological relations among spatial objects (e.g., intersecting, containing),
or indicate a spatial orientation (e.g., north, left). The support of the rule (sup%)
measures the percentage of transactions containing both the antecedent and con-
sequent of the rule. The confidence of the rule (con%) indicates that con% of
transactions satisfy both the antecedent and the consequent of the rule. A rule
P1 ∧ P2 ∧ ... ∧ Pm → Q1 ∧ Q2 ∧ ... ∧ Qn is strong if sup% and con% satisfy the
minimum support and minimum confidence thresholds.

A common strategy used in spatial association rule mining is to divide the problem
into three subtasks:

1. Item representation and transaction definition define “items” and “transactions”
for spatial datasets.

2. Frequent itemset generation find all the itemsets that satisfy the minimum
support threshold.

3. Rule generation construct rules from the frequent itemsets that satisfy the
minimum confidence threshold.

Apriori-style [1] association mining algorithms are often used in Subtasks 2 and 3.
These type of algorithms require objects to be described by categorical attributes.
Therefore, continuous attributes have to be discretized in Subtask 1, the step of
data preprocessing. A transaction is not naturally defined in spatial space. If spatial
association rule discovery is restricted to a reference feature (such as cities or wells),
then transactions can be defined using the instances of this reference feature, as
discussed in [23]. Our work adopts the same transaction model.

A daunting problem of spatial association rule mining, especially in real-world
applications, is the huge number of generated patterns. Many associations are either
already known geographic dependencies or explicitly represented in geographic
databases. For example, that gas stations usually locate at road intersections is a well-
known and uninteresting association. In order to extract nontrivial and interesting
patterns, Borgorny and Sharma et al. [2, 4–6, 38] proposed a set of algorithms to
discard previously known and uninteresting associations, using domain knowledge.
In particular, the geographic dependencies between the target feature type and a rel-
evant feature type are eliminated to reduce the input space for the frequent itemset
generation and previously known and non-interesting geographic dependencies are
further removed at the step of frequent itemset generation. To reduce the number
of uninteresting patterns, we introduce the concept of Supervised Association Rules
(Section 3.1, Definition 1) and seek associations containing the target feature type.

3 The framework for regional association rule mining and scoping

The framework of regional association rule mining and scoping consists of three
steps:

Step 1 Region Discovery: identifying interesting regions for regional association
rules.

Step 2 Regional Association Rule Mining: mining regional association rules among
discovered regions.
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Step 3 Regional Association Rule Scoping: determining the scope of regional
association rules.

In the remaining part of the section, we will first discuss our reward-based method
for region discovery which is closely involved with Steps 1 and 3, and we will formally
define the goal of our framework and formulate the measure of interestingness.

3.1 Region discovery

Our region discovery method employs a reward-based evaluation schema that eval-
uates the quality of the discovered regions. Given a set of regions R = {r1, . . . , rk},
identified from a spatial dataset O = {o1, . . . , on}, the fitness of R, q(R), is defined
as the sum of the rewards obtained from each region r j ( j = 1 . . . k):

q(R) =
k∑

j=1

(i(r j) × size(r j)
β) (1)

where i(r j) is the interestingness measure of a region r j, a quantity based on domain
interest to reflect the degree to which the region is newsworthy. Our reward-based
method seeks a set of regions R such that the sum of rewards over all of its constituent
regions is maximized. size(r j)

β (β > 1) in q(R) increases the value of the fitness
nonlinearly with respect to the number of objects in O belonging to the region r j.
A region reward is proportional to its interestingness, but given two regions with the
same value of interestingness, a larger region receives a higher reward to reflect a
preference given to larger regions.

We employ clustering algorithms for region discovery. A region is a contiguous
subspace that contains a set of spatial objects such that for each pair of objects
belonging to the same region, there always exists a path within this region that
connects them. We search for regions r1, . . . , rk such that:

1. ri ∩ r j = ∅, i �= j, that is, the regions are disjoint.
2. R = {r1, . . . , rk} maximizes q(R).
3. r1 ∪ . . . ∪ rk ⊆ O. The generated regions are not required to be exhaustive with

respect to the spatial dataset O. It is possible that some objects do not belong to
any identified regions; these objects are discarded as outliers due to the lack of
interestingness.

4. r1, . . . , rk are ranked based on their reward values. The higher rewards a region
receives, the more interesting the region is, with respect to the fitness function q.

3.2 Problem formulation

Let O be a spatial dataset, S = {s1, s2, ..., sl} be a set of spatial attributes, A =
{a1, a2, ..., am} a set of non-spatial attributes, and CL = {cl1, cl2, ..., cln} a set of class
labels. Let

I = S ∪ A ∪ CL

= {s1, s2, ..., sl; a1, a2, ..., am; cl1, cl2, ..., cln}
be the set of all the items in O, and let T = {t1, t2, ..., tN} be the set of all the
transactions. T can be represented as a relational table, which contains N tuples
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conforming to the schema I (I contains l + m + n items). An item i ∈ I is a binary
variable whose value is 1 if the item is presented in ti (i = 1, ..., N) or 0, otherwise.
Consequently, the set of transactions T is classified based on the given class structure
CL.

Our framework leads to a class-guided generation of association rules that sheds
more light on the patterns related to the given class structure. We define such rules
as supervised association rules.

Definition 1 (Supervised Association Rule) A supervised association rule a is of the
form P → Q, where P ⊆ I, Q ⊆ I, P ∩ Q = ∅, and (P ∪ Q) ∩ CL �= ∅.

The rule a holds in the O with the confidence conf and the support sup:

sup(P → Q) = |P ∪ Q|
N

conf (P → Q) = |P ∪ Q|
|P|

where | | denotes the number of elements in a set. A supervised association rule
is strong if it satisfies user-specified minimum support (min_sup) and minimum
confidence (min_conf ) thresholds: sup(P → Q) ≥ min_sup and conf (P → Q) ≥
min_conf .

The goal of regional association rule scoping is to compute a set of regions where
a given association rule is valid. The scope of a regional association rule represents
the spatial impact of this regional pattern. We give formal definition of the scope of
an association rule below.

Definition 2 (Scope of an Association Rule) The scope of an association rule a is
a set of regions in which the association rule a satisfies the min_sup and min_conf
thresholds.

Given these definitions and nomenclature, the problem of regional association
rule mining and scoping can be formulated as follows.

Find interesting regions, supervised association rules from the discovered re-
gions, and the scope of regional association rules.

Given an itemset I, a classified transaction set T, a set of fitness functions for
different measure of interestingness.

3.3 Measure of interestingness

The reward-based framework is designed to support many plug-in interestingness
functions, corresponding to various domain interests. The framework utilizes the
duality between regions and regional association rules. The framework first identifies
“hot” regions using the interestingness function ihotpot_coldspot. After strong regional
association rules are identified, the scope of those rules are then calculated, using
another interestingness function iscope. Although the same clustering algorithm and
the same dataset are used in two different steps, different sets of regions are returned
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in two steps due to the different measure of interestingness defined in the fitness
functions.

In function ihotpot_coldspot, the measure of interestingness is based on a set of class
labels CL. It rewards regions whose probability distribution of CL significantly
deviates from its priori probability. A region is a hot spot/cold spot if its probability
distribution of CL is significantly higher / lower than an expected probability. The
interestingness function ihotpot_coldspot is calculated based on P(r, CL) and priori(CL),
with the following parameters: η, γ1, γ2, R+, R_, where η > 0,γ1 ≤ 1 ≤ γ2, 0 ≤
R+, R− ≤ 1. P(r, CL) is the probability of objects in a region r belonging to CL;
priori(CL) is the probability of objects in the global dataset O belonging to CL; R+
and R− are the maximum rewards for hot spots and cold spots, respectively.

ihotpot_coldspot

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[ priori(CL) × γ1 − P(r, CL)

priori(CL) × γ1
× R−]

η

i f P(r, CL) < priori(CL) × γ1

[ P(r, CL) − priori(CL) × γ2

1 − priori(CL) × γ2
× R+]

η

i f P(r, CL) > priori(CL) × γ2

0 otherwise

(2)

The parameter η determines how quickly the value of interestingness grows to
the maximum value (either R+ or R−). If η is set to 1, the interestingness function
changes linearly, as shown in Fig. 2. In general, the larger the value for η is, the higher
rewards for purer clusters are. priori(CL) × γ1 and priori(CL) × γ2 determine the
thresholds based on which a reward is given to a cluster.

The following example explains how to calculate the fitness of a clustering schema
X of an example dataset using Eqs. 1 and 2.

Example Let us assume a clustering schema R is evaluated with respect to the class
of interest dangerous (high-level arsenic) concentration with priori(dangerous) =
0.2 and a dataset that contains 1,000 examples. Suppose that the dataset is parti-
tioned into four clusters denoted as X = {x11, x12, x13, x14}, and |x11| = 50, |x12| =
200, |x13| = 400, |x14| = 350. Assume that there are 20, 100, 80, and 0 objects
labeled “dangerous” in the four clusters, respectively. P(x11, dangerous) = 20

50 = 0.4,
P(x12, dangerous) = 100

200 = 0.5, P(x13, dangerous) = 80
400 = 0.2, P(x14, dangerous) =

0
350 = 0. The parameters used in the fitness function are as follows: γ1 = 0.5, γ2 =
1.5, R+ = 1, R− = 1. Hence, priori(CL) × γ1 = 0.2 × 0.5 = 0.1, and priori(CL) ×
γ2 = 0.2 × 1.5 = 0.3. With this setting, a cluster does not receive any reward if its

Fig. 2 The interestingness
function ihotpot_coldspot using
η = 1
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probability of class “dangerous” is not significantly higher or lower than the expected
probability, that is, the value is between priori(CL) × γ1 = 0.1 and priori(CL) ×
γ2 = 0.3. Therefore, x13 receives no reward. The interestingness for the other clusters
using η = 1 is

ihotpot_coldspot(x11) =
(

0.4 − 0.3

1 − 0.3

)1

= 1

7
,

ihotpot_coldspot(x12) =
(

0.5 − 0.3

1 − 0.3

)1

= 2

7
,

ihotpot_coldspot(x14) =
(

0.1 − 0

0.1

)1

= 1.

The fitness value of the clustering schema X calculated using Eq. 1 with β = 1.1 is

q(X) = 1

7
×

(
50

1,000

)1.1

+ 2

7
×

(
200

1,000

)1.1

+0 ×
(

400

1,000

)1.1

+ 1 ×
(

350

1,000

)1.1

= 0.369

Function iscope evaluates the interestingness of a region for a given association rule.
Let a be an association rule, conf (a, r) the confidence of a in a region r, and sup(a, r)
the support of a in r, we define the interestingness iscope(r) of region r with respect to
the given association rule a as follows:

iscope(r) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if sup(a, r) < min_sup × δ1 or
conf (a, r) < min_conf × δ2,

(
sup(a, r)
min_sup

)η1 (
conf (a,r)−min_conf×δ2

1−min_conf×δ2

)η2

otherwise.

(3)

In regional association rule scoping, a region’s reward is proportional to its inter-
estingness, which is determined based on the confidence and support of association
rule a in region r. In Eq. 3, the thresholds min_sup × δ1 and min_conf × δ2 are
introduced to weed out regions in which the association a barely holds. The minimum
support and confidence thresholds prevent the clustering solution from containing
large clusters with low interestingness. Values of parameters η1 and η2 (η1, η2 > 0)

determine the weight to the increment of the support and confidence, respectively.
The measure of interestingness defined in iscope uses “soft” instead of “hard”

thresholds to avoid a harsh crisp effect [3]. For example, with δ1 = δ2 = 0.9, the
function iscope(r) rewards regions as long as their confidence or support thresholds are
within 90% of the hard thresholds min_conf and min_sup. For example, let’s assume
that min_sup = 10%, min_conf = 80%, and that the association rule under consid-
eration has support = 9% and confidence = 100% in a region r′. In this case, instead
of assigning zero reward to region r′, we argue to reward the region because the
confidence of the rule in region r′ is significantly above the min_conf threshold and
its support is just a little bit lower (1%) than the min_sup threshold. Our approach
uses a quantitative evaluation method that assigns a higher degree of interestingness
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and consequently a higher reward to regions whose support and confidence are high
with respect to an association rule of interest. Once an association rule a is discovered
from a particular region r in the first place, we know that region r from which the
association rule a originates, receives a positive reward due to the fact that a satisfies
the support and confidence thresholds in r. Consequently, region r will always be
contained in the set of regions that define the scope of association rule a.

4 Algorithms

4.1 Region discovery

We formulate region discovery as a clustering problem to search for clusters that
maximize domain-specific metrics as described in detail in previous section. Different
measure of interestingness may lead to different sets of identified regions. Conse-
quently, clustering algorithms embedded in the framework should allow for plug-
in fitness functions. However, the use of fitness functions is quite uncommon in
clustering methods, although a few exceptions exist, for example, the hierarchical
clustering algorithm CHAMELEON [22] uses fitness functions to evaluate inter-
connectivity and proximity between two clusters. Furthermore, our region discovery
method is different from traditional clustering methods as it is geared toward finding
interesting places with respect to a given measure of interestingness. Clusters are
ranked based on reward values, and clusters receive low rewards are discarded as
outliers and will not be identified as interesting regions.

We have designed and implemented a new Supervised Clustering algorithm using
Multi-Resolution Grids (SCMRG). SCMRG is a hierarchical, grid-based method
that utilizes a top-down search. The spatial space of the dataset is partitioned into
grid cells. Each grid cell at a higher level is partitioned further into smaller cells at
the lower level, and this process continues as long as the sum of the rewards of the
lower level cells q(R) is not decreased. The regions returned by SCMRG are the
combination of grid cells obtained at different levels of resolution. The number of
clusters, k, is calculated by the algorithm itself.

Algorithm 1 gives the pseudo-code of SCMRG. A queue data structure is used to
store all the cells that need to be processed. The algorithm starts at a user-defined
level of resolution and considers the following three cases when processing a cell c:

Case 1 if the cell c receives a reward, and its reward is greater than the sum of the
rewards of its children (succ(c)) and also greater than the sum of rewards
of its grandchildren, this cell is returned as a cluster by the algorithm (steps
15–17).

Case 2 if the cell c does not receive a reward and its children and grandchildren
do not receive a reward, neither the cell nor any of its descendants will be
labeled clusters (steps 23–29).

Case 3 otherwise, put all the children of the cell c (succ(c)) into a queue for further
processing (steps 18–21, steps 24–28).

The algorithm traverses through the hierarchical structure and examines those
cells in the queue from the higher level. It uses a user-defined cell size as a depth
boundary. Cells smaller than this cell size will not be split any further (step 19, step
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Algorithm 1 The Algorithm of Supervised Clustering using Multi-Resolution Grids
(SCMRG)
Input:

– A fitness function.
– A level of resolution l for the initial grid structure.
– The minimum cell size. A cell will not be divided further if it approaches the

minimum cell size.

Output:

– Discovered regions R = {r1, . . . , rk}.
SCMRG (min_cell_size)
1. Determine a level of resolution l to start with.
2. Assign spatial objects to grid cells.
3. for each cell c at the current level l do
4. enqueue(c, cellQueue).
5. end for
6. while NOT empty(cellQueue) do
7. c = dequeue(cellQueue).
8. r = reward (c). {Calculate reward for the cell.}
9. for each cchild ∈succ(c) do
10. rchildren = rchildren+reward (cchild).
11. end for {Calculate reward for its children.}
12. for each cgrandchild ∈succ(succ(c)) do
13. rgrandchildren = rgrandchildren+reward (cgrandchild).
14. end for {Calculate reward for its grandchildren.}
15. if r > 0 {The cell receives a reward.}
16. if r > rchildren AND r > rgrandchildren

17. label the cell a cluster.
18. else {The cell should be divided further.}
19. if ( the size of each cchild ∈succ(c) > min_cell_size)
20. enqueue(succ(c), cellQueue).
21. end if
22. end if
23. else if r = 0 {The cell does not receive a reward.)
24. if NOT (rchildren = 0 AND rgrandchildren = 0)

25. if ( the size of each cchild ∈succ(c) > min_cell_size)
26. enqueue(succ(c), cellQueue).
27. end if
28. end if {The cell should be divided further.}
29. end if
30.end while
31.Collect all the cluster-labeled cells from different levels.
32.Obtain regions by merging neighbor clusters if it improves the fitness.
33.Return the obtained regions.
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25). Finally, SCMRG collects all the cells that have been identified in Case 1 from
different levels, and merges neighbor clusters if the overall fitness can be improved.
The obtained regions are returned as the result of the SCMRG clustering algorithm
(steps 31–33).

This hierarchical grid-based approach captures clustering information associated
with spatial cells without recourse to the individual objects because we do not drill
down a cell if it does not look so promising (Case 2). SCMRG avoids time-consuming
distance calculation because it uses the grid structure to define the neighborhood of
objects. The computational complexity of SCMRG is thus linear in the number of
grid cells processed, which is usually much less than the number of objects. Thus, the
algorithm is capable of processing large datasets efficiently. The SCMRG algorithm
has some similarity with the STING clustering algorithm [47]. The difference is
that the SCMRG algorithm focuses on finding interesting cells (those receive high
rewards) instead of cells that contain answers to a given query. In addition, SCMRG
only computes cell statistics when needed and not in advance as STING does, thus
saving storage space as well.

The complexity of the SCMRG algorithm is controlled by two factors: the number
of the candidate cells in the queue and the calculation of the fitness. The algorithm
calculates the fitness of all objects inside a cell and a cell will not be further divided
if drilling down cannot improve the current reward. The number of cells of a layer is
less than one-forth of the number of the layer one level lower. The total number of
cells to be processed in the worst case is less than 1.33Nc, where Nc is the number of
the cells at the bottom layer.1 The actual number of cells is usually less than 1.33Nc

due to the reward-based pruning. It is also reasonable to assume that each cell at the
bottom layer likely contains many objects because the reward function is designed to
favor larger cell (a.k.a. larger clusters). In our empirical study, the average cell size
is above 400 objects. In general, the total number of cells is much less than the total
number of objects. Let the cost of fitness calculation is O(q). Thus the complexity of
the algorithm in average is usually much better than O(N) × O(q), where N is the
total number of objects in the dataset.

The example in Fig. 3 explains the procedure of the SCMRG algorithm using a
sample dataset. The first decomposition results into four cells c11, c12, c13, c14 at Level
1. If the reward of c11 is greater than the sum of the rewards of its children, and if it is
also greater than the sum of rewards of its grandchildren, c11 is then labeled a cluster
according to Case 1. Cell c14 does not receive any rewards, if neither its children nor
grandchildren receive any rewards. According to Case 2, c14 is not labeled a cluster,
and its successors are not saved in the queue. Although Cell c13 receives no reward,
assume its children receive rewards, all the children of c13 are saved in the queue to
be further processed (Case 3). The cells at Level 1 are then divided into Levels 2
and 3, and the same procedure is applied to all the cells in the queue. Each cell is
labeled accordingly. The intermediate results are shown at Levels 2 and 3 in Fig. 3.
Neighbor clusters are merged if this improves the fitness. In this example, two regions
are identified.

1Total number of cells = Nc ×(1 + ∑
n−>∞ 1

4n ) and
∑

n−>∞ 1
4n = 1

3 .
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Fig. 3 Running the SCMRG
algorithm on a sample dataset

4.2 Generation of regional association rules

Once regions are identified, we construct frequent itemsets for each region. Our
Supervised_Apriori_Gen algorithm (see Algorithm 2) extends the Apriori algorithm
[1] by utilizing a given class structure.

The Apriori algorithm first makes a single pass over the dataset to deter-
mine the support of each single item, which generates all frequent 1-itemsets F1.
Next, the algorithm iteratively generates candidate k-itemsets using the frequent
(k-1)-itemsets found in the previous iteration. A k-itemset is an itemset that has
k attributes. A candidate itemset is pruned if it is not frequent. The algorithm
terminates when there are no new frequent itemsets generated, for example, Fk =
∅. Supervised_Apriori_Gen algorithm uses a different approach: the given class
structure is incorporated by enforcing that each candidate k-itemset include at least
one class label; otherwise it is pruned even if it is frequent. The Supervised-Apriori-
Gen uses the Fk−1 × Fk−1 method [43] to merge a pair of frequent (k-1)-itemsets.
Basically, let A = {a1, a2, ..., ak−1} and B = {b 1, b 2, ..., b k−1} be a pair of frequent
(k-1)-itemsets. A and B are merged to form a k-itemset {a1, a2, ..., ak−1, b k−1} (see
f orm function in step 22) if they satisfy the following conditions:

ai = bi ( f or i = 1, 2, ..., k − 2) and ak−1 �= b k−1.

The Supervised-Apriori-Gen algorithm initially starts with a candidate 2-itemset
construction, which is the basis of the k-itemset generation (k > 2). To ensure
that each 2-itemset includes at least one class label, the algorithm firstly constructs
candidate 1-itemsets from frequent 1-itemsets (steps 2–4). The algorithm separates
class-label items from other items using the split function (step 5). Next the algorithm
enumerates class-label items with the rest of items (steps 6–11), as well as class-label
items with themselves (steps 12–18). Thus, steps 6–11 generate candidate 2-itemsets
formed between class labels and other non-class-label items; steps 12–17 generate
candidate 2-itemsets formed between class labels. The 2-itemsets are then used for
k-itemsets generation (k > 2) (steps 19–26).
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Algorithm 2 Supervised_Apriori_Gen: Candidate Generation and Pruning
Input:

– k-1 frequent itemset Ck−1.
– The minimum support threshold.

Output:

– k candidate itemset Ck.

Supervised_Apriori_Gen(Fk−1)

1. if k = 2 {Deal with candidate 1- and 2-itemsets.}
2. for each frequent 1-itemset f ∈ F1 do
3. insert f into C1. {Generate candidate 1-itemsets.}
4. end for
5. (C1_class_label, C1_other) = split(C1, CL).
6. for each candidate itemset c1 ∈ C1_class_label do
7. for each candidate itemset c2 ∈ C1_other do
8. c = form c1 and c2.

9. insert c into C2. {Generate candidate 2-itemsets.}
10. end for
11. end for
12. for each candidate itemset c1 ∈ C1_class_label do
13. for each candidate itemset c2 ∈ C1_class_label − {c1} do
14. c = form c1 and c2.
15. insert c into C2.

16. end for
17. end for
18. else
19. for each i1 in Fk−1

20. for each i2 in Fk−1

21. if (first k − 2 items of i1, i2 are same) ∧ (last item of i1, i2 differs)
22. c = form (first k − 1 items of i1) and (last item of i2).
23. insert c into Ck.
24. end if
25. end for
26. end for
27. end if
28. return Ck.

After frequent itemsets are generated, we use the same approach proposed by the
Apriori algorithm to generate strong supervised association rules using the min_conf
threshold.

5 Arsenic regional association rule mining and scoping in the Texas water supply

In this section, we describe the experimental procedures of applying the framework
of regional association rule mining and scoping to a real world case study that
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identifies arsenic spatial risk patterns in the Texas water supply. We then discuss
the experimental results and evaluate the performance of the proposed framework.

The experiments are conducted in four steps:

1. Data collection and data preprocessing, including cleaning data, transforming
continuous attributes into categorical attributes, and constructing transactions
using water wells as the reference feature.

2. Identifying arsenic hot spots and cold spots. A region whose arsenic distribution
is significantly higher than the Texas state level is considered an arsenic hot spot;
a region whose arsenic distribution is significantly lower the Texas state level is
considered an arsenic cold spot.

3. Mining supervised association rules from each identified region and for the
complete dataset.

4. Determining scope of strong supervised association rules.

5.1 Data collection and data preprocessing

The datasets used in this study are extracted from the Texas Ground Water Database
(GWDB) maintained by the Texas Water Development Board, the state agency in
charge of statewide water planning [45]. The Texas Water Development Board has
monitored and analyzed arsenic concentration over the last 30 years. Arsenic in very
high concentration is poisonous. Long term exposure to arsenic, even though at low
level, can still lead to increased risk of cancers [42]. Arsenic is derived from both
anthropogenic sources, such as the drainage from mines and mine tailings, pesticides,
and biocides, and from natural sources, such as the hydrothermal leaching of arsenic-
containing minerals or rocks. The World Health Organization has reported arsenic
in drinking water in U.S., Thailand, Mexico, India, Hungary, Ghana, Chile, China,
Bangladesh, and Argentina [48], as one of the key parameters for drinking water
quality and safety evaluation.

Because data collection and maintenance procedures and standards have changed
over the years in GWDB, datasets have to be cleaned to deal with problems such
as missing values, inconsistent data, and duplicate entries. The obtained arsenic
spatial dataset includes spatial attributes (S), non-spatial attributes (A), and class
labels (CL) for each water well. Some of the spatial attributes are directly extracted
from the database, such as river basin, zone, latitude and longitude. Implicit spatial
attributes, such as distance between wells and rivers, are estimated using the nine-
intersection model [13]. Non-spatial attributes are selected with the assistance of
domain experts [21, 25, 36]; they include well depth, and concentration of f luoride,
nitrate, and other chemical metal elements including vanadium, iron, molybdenum
and selenium. Among those attributes, the attribute well depth is used for studies
on mobilizing mechanism; the attributes vanadium and molybdenum have similar
geochemical behavior; the attributes f luoride, nitrate, iron, and selenium may suggest
the ultimate origin of arsenic. The arsenic dataset generated by our research group
and the dataset is available on the web at [9].

We classify water wells into two classes: safe and dangerous. Based on the standard
for drinking water defined by the Environment Protection Agency [46], a well is
considered dangerous if its arsenic concentration level is above 10 μg/l. To ensure the
quality of the association rule generated in the study, we only select lab test results
that use honored sampling procedures. This results in 11,922 records selected from
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GWDB after data preprocessing. Figure 4 illustrates arsenic contamination in Texas,
where dangerous wells are in red (or dark gray).

Table 2 describes the seven non-spatial attributes used in the arsenic dataset. The
table lists the mean and the standard deviation of those continuous attributes before
discretization. In preparation of the association rule mining, continuous attributes
excluding latitude and longitude are first converted into categorical attributes. In
general, two different methods are used for discretization of continuous attributes:
unsupervised discretization without using class information and supervised dis-
cretization using class information [43]. In our experiments, we adopt the supervised
method Recursive Minimal Entropy Partitioning introduced in [17]. The supervised
entropy-based method uses class labels dangerous and safe to place the splits in a
way that maximizes the purity of arsenic classes in the intervals. This discretization
method maximized the support for arsenic class attribute, facilitating the discovery of
supervised association rules involving with arsenic. Hence the method can effectively
find the supervised association rules related with arsenic classes. The method pro-
duces unequal bin sizes and has been shown to produce better results in data mining
tasks [12]. The splitting points of each continuous attribute are listed in Table 2. For
example, the value of nitrate concentration has been discretized into five intervals
with respect to the arsenic classes: (0,0.085], (0.085,0.455], (0.455,16.1], (16.1,28.085],
and (28.085,∞) (measurement unit mg/ l).

5.2 Region discovery for arsenic hot/cold spots

We have re-discovered several interesting risk regions with high arsenic concen-
tration (hot spots), which have been studied by geoscientists before. We have also
identified regions with low arsenic concentration (cold spots). The association rules
that we constructed from those identified regions can help geoscientists identify
the causes of high arsenic concentration in different regions. We now present our

Fig. 4 Arsenic contamination
in Texas; background depicts
Texas terrain color ramp.
Legend: red (or dark gray)
dots—dangerous wells
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Table 2 Arsenic dataset

Non-spatial attributes Mean STD Splitting points

1. well depth (foot) 587.959 654.962 215.5
2. nitrate (mg/ l) 11.362 27.499 0.085, 0.455, 16.1, 28.085
3. fluoride (mg/ l) 1.161 1.349 0.315, 2.445, 3.375, 4.605
4. vanadium (μg/ l) 8.755 25.827 1.2, 2.05, 2.95, 3.25, 5.945, 11.85,

19.95, 20.05, 37.95
5. iron (μg/ l) 9.226 15.651 1.295, 2.595, 4.945, 5.015, 7.895,

19.65, 20.05, 48.05, 51.75
6. molybdenum (μg/ l) 259.882 1,320.784 9.05, 11.35, 19.95, 20.1, 28.1, 47.2, 51.05
7. selenium (μg/ l) 14.243 34.75 4.995, 5.01, 19.95, 20.05, 34.65,

43.05, 52.85, 74.55

Total # of wells 11,922

results with validation from the published results in the geosciences for both region
discovery and association rule mining and scoping.

In region discovery, the SCMRG algorithm is applied to the dataset that consists
of longitude and latitude of wells along with arsenic class labels dangerous or safe
using Eq. 2. Figure 5 depicts the result of the top four regions that have received the
highest reward. Specifically, Regions 1 and 3 have high density of dangerous wells,
and Regions 2 and 4 have high density of safe wells. Hot spot Region 1 overlaps with
the arsenic risk zone reported in the National Water-Quality Assessment Program
[30], and hot spot Region 3 is confirmed as an arsenic risk zone by Parker’s work
[36].

If we are interested in finding larger regions with lower purity, using a larger value
of β results in a bigger size of the regions. Figure 6 shows enlarged regions when β

is increased from 1.01 to 1.035. In our experiments, we adjusted the granularity of
regions by the quality of rules discovered in step 3. We observed that β = 1.01 and
η = 1 give us the best results in the rules constructed in supervised association rule
mining.

Fig. 5 Interesting regions are
identified using β = 1.01, η =
1, γ1 = 0.5, γ2 = 1.5, R+ =
1, R− = 1. Average region
purity = 0.85
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Fig. 6 Interesting regions are
identified using β =
1.035, η = 1, γ1 = 0.5, γ2 =
1.5, R+ = 1, R− = 1.
Average region purity = 0.83

5.3 Regional association rule mining

The Supervised_Apriori_Gen algorithm is used to generate frequent itemsets for
all the regions identified. We use min_support = 10% and min_conf idence = 70%
thresholds for the experiments. We present the first few rules for the regions
investigated, which are all meaningful and important according to the arsenic study
literature.

Mining regional rules in arsenic hot spots discovers attributes that are associated
with high arsenic concentration; in cold spots it discovers attributes related to low
arsenic concentration. For example, in Region 3 of Fig. 5, we discover

(1) is_a(X, Well) ∧ nitrate(X, 0 − 0.085)

→ arsenic_level(X, dangerous) (100%).

The rule states, with 100% confidence, that the wells in Region 3 with nitrate
concentration lower than 0.085 mg/l have dangerous arsenic concentration. The
strong association between nitrate and high arsenic concentration is verified by
Hudak’s work [21] in environmental geology.

In Region 1 of Fig. 5, we also discover

(2) is_a(X, Well) ∧ vanadium(X, 20.05 − 37.95) ∧ selenium(X, 74.55 − ∞)

→ arsenic_level(X, dangerous) (100%).

The rule states with 100% confidence that the wells in Region 1, with vanadium
concentration between 20.05 and 37.95 μg/l and selenium concentration larger than
74.55 μg/l, have dangerous arsenic concentration. Our discovery is confirmed by the
work of Lee et al. in [25].

Our experimental results also show some novel rules that have not been reported
in the literature of arsenic analysis. For example, in Region 1 the following rule is
discovered:

(3) is_a(X, Well) ∧ depth(X, 0 − 215.5) ∧ iron(X, 19.65 − 20.05)

→ arsenic_level(X, dangerous) (100%).

The rule indicates that shallow wells with a certain range of iron concentration are
associated with high arsenic concentration. We hope that the results from our study
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will help domain experts in selecting interesting hypotheses for further scientific
exploration.

Furthermore, we are interested to know whether the rules are different in different
regions. We compared the sets of rules generated for Region 1 and Region 3
(hot spots), as well as for Region 2 and Region 4 (cold spots). Due to different
geographical structure and farm activities of the study area, the spatial risk pat-
terns associated with arsenic are different in each region. For example, comparing
the previously studied rule 1 identified in Region 3 with rule 4 extracted from
Region 1:

(4) is_a(X, Well) ∧ nitrate(X, 28.085 − ∞) ∧ f luoride(X, 4.605 − ∞)

→ arsenic_level(X, dangerous) (100%).

Instead of being related to relatively low concentration of nitrate (< 0.085 mg/l),
the rule says that with 100% confidence, the wells in Region 3, with high nitrate
concentration (> 28.085 mg/l) and fluoride concentration higher than 4.605 mg/l,
have dangerous arsenic concentration.

Rules in Regions 2 and 4 (cold spots) shed light on what may prevent high arsenic
concentration. For example, we find the following rule, discovered both in Regions
2 and 4, states what is associated with low arsenic concentration.

(5) is_a(X, Well) ∧ nitrate(X, 0.455 − 16.1)∧
f luoride(X, 0.095 − 0.315) ∧ vanadium(X, 3.25 − 5.945)

→ arsenic_level(X, saf e) (100%)

For comparative purposes, we also mine supervised association rules in the
whole dataset. Using low support values in global datasets to find more interesting
association rules has been suggested by [26]. However, even with a rather low
support threshold min_support = 1%, none of the top ranked interesting regional
association rules we identified previously are included among over 100,000 resulting
rules. On the other hand, up to 300 rules on average are identified per region using
our framework with min_support = 10% and min_conf idence = 70% thresholds.
Regional association rules identified from those arsenic hot/cold spots tend to be
more revealing and interesting. Not surprisingly, a large portion of 100,000 statewide
association rules are trivial and general rules, such as

(6) is_a(X, Well) ∧ water_use(X, “b y humam beings′′) ∧ arsenic_level(X, saf e)

→ inside(X, Basin19) (86%)

This global association rule claims that wells which are used by human beings and
have safe arsenic concentration are very likely (confidence is 86%) located in river
basin 19 (in San Antonio area). It is a well-known fact in Texas.

5.4 Region discovery for regional association rule scoping

We use the same clustering algorithm SCMRG but a different fitness function iscope

(Eq. 3) for regional association rule scoping. The following four regional association
rules with 100% confidence from Regions 1, 2, 3, and 4 are used as illustration
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examples in the rest of this section for regional association rule scoping. Association
rules 1 and 3 are confirmed in arsenic literature [21, 25].

Association Rule 1

nitrate(X, 28.31 − ∞) ∧ arsenic_level(X, dangerous) → depth(X, 0 − 251.5)

Association Rule 2

depth(X, 0 − 251.5) ∧ f luoride(X, 0 − 0.085) → arsenic_level(X, saf e)

Association Rule 3

nitrate(X, 0 − 0.085) → arsenic_level(X, dangerous)

Association Rule 4

depth(X, 251.5 − ∞) ∧ nitrate(X, 0.265 − 16.1) → arsenic_level(X, saf e)

Figure 7 depicts the scope of four association rules above. The scope of an
association rule can contain several regions. The scope of Association Rule 1 (top
row, left column) overlaps with the Texas High Plains. In this area, shallow depth
wells (<251.5 ft) indicate the aquifer is thin; thus, nitrate comes from surface
contamination (>28.31 MG/L). Arsenic contamination is of geological origin and
is then enhanced by the lack of dilution because the aquifer is thin. The scope of
Association Rule 3 (bottom row, left column) is applicable to the whole Texas Gulf
Coast because the geology there is similar. The scope of Association Rules 2 and 4

Fig. 7 Region–Regional
association rule–Scope using
β = 1.01, η1 = 1, η2 =
1.1, δ1 = δ2 = 0.9, min_sup =
10%, min_conf = 80%.
Legend: regions are
highlighted by bold border
line; scopes are in color blue
(or light grey)
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represents the areas where arsenic contamination is low. They are interesting places
that domain scientists will explore in the future.

It is also important to point out that the scope of an association rule indicates how
global, regional, or local a pattern is. For example, the scope of the association rule 4
in Fig. 7 covers a large percentage of the global space (> 75%). We find that the asso-
ciation rule 4 is also valid (holds with 85% confidence) in the global dataset. Hence, it
is indeed a global association rule. However, none of the other three association rules
are discovered globally. We can also fine-tune the measure of interestingness for
association rule scoping by varying its support and confidence thresholds for a given
association rule. Figure 8 shows how the scope of the association rule 3 changes using
different confidence and support thresholds. Typically, a lower value of the min_sup
results in a larger scope; a higher value of the min_conf results in a smaller scope.

Association rule scoping has many applications that go beyond the proposed
framework introduced in this paper. Scoping can be applied to any spatial association
rules, including global association rules. For example, a domain expert can check
whether an arsenic association, which is valid in Texas, also holds in Bangladesh, a
country that has serious arsenic contamination in drinking water. It is also inspira-
tional for domain experts to explore how the scope of an association rule changes, if
an association rule is slightly modified, for example, a condition in its antecedent is
dropped. Furthermore, in addition to finding the scope where an association holds,
it might be interesting to search for the scope where it does not hold. For example,
if we find that high levels of iron associates with high arsenic concentration in one
region, but with low arsenic concentration in another region, this case should be
further analyzed. Last but not least, the regions obtained using association rule

Fig. 8 The scope of a
particular rule changes based
on the different values of
min_sup and min_conf .
β = 1.01, η1 = 1, η2 =
1.1, δ1 = δ2 = 0.9, min_sup =
10%, min_conf = 80%
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scoping can serve as a source for mining new association rules. For example, if
we are interested in the places where high levels of iron associate with high levels
of fluoride, high_iron(X) → high_ f luoride(X). We can then determine the scope
of this association rule and use the new obtained regions to mine new interesting
association rules that provide further details that contribute to the association
between iron and fluoride.

Our SCMRG algorithm is computationally efficient. On average, it takes 3.031 s
for hot spots/cold spots discovery, and 4.68 s for regional association rule scoping.
The computer has an Intel(R) Pentium(R) M, a CPU 1.2 GHz, and 632 MB of RAM.
The algorithm implemented in Java can be accessed on the Web at our open source
project Cougar2 Java Library for Machine Learning and Data Mining Algorithms [8].

6 Discussion

One critical requirement for spatial data mining is the capability to analyze datasets
at different levels of granularity, as well as analyze the data globally. We face two
unique challenges in regional association mining and scoping: (1) how to determine
regions from which regional association rules will be extracted, and (2) how to
compute the scope of regional association rules. We solve the first issue using
a reward-based region discovery algorithm that employs a grid-based supervised
approach to identify interesting subregions in spatial datasets. We address the second
problem by exploiting the duality between regional patterns and regions: regions are
used to discover regional association rules; next the obtained regional association
rules are used to determine places in which the association rules are valid. Such
regions capture the scopes of regional patterns and provide a quantitative measure
of how significant a regional association rule is in the global space.

We evaluate the proposed framework in a real-world case study to identify spatial
risk patterns and risk zones of arsenic in the Texas water supply. The goal of the
case study is to understand what regional associations exist between high arsenic
concentration and other factors. We have identified arsenic hot spots and cold spots,
created regional rules from the obtained regions, and evaluated the spatial impact
of interesting regional associations. We are not interested in predicting whether a
well is safe or dangerous because this information is already known. A classification
algorithm would only be helpful if we could drill into the classification model
to determine which factors are associated with high arsenic pollution. In general,
our work can be viewed as an exploratory data analysis approach that centers on
which features are potentially relevant in causing arsenic pollution. Moreover, our
approach identified several new relationships between arsenic and other factors
which provide scientists with novel hypotheses for further exploration.
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