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Abstract 

This paper proposes a novel framework for mining regional 

co-location patterns with respect to sets of continuous 

variables in spatial datasets. The goal is to identify regions 

in which multiple continuous variables with values from 

the wings of their statistical distribution are co-located. 

One particular challenge of regional co-location mining is 

that the employed algorithms need to search for both 

interesting places and interesting patterns at the same time. 

A co-location mining framework is introduced that 

operates in the continuous domain without the need for 

discretization and which views regional co-location mining 

as a clustering problem in which an externally given fitness 

function has to be maximized. Interestingness of co-

location patterns is assessed using products of z-scores of 

the relevant continuous variables. A novel, prototype-based 

region discovery algorithm named CLEVER is introduced 

that uses randomized hill climbing, a variable number of 

clusters, and which searches larger neighborhood sizes. 

The proposed framework is evaluated in a case study that 

analyzes chemical concentrations in Texas water wells 

centering on co-location patterns involving Arsenic. Our 

approach was able to identify known and unknown 

regional co-location sets. Different sets of algorithm 

parameters lead to the characterization of arsenic 

distribution at different scales. Moreover, inconsistent co-

location sets were found for regions in South Texas and 

West Texas that can be clearly attributed to geological 

differences in the two regions, emphasizing the need for 

regional co-location mining techniques. 

Keywords 
spatial data mining, regional co-location mining, regional 

data mining, clustering, finding associations between 

continuous variables. 
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1 Introduction 

The goal of spatial data mining [16] is to automate the 

extraction of interesting and useful patterns that are not 

explicitly represented in spatial datasets. Discovery of co-

location patterns, a co-occurrence of different types of 

features at approximately the same locations, is an 

important example of data mining task with many practical 

applications. Most existing research has concentrated on 

discovering collocation patterns with respect to categorical 

features, which identify sets of classes whose instances co-

occur in geographical proximity with high frequency. A 

classic example [17] of such a relationship is the 

collocation of two types of animals, the Nile crocodile and 

the Egyptian plover, which is traced by domain scientists to 

their symbiotic relationship.  

However, not all real-life problems are susceptive to 

the categorical formulation. In a broad range of problems 

the spatial dataset is given in the form of continuous 

variables. Formulating such a problem in terms of 

categorical, discrete features is not natural. In this paper, 

we are interested to identify places in which multiple 

continuous variables with values from the wings of their 

statistical distribution are co-located. In other words, we 

are interested to identify regions where extreme values of 

different continuous variables are present in geographical 

proximity.   

 

Figure 1: Regional Co-location Patterns Involving 

Chemical Concentrations in Texas Wells 



Figure 1 illustrates what we are trying to accomplish 

for a data set that contains concentrations of chemicals in 

different wells in Texas. The goal is to find regions (sets of 

wells that cover a contiguous area) in which concentrations 

of multiple chemicals take extreme values. The figure 

shows the result of running a regional co-location mining 

algorithms on such a dataset; it identifies five regions with 

five different patterns of chemical concentrations. For 

example, two interesting regions were identified in the 

Western half of Texas: the first region, colored in red, 

contains high concentrations of Arsenic (As↑) 
Molybdenum (Mo↑), Vanadium (V↑) and Selenium (Se↑), 
whereas the second region, colored in blue, is characterized 

by high concentrations of Arsenic (As↑), Molybdenum 
(Mo↑), Sulfate (SO4

2-↑) and Total Dissolved Solids 
(TDS↑). 

In this paper, we describe and evaluate a novel 

framework for discovering co-location regions and their 

associated patterns in a highly automated fashion in 

continuous datasets without the need for discretization. The 

proposed framework treats region discovery as a clustering 

problem in which clusters have to be obtained that 

maximize an externally given fitness function. The fitness 

function combines contributions of interestingness from an 

individual cluster and can be customized by a domain 

expert. The framework allows the actual clustering task to 

be performed by a variety of different algorithms. A highly 

desirable feature of our approach is its search-engine-like 

capabilities, returning a set of regions ranked by 

interestingness thus providing a domain expert with 

pertinent information. 

Related Work. An early version of the region discovery 

framework that was restricted to categorical datasets has 

been described in [7]. This framework has later been 

successfully used for discovering regional association rules 

[6]. This paper extends our work to continuous datasets, 

supports arbitrary fitness functions, and uses it for a new 

task: regional co-location mining. Shekhar et al. [17] 

discuss several interesting approaches to mine co-location 

patterns with respect to a given set of events. Huang et al. 

[9] center on co-location mining involving rare events and 

introduce a novel measure of interestingness for this 

purpose. However, it should be stressed that all mentioned 

approaches are restricted to categorical datasets and center 

on finding global co-location patterns, whose scope is the 

whole dataset. Our approach, on the other hand, as we will 

explain later in more detail, centers on discovering regional 

co-location patterns.  

Most of the approaches to mine association rules in 

continuous datasets use discretization. In [19], numerical 

attributes are discretized and then adjacent partitions are 

combined as necessary. This leads to information loss and 

can generate spurious rules. Aumann et al. [2] introduce 

numerical association rules that support statistical 

predicates for continuous attributes, such as variance, and 

algorithms that mine such rules. In [3], rank correlation is 

used to mine associations between numerical attributes. 

Basically, continuous attributes are transformed to ordinal 

attributes, and a method is proposed to find sets of 

numerical attributes with high attribute values.  

In [1], an interesting method is presented for deriving 

equations describing clusters containing numerical data. 

The approach first uses a clustering algorithm to find 

correlation clusters, and then derive equations describing 

the linear space approximating each cluster’s data points. 

Localized spatial statistics [8] also analyzes regional 

characteristics in spatial datasets. However, the proposed 

methodology is not suitable for large datasets and relies on 

extensive human interactions. Finally, Klösgen and May 

[11] propose a generic, multi-relational framework for 

subgroup discovery with a relational database system.  

Contributions. First, a novel regional co-location mining 

framework is introduced that identifies places in which 

continuous variables taking values from the wings of their 

respective distributions co-occur. The proposed method 

directly operates in the continuous domain without any 

need for discretization. One particular challenge of this task 

is that the employed algorithms need to search for both 

interesting places and interesting patterns at the same time. 

Second, we apply our framework to the problem of 

identifying regional co-location patterns with respect to 

high and low arsenic concentrations in Texas water supply. 

A thorough analysis of this case study is presented 

including comparison of results obtained using different 

region discovery algorithms and an assessment of the 

found patterns by a domain expert.  Third, as a by product, 

a novel prototype-based clustering algorithm named 

CLEVER is introduced and evaluated in the case study. 

CLEVER uses randomized hill climbing, allows for a 

variable number of clusters, and searches larger 

neighborhood sizes to battle premature convergence. 

2 Methodology 

Region Discovery Framework. The region discovery 

problem is defined as follows: given the dataset O, a set of 

k clusters (regions) X = {c1,...,ck}, ci⊆O, is sought that 
maximizes a fitness function q. The regions are disjoint, 

contiguous, and elements of O can be outliers that do not 

belong to any region.  

The fitness function q is defined as follows: 
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where i(c) is the interestingness measure of a region c—a 

quantity designed by a domain expert to reflect a degree to 

which regions are “newsworthy".   



Within our present focus, i(c) must encapsulate a 

degree to which extreme values of variables are present 

together in region c. The region size is denoted by |c|, and 

the quantity i(c)∗|c|β can be considered as a “reward" given 
to a region c; we seek X such that the sum of rewards over 

all of its constituent regions is maximized. The amount of 

premium put on the size of the region is controlled by the 

value of parameter β (β>1). A region reward is proportional 

to its interestingness, but a bigger region receives a higher 

reward than a smaller region having the same value of 

interestingness to reflect a preference given to larger 

regions.  

Interestingness of Regional Co-Location Patterns. Our 

approach tries to discover regional co-location patterns 

involving sets of continuous variables having values on the 

wings of their distribution. The pattern A↑ denotes that 
attribute A has large values and the pattern A↓ indicates 
that attribute A has low values. For example, the pattern 

{A↑, B↓, D↑} describes that high values of A are co-
located with low values of B and high values of attribute D.  

In the following a function i is introduced that measures the 

interestingness of co-location patterns for a region c: 

Let  

O be a dataset 

c⊆O be  a region  

o∈O be an object in the dataset O  

FF={A1,…,Aq} be the set of continuous attributes in the 

dataset O 

S={A1↑, A1↓,…, Aq↑, Aq↓} be the set of possible base co-
location patterns 

B⊆S be a set of co-location patterns 

P(B) be a predicate over B that restricts the co-location sets 

considered1 

z-score(A,o) be the z-score of object o’s value of attribute 

A 
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z(p,o) is called the z-value of base pattern p∈S for 
object o in the following. The interestingness of an object o 

with respect to a co-location set B⊆S is measured as the 
product of the z-values of the patterns in the set B. It is 

defined as follows: 

                                                           
1 e.g. P(B)=|B|<5 (“only co-locations sets with cardinalities 2, 3 

and 4 are considered”) or P(B)=As↑∈B (“only look for patterns 
involving high arsenic”) 
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When using the above formula, the more extreme the 

z-values of the involved objects are the bigger the above 

product becomes—moreover, if the value of a continuous 

variable does not match its suggested pattern in B its z-

value is 0 and the interestingness is therefore 0 as well. 

Although this approach compresses multiple z-values into a 

single value, the product of z-values still allows for 

meaningful statistical interpretation using the geometric 

mean; for example, if the geometric mean of the z-values of 

the patterns in set B is 1.5, this suggests that values of the 

involved variables are at an average 1.5 standard deviations 

off their mean value. Finally, the term d|B|-2 (assuming         

d ≥ 1) increases the interestingness of co-location sets by a 

factor of d, every time the cardinality of a set is increased 

by 1.  

In general, the interestingness of a region can be 

straightforwardly computed by taking the average 

interestingness of the objects belonging to a region. 

However, using this approach some very large products 

might dominate interestingness computations. 

Consequently, our approach additionally considers purity 

when computing region interestingness, where purity(B,c) 

denotes the percentage of objects o∈c for which i(B,o)>0.
 

In summary, the interestingness of a region c with respect 

to a co-location set B, denoted by ϕ(B,c), is computed as 

follows2: 
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The un-normalized, raw interestingness of a region c, 

denoted by κS(c) is measured as the maximum 
interestingness ϕ(B,c) observed over all subsets B⊆S with 
cardinalities 2 and higher considered. 
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Finally, the normalized3 interestingness of a region c, 

i(c), is defined as follows: 

                                                           
2 The parameter θ controls the importance attached to purity in 
interestingness computations. 

3 One assumption underlying our framework is that clusters that 

are not interesting for a domain expert receive a reward of 0. 

Therefore, fitness functions are usually normalized and scaled 

in collaboration with domain experts based on what the domain 

expert finds “newsworthy”.  
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The threshold parameter th≥0 is introduced to weed 

out regions c with κS(c) close to 0. Finally, η is a scaling 
factor that allows modifying raw interestingness super-

linearly by choosing η>1, and sub-linearly by choosing 
η<1. Finally, as already introduced in beginning in formula 
(2.1), the reward of the region c is computed as follows: 

(2.8)                     
β
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Example. Table 1 shows an example region c, containing 

four objects with the indicated values for attributes C and 

D,  and intermediate values used in calculating i(B,o) for 

pattern B={C↑, D↓}. Column 3 and 4 display the z-values 

for C↑ and D↓ respectively that were calculated using 

formulas (2.2) and (2.3). Column 5 displays i(B,o) as per 

(2.4) assuming d=1. We can see that purity of pattern B is 

0.5. Assuming θ=1, using formula (2.5) we obtain: 

φ(B,c)=0.06=((0.24+0.24)/4)*0.5,   

 

Table 1: Example Data 

Id 
C 

z-score 

D 

 z-score 
C↑ D↓ i(B, o) 

    1 0.43 -0.56 0.43 0.56 0.24 

2 0.42 -0.56  0.42 0.56 0.24 

    3 -0.06 0.13 0 0 0 

4 -0.57 -0.22 0 0.22 0 

 

When a dataset contains null values for continuous 

attributes, a region’s average interestingness in formula 

(2.5) is calculated only considering those objects whose 

product for set B is not null.  Purity, on the other hand, is 

still computed by determining the portion of objects in the 

region for which i(B,o) is greater than 0; that is, objects 

with missing values degrade purity of a region.  

While evaluating ϕ(B,c) (2.5) all the subsets B⊆S with 
cardinality 2 to the maximum pattern length specified are 

considered. It is not possible to do pruning based on 

maximum valued co-location set of size m when computing 

co-location sets of size (m+1) because the interestingness 

function i is not anti-monotone. We explain this using a 

counter example. Let us assume that for a region c 

B={A1↑,A2↑} is the binary  pattern with the highest 

interestingness, however, as we will see, the highest 

interestingness pattern of size three B’ may not contain B 

as the subset. Let’s assume, that all objects with positive z-

scores for A1 and A2 in region c have zero z-scores for 

remaining attributes A3,…,A5 and that there is at least one 

object in region c that has zero z-scores for A1 and A2 and 

positive z-scores for remaining attributes. All the patterns 

of size 3 having B as a subset will therefore have 

interestingness 0, but {A3↑,A4↑,A5↑}’s interestingness is 

above 0. Therefore, the maximum interestingness pattern of 

size 3 does not contain {A1↑,A2↑} for region c. 

The interestingness function i employs the following 

parameters: d≥1 (called discount factor), θ≥0, and η≥0. 
Choosing higher discount factors raises the interestingness 

of co-location patterns involving larger sets; for example, if 

d=1.4 the raw interestingness of sets of cardinality of 3 is 

multiplied by 1.4, and of sets of cardinality 4 is multiplied 

by 1.42. η is used for reward scaling, using η>1 increases 
the spread of reward values, whereas using η<1 has the 
reverse effect. θ determines the weight purity carries in 
region interestingness computations; our approach balances 

the average interestingness of the objects belonging to a 

region with the purity of a region: when using θ=0 only the 
average product of z-values in a region is used, whereas 

selecting very large values for θ assigns a high weight to 
purity in region interestingness computations. These 

parameters are usually selected in close collaboration with 

domain experts in conjunction to considering statistical 

properties of the dataset analyzed. For example, if the 

domain expert is interested in regions of extreme products 

of z-values, even if their purity is not that high η=3 and 
θ=0 might be a good choice. The following default 
parameter settings are currently used in the proposed 

framework:   d=1, θ=1, η=1 and th=0.  

Moreover, using the average interestingness of regions 

for a particular co-location set B, a map of locally-defined 

interestingness can be produced to give domain scientists a 

visual indication of collocation patterns. Going beyond 

such visual information, region discovery algorithms will 

be introduced in the next section that calculate co-location 

regions automatically and are able to quantify their 

findings. 

3 Region Discovery Algorithms 

We have developed two prototype-based clustering 

algorithms, SPAM and CLEVER, for region discovery.  

Prototype-based clustering algorithms construct clusters by 

seeking for a set of representatives; clusters are then 

created by assigning objects in the dataset to the closest 

representative. Popular prototype-based clustering 

algorithms are K-Medoids/PAM [10] and K-means [12]. 

SPAM (Supervised PAM) is a variation of PAM. SPAM 

uses the fitness function q(X)—and not the mean square 

error of the distance of cluster objects to the cluster 

representative as PAM does—as its fitness function. SPAM 

starts its search with a randomly created set of k 

representatives, and then greedily replaces representatives 

with non-representatives as long as q(X) improves.   



An empirical evaluation of SPAM on the task of 

region discovery reveals that—see also Table 5—that 

SPAM tends to terminate prematurely and running SPAM 

multiple times did not improve solution quality a lot. 

Moreover, the best number of regions k is very hard to 

know in advance especially for real-world problems. This 

motivated the development of CLEVER (CLustEring using 

representatiVEs and Randomized hill climbing) that seeks 

for the optimal value of k, uses larger neighborhood sizes 

to battle premature convergence, and uses randomized hill 

climbing and re-sampling to reduce algorithm complexity. 

CLEVER, as SPAM, seeks to maximize the fitness 

function q(X). The algorithm (see Figure 3) starts with 

randomly created set of k̂ representatives— k̂  is a 
parameter of the algorithm. It samples p solutions in the 

neighborhood of the current solution; unlike CLARANS 

[13] which picks the first best neighbor as the next 

solution, CLEVER evaluates all the p neighbors and picks 

the best among them.  

 

 

 

 

 

 

 

 

 

 

 

 

 

The function findNeighbors at step 7 in Figure 3 

creates a set of neighboring solutions of the current 

solution using three operators: ‘Insert’ – inserts a new 

representative into the current solution, ‘Delete’ – deletes a 

representative from the current solution and ‘Replace’ – 

replaces a representative with a non-representative. Each 

operator has a certain selection probability. While 

generating a new neighboring solution, operators are 

selected as per their selection probabilities. The algorithm 

also allows for larger neighborhood sizes, i.e. most 

experiments in the paper were run for neighborhood size 3: 

in this case, solutions that are sampled are generated by 

applying three randomly selected operators to the current 

solution. Figure 2 gives an example of how a neighboring 

solution is generated.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Neighborhood Size = 4 (4 operators will be applied 

on the current solution) 

p(Insert) = 0.33, p(Delete) = 0.33, p(Replace) = 0.34 

Current representative solution = {1, 2, 3} 

Current set of non-representatives = {0, 4, 5, 6, 7, 8, 

9} 

{1, 2, 3} � (Insert) {1, 2, 3, 0} � (Replace) {6, 2, 3, 

0} � (Delete) {6, 3, 0} � (Insert)  

{6, 3, 0, 5}  

A new neighboring solution = {6, 3, 0, 5} 

Figure 2: Example describing neighboring solution 

generation 

Figure 3: The algorithm CLEVER 

CLEVER( k̂ , neigbhborhoodDef, p, q)  

1. Randomly select initial set of k̂   

representatives. Set it to currReps. 

2. regions = findRegions (currReps). {Find 

regions for current set of representatives} 

3. currentFitness = findFitness (regions) {Find 

total fitness for the current regions} 

4. Set nonReps to the data objects that are non-

representatives. 

5. bestFitness = currentFitness 

6. while TRUE do 

7. neighbors = findNeighbors (currReps, 

nonReps, p, neighborhoodDef) {Pick p 

neighbors  from the neighborhood of 

current representatives as defined by the 

parameter 'neighborhoodDef'}. 

8. for each neighbor ∈  neigbhors do 

9.   newRegions = findRegions (neighbor).   

{Find regions using the  neighboring 

solution} 

10.  newFitness = findFitness (newRegions) 

{Find total fitness for  newly found 

regions} 

11. if  newFitness > bestFitness 

12.     bestNeighbor = neighbor {replacement} 

13.      bestFitness = newFitness 

14.      bestRegions = newRegions 

15.   end 

16. end for 

17. if fitness improved 

18.    currReps = bestNeighbor 

19.    currentFitness = bestFitness 

20.    regions = bestRegions 

21.   if resampling done 

22.     Revert to original p value. 

23.   end 

24.   Go back to step 7. 

25. else 

26.    if resampling done twice and fitness    

does not improve after resampling 

27.    Terminate and return obtained regions, 

region representatives, no. of     

representatives (k), and fitness. 

28.    else if first resampling 

29.     p = p * 2 {resample with higher p     

value}  

30.     Go back to step 7. 

31.     else  {Resample again} 

32.     p = p * (q – 3) (resample with much 

higher p value) 

33.     Go back to step 7. 

34.     end 

35. end 

36. end 
Figure 3: Pseudo-code of Algorithm CLEVER 



By adding and deleting representatives and by using 

neighborhood size of larger than one, CLEVER samples 

from much larger neighborhood of the current solution. 

This characteristic distinguishes CLEVER from other 

prototype-based clustering algorithms.   

Out of the neighbors the one that improves q(x) the 

most becomes new current solution and the procedure is 

repeated. If none of the p sampled neighbors improves 

q(x), the number of samples is doubled (step 28-30). If 

after re-sampling the fitness does not improve, sample size 

is increased to p∗(q-3) (step 31-33). CLEVER terminates 
when q(x) does not improve after analyzing p*q (p + p*2 + 

p*(q-3)) samples. In general, the algorithm is self adaptive 

because it only samples a small number of neighbors p 

when moving upwards easily, but significantly increases 

the number of samples when the algorithm is in danger to 

converge prematurely.  

4 Case Study: Finding Regional Co-location 

Patterns with respect to Arsenic in the 

Texas Water Supply 

We evaluated our framework in a real world case study to 

discover regional co-location patterns involving Arsenic 

and other chemicals in the Texas water supply.   

Dataset Description and Preprocessing.  Datasets used in 

this case study are created using the Groundwater database 

(GWDB) maintained by the Texas Water Development 

Board (TWDB) [20]. Very high concentration of Arsenic is 

dangerous. Also, long term exposure to low level of 

Arsenic concentration can lead to increased risk of cancer 

[18]. It is important to understand factors that cause high 

concentration of Arsenic, i.e. when we have high 

concentration of Arsenic in a region what is the level of 

concentration of other chemicals.  

Currently the GWDB has water quality data for 

105,814 wells in Texas. The data have been collected 

regularly with a recurrence time of 3 to 5 years for an 

individual well over last 25 years. The database had to be 

cleaned of duplicate, missing and/or inconsistent values. In 

the dataset, each well has zero or more samples for a 

chemical. As we are particularly interested in Arsenic, we 

have considered only those wells where there is at least one 

sample for Arsenic concentration. Other chemical 

concentrations may have null values. When multiple 

samples exist for a well, we apply an aggregate function to 

the set of samples, such as max or avg.  The particular 

dataset we used in the evaluation has 3 spatial attributes: 

longitude, latitude and aquifer and 10 non-spatial 

attributes: The 4 trace elements, Arsenic, Molybdenum, 

Vanadium, and Boron, the 2 minor elements, Fluoride and 

Silica, and the 2 major ions, Chloride and Sulfate to which 

Total Dissolved Solids (TDS) and Well Depth are added. 

The dataset has no records with null values, and has 1,653 

records. Multiple samples were aggregated using average 

values. Here onwards we call this dataset Arsenic_10_avg.  

We also extracted several other datasets by using different 

aggregate function like maximum and adding 

concentrations of other chemicals. All of these datasets are 

available on the web [5].  

For each non-spatial attribute, we calculate z-scores 

and then calculate z(A↑,o) and z(A↓,o) using formulas 
(2.2) and (2.3). 

Experimental Results. We have tested our regional co-

location mining framework by applying the algorithm 

CLEVER described in Section 3 using the fitness function 

described in Section 2 to the dataset described above. In 

this subsection we discuss co-location patterns discovered 

by CLEVER algorithm and in the next subsection we 

briefly compare CLEVER with SPAM. We have conducted 

experiments using Arsenic_10_avg and other datasets 

described above but in this paper only experiments using 

Arsenic_10_avg are discussed in detail. Complete results 

involving all the datasets can be found in [14]. 

Arsenic_10_avg has 10 non-spatial attributes, and therefore 

20 base patterns exist to construct co-location sets. 

Moreover, maximum co-location set size is limited to 4 in 

the experiments that are discussed in the paper. Because we 

are interested in discovering co-location patterns with 

respect to arsenic, only co-location sets that contain As↑ or 
contain As↓ are considered. 

Table 2: Parameters Used in Experiments 

Common 

Parameter 

Settings 

d=1.0, η=1, th=0.0, k̂ =50 (initial no. 
of clusters), p=50, q=50, 

Neighborhood Size=3, p(Insert)=0.2, 

p(Delete)=0.2,  p(Replace)= 0.6 

P(B) = {As↑∈B or As↓∈B} 

Exp. 1 |B|<5 β = 1.3, θ=1.0 

Exp. 2 |B|<5 β = 1.5, θ=1.0 

Exp. 3 |B|<5 β = 2.0, θ=1.0 

Exp. 4 |B|<5 β = 1.5, θ=5.0 

 

Table 2 summarizes the parameters used in the 

experiments. As the value of parameter β affects size of the 

regions found, we have conducted experiments using three 

different values for this parameter (Experiment 1-3); 

maximum co-location set sizes are restricted to four in 

these experiments. The parameter θ determines importance 

of purity when evaluating regions. Experiment 4 uses a 

very high θ value but shares all other parameters with 

experiment 2.  

 



We further evaluate the search-engine like capability 

of our framework using Table 3, 4, 6, 7. Table 3 gives 

details of top 5 regions ranked by interestingness, and 

Table 6 visualizes these regions on the map of Texas. 

Table4 describes the top 5 co-location regions ranked by 

reward in more detail, and Table 7 depicts these regions on 

the map of Texas.  

The parameter β affects the size of the co-location regions 

discovered. As displayed in Table 3, as β increases, 

CLEVER finds fewer, larger regions. For example, for 

β=2.0, CLEVER finds only 4 quite large regions capturing 

almost global patterns. Moreover, as β increases, the 

general trend is that purity of regions decreases as shown in 

purity column of Table 3. The algorithm was able to 

determine known areas of high arsenic concentrations as 

well as interesting unknown features. High arsenic is a 

well-known problem in the Southern Ogallala Aquifer in 

the Texas Panhandle and in the Southern Gulf Coast 

Aquifer north of the Mexican border. Figure 4 (Exp. 1) did 

recognize the higher arsenic concentration areas in the 

Panhandle (ranks 1, 2, and 3) associated with high 

molybdenum and vanadium but was also able to 

discriminate among companion elements such as fluoride 

(rank 1 area) or sulfate (rank 3 area). The Gulf Coast area 

(rank 4 area) is characterized by a boron marker, not 

present in the Panhandle, maybe suggesting different 

arsenic mobilization mechanisms. When the clusters are 

not as tightly defined (Exp. 2, Figure 5, larger β), they 
display the usually recognized extend of arsenic 

contamination in Texas: Ogallala Aquifer, Southern Gulf 

Coast, and West Texas basins. Areas delimited by clusters 

of ranks 4 and 5 are characterized by low arsenic but 

general chemistry similar to the high arsenic cluster (rank 

1). A further loosening of cluster definition (Exp. 3, Figure 

6) results in a display of the known, often described as 

sharp, boundaries between high and low arsenic areas in 

the Ogallala (ranks 2 and 4) and the Gulf Coast (rank 1  

and 3) aquifers. In general, for β=1.3 and β=1.5 the 
discovered regions tend to lie inside Texas aquifers, which  

Table 3: Top 5 Regions Ranked by Interestingness (as per formula 2.7) 

Exp. No. 
Top 5 

Regions 

Region 

Size 

Region 

Interest-

ingness 

Maximum Valued 

Pattern in the 

Region 

Purity 

Average Product for 

maximum valued 

pattern 

1 23 174.3191 As↑Mo↑V↑F-↑ 0.83 211.0179 

2 40 104.8576 As↑Mo↑V↑ 0.65 161.3194 

3 11 92.9385 As↑Mo↑V↑SO4
2-↑ 0.55 170.3873 

4 36 89.4068 As↑B↑Cl-↑TDS↑ 0.58 153.2687 

Exp. 1 

5 7 30.5775 As↑Mo↑Cl-↑TDS↑ 0.57 53.5107 

1 80 33.5978 As↑B↑Cl-↑TDS↑ 0.48 70.7322 

2 181 25.3314 As↑Mo↑V↑F-↑ 0.49 52.1020 

3 17 6.4819 As↑Mo↑Cl-↑TDS↑ 0.29 22.0383 

4 23 6.4819 As↓Cl-↑SO4
2-↑TDS↑ 0.78 8.1287 

Exp. 2 

5 10 3.4645 As↓B↑Cl-↑TDS↑ 0.4 8.6612 

1 238 5.3234 As↑B↑Cl-↑TDS↑ 0.22 23.9052 

2 833 1.8118 As↑Mo↑V↑F-↑ 0.16 11.4334 

3 152 0.3201 As↓SiO2↑WD↑ 0.53 0.6006 

4 432 0.1969 As↓TDS↓ 0.93 0.2122 

Exp. 3 

5 N/A 

1 7 630.1098 As↑B↑Cl-↑TDS↑ 1.0 630.1097 

2 2 541.4630 As↑Mo↑V↑B↑ 1.0 541.4630 

3 1 466.8389 As↑B↑ SO4
2-↑TDS↑ 1.0 466.8389 

4 4 275.4066 As↑V↑ SO4
2-↑TDS↑ 1.0 275.4066 

Exp. 4 

5 3 234.7918 As↑Mo↑B↑SO4
2-↑ 1.0 234.7918 

 



is expected, because wells inside the same aquifer are 

connected by water flow.  

The algorithm also finds some inconsistent co-location 

sets. Inconsistency is observed in Table 3, Exp. 2 (Figure 

5): the rank 3 region located in the area of the Hueco-

Mesilla Bolson Aquifer is characterized by the co-location 

set {As↑Mo↑Cl-↑TDS↑} and the rank 5 region in the Gulf 
Coast Aquifer has co-location set {As↓B↑Cl-↑TDS↑}: 
As↑ is co-located with Cl-↑ and TDS↑ in one region but 
As↓ is co-located with Cl-↑ and TDS↑ in the other region. 
As displayed in Figure 5, the rank 3 region (in yellow 

color) is in West Texas, whereas the rank 4 region (in 

green color) is in South Texas. This discrepancy in regional 

co-location sets can be clearly attributed to geological 

differences in the two regions, emphasizing the need for 

regional co-location mining techniques.  

Our approach was able to identify co-location sets of 

different sizes. Moreover, as we increase θ to 5, as 
expected, only co-location sets with purities above 90% are 

discovered. We also observe that the maximum reward 

region of Experiment 2 and the second ranked reward 

region of Experiment 4 occupy a similar spatial extent in 

North-West Texas. The first region is characterized by the 

co-location set {As↑Mo↑V↑F-↑}, whereas the second 
region has the co-location set {As↑V↑F-↑} associated with 
it and is slightly wider but significantly shorter than the 

first region.  The dropping Mo↑ from the co-location set 
increases purity from 49% to 91%, but the average product 

drops from 52.1 to 12.8; this explains why the smaller co-

location set is selected when  θ is 5—but the larger set is 
better when θ is 1. When θ is decreased to 0, surprisingly, 
the complete dataset is returned as a single region with the 

co-location set of As↑Mo↑V↑F-↑ with an average product 
of 5.95 and a purity of only 0.086.  

Algorithm Comparison. In this subsection, we compare 

CLEVER with SPAM that was introduced in section 3. 

Table 5 lists the solution quality in terms of fitness value, 

and algorithm runtime for the algorithms CLEVER and 

Table 4: Top 5 Regions Ranked by Reward (as per formula 2.8) 

Exp. 

No. 

Top 5 

Regi-

ons 

Region 

Size 

Region 

Reward 

Maximum Valued 

Pattern in the 

Region 

Purity 

Average Product for 

maximum valued 

pattern 

1 40 12684.6304 As↑Mo↑V↑ 0.65 161.3194 

2 23 10270.49 As↑Mo↑V↑F-↑ 0.83 211.0179 

3 36 9431.1264 As↑B↑Cl-↑TDS↑ 0.58 153.2687 

4 11 2098.970187 As↑Mo↑V↑SO4
2-↑ 0.55 170.3873 

Exp. 1 

5 507 578.8116 As↓TDS↓ 0.90 0.1968 

1 181 61684.5323 As↑Mo↑V↑F-↑ 0.49 52.1019 

2 80 24040.6315 As↑B↑Cl-↑TDS↑ 0.48 70.7322 

3 467 1884.8856 As↓TDS↓ 0.91 0.2047 

4 23 701.7072 As↓Cl-↑SO4
2-↑TDS↑ 0.78 8.1287 

Exp. 2 

5 189 587.9790 As↓F-↓ 0.78 0.2909 

1 833 1257170.945 As↑Mo↑V↑F-↑ 0.16 11.4334 

2 238 301539.908 As↑B↑Cl-↑TDS↑ 0.22 23.9052 

3 432 36754.1035 As↓TDS↓ 0.93 0.2122 

4 152 7394.7640 As↓SiO2↑WD↑ 0.53 0.6006 

Exp. 3 

5 N/A 

1 7 11669.7965 As↑B↑Cl-↑TDS↑ 1.0 630.1097 

2 117 10407.3250 As↑V↑F-↑ 0.91 12.8550 

3 4 2203.2526 As↑V↑ SO4
2-↑TDS↑ 1.0 275.4066 

4 2 1531.4887 As↑Mo↑V↑B↑ 1.0 541.4630 

Exp. 4 

5 530 1426.9140 As↓TDS↓ 0.90 0.1939 

 



SPAM. These experiments were run using the same 

parameter settings which were listed in Table 2. 

The algorithms CLEVER seeks the optimal number of 

regions, while SPAM discovers fixed number k of regions. 

In general, in our application it is hard to determine the 

optimal number of regions beforehand. SPAM obtains very 

low quality solution if k significantly deviates from the 

optimal number of regions.  To do fair comparison between 

SPAM and CLEVER, we run SPAM 100 times using the 

no. of clusters discovered by CLEVER as the input. In the 

Table 5, reports the average fitness and average runtime 

over all the runs of SPAM. 

Although SPAM was given a “good” k value as an 

input, its average fitness is significantly less than the fitness 

obtained by CLEVER. Only in one out of four experiments 

the maximum q(X) value obtained by SPAM is higher than 

the fitness achieved by CLEVER.  In conclusion, CLEVER 

clearly outperforms SPAM with respect to quality of the 

regions discovered.  

 
Table 5: Comparison of Algorithms (q(x)/ runtime in 

seconds) 

Exp. 

No. 
CLEVER 

SPAM (average 

values over multiple 

runs) 

Exp. 1 37809.19/41053.25 22333.13/108.13 

Exp. 2 64700.63/4007.42 55094.24/45.99* 

Exp. 3 1602859.72/7366.98 1344087/ 11.43 

Exp. 4 31302.89/46335.39 4131.61/135.13 
*: denotes that maximum fitness value achieved by SPAM 

over multiple runs is higher than that of CLEVER 

We analyzed the run-time needed to conduct the 

experiments. Our algorithms have been developed using 

the open source, Java-based data mining and machine 

learning framework Cougar^2, which is developed by our 

research group [4]. All the experiments were conducted on 

the machine with 1.3 GHz of processor speed and 4 GB of 

memory.  The machine runs RedHat Enterprise Linux 3 on 

an ia64 architecture. Our analysis shows that the CLEVER 

algorithm allocated more than 98% of its resources to the 

following two tasks: creating clusters for a given set of 

representatives and for fitness computations. With 

maximum pattern length set to 3, around 76% of time is 

allocated to computing q(X) and it takes around 1-2 hours 

for the algorithm to terminate. With maximum pattern 

length set to 4, 90% of the run time is allocated to fitness 

computations and in most cases the algorithm terminates in 

6-15 hours. When additionally considering co-location sets 

of size 5, a program run usually takes between 18-36 hours. 

In summary, it is feasible to compute co-location sets up to 

size 5 or 6 on the described hardware with the CLEVER 

algorithm; for higher sizes a faster algorithms and/or faster 

hardware is necessary. 

5 Discussion and Summary 

This paper proposes a novel framework for mining co-

locations patterns in spatial datasets. In contrast to past co-

location mining research that centers on finding global co-

location patterns in categorical datasets, co-location mining 

algorithms are introduced that operate in the continuous 

domain without need for discretization and discover 

regional patterns. The framework views regional co-

location mining as a clustering problem in which an 

externally given reward-based fitness has to be maximized; 

in particular, fitness functions we employ in our approach, 

rely on products of z-scores of continuous variables to 

assess the interestingness of co-location patterns in the 

continuous space. A highly desirable feature of our 

approach is that it provides search-engine-like capabilities 

to scientists by returning regions ranked by the scientist's 

notion of interestingness that has been captured in a plug-

in, reward-based fitness function.  

Moreover, a novel, prototype-based region discovery 

algorithm named CLEVER has been introduced that uses 

randomized hill climbing and searches a variable number 

of clusters and larger neighborhood sizes to battle 

premature convergence.  

The framework is evaluated in a case study involving 

chemical concentrations of Texas water wells centering on 

co-location patterns involving Arsenic. The tested region 

discovery algorithms were able to identify known and 

unknown regional co-location sets. Different sets of 

algorithm parameters lead to the characterization of arsenic 

distribution at different levels of granularity—stressing the 

need for parameterized, plug-in fitness functions that allow 

domain experts to express what patterns they are looking 

for at what level a granularity.  

Arsenic water pollution is a serious problem for Texas 

and its causes are frequently difficult to explain, 

particularly for wells in the Ogallala aquifer [15]. A large 

number of possible explanations exist what causes high 

levels of arsenic concentrations to occur. Therefore, 

scientists face the problem to decide which hypotheses 

from a large set of hypotheses to investigate further. In 

general our regional co-location mining framework turned 

out to be valuable to domain experts in that it provided a 

data driven approach that suggests promising hypotheses 

for future research.  
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