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Abstract Major challenges of clustering geo-referenced data include identifying arbitrarily shaped 

clusters, properly utilizing spatial information, coping with diverse extrinsic characteristics of 

clusters and supporting region discovery tasks. The goal of region discovery is to identify 

interesting regions in geo-referenced datasets based on a domain expert’s notion of interestingness. 

Almost all agglomerative clustering algorithms only focus on the first challenge. The goal of the 

proposed work is to develop agglomerative clustering frameworks that deal with all four 

challenges. In particular, we propose a generic agglomerative clustering framework for geo-

referenced datasets (GAC-GEO) generalizing agglomerative clustering by allowing for three plug-

in components. GAC-GEO agglomerates neighboring clusters maximizing a plug-in fitness 

function that capture the notion of interestingness of clusters. It enhances typical agglomerative 

clustering algorithms in two ways: fitness functions support task-specific clustering, whereas 

generic neighboring relationships increase the number of merging candidates. We also 

demonstrate that existing agglomerative clustering algorithms can be considered as specific cases 

of GAC-GEO. We evaluate the proposed framework on an artificial dataset and two real world 

applications involving region discovery. The experimental results show that GAC-GEO is capable 

of identifying arbitrarily shaped hotspots for different data mining tasks. 

Keywords Agglomerative clustering · Hybrid clustering · Region discovery · 

Spatial clustering algorithms · Hotspot detection 
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1  Introduction 

Advances in Geographic Information Systems (GIS) have brought on new capabilities in 

gathering, storing, editing, querying, analyzing, sharing, and displaying geographically-

referenced information. In Earth Science tremendous amounts of diverse geo-referenced 

data have been collected at various levels of granularity. For example, the Texas Water 

Development Board (TWDB) collects water well data in Texas for managing the state’s 

water resources (TWDB 2008), the U.S. Environmental Protection Agency (EPA) 

collects environmental and health data to execute policies in protecting human health and 

the environment (EPA 2008), and the National Oceanic and Atmospheric 

Administration’s (NOAA) satellites gather ocean, coast and atmospheric data of the 

global ecosystem for understanding and predicting changes in the earth’s environment 

(NOAA 2008). The rapid growth of those spatial data establishes the need for scientists to 

seek novel spatial data mining techniques that summarize and analyze them to find 

interesting but implicit patterns as well as to predict future spatial events in a highly 

automated fashion.   

Of particular interest is task-specific spatial clustering that discovers groups of objects 

in spatial proximity in geo-referenced datasets based on specific characteristics; for 

example, earth scientists are interested in detecting geographical regions with a high co-

occurrence of particular diseases. Traditional clustering algorithms are not suitable to 

search for task-specific clusters because they consider only domain independent 

characteristics to form a solution. For instance, partitioning clustering algorithms like K-

Means, PAM (MacQueen 1967; Kaufman and Rousseeuw 1990) and hierarchical 

clustering algorithm like AGNES (Kaufman and Rousseeuw 1990) consider cluster 

compactness while density-based clustering algorithms, such as DBSCAN (Ester et al. 

1996), construct clusters based on object density. Xiong et al. also addressed the similar 

limitation that typical clustering algorithms have no built-in knowledge of desirable 

patterns and may result in conflicts between implicit goals of the algorithm and expected 

patterns (Xiong et al. 2009).  

Another related data mining methodology to support task-specific spatial clustering is 

region discovery (Eick et al. 2006; Ding et al. 2008): its goal is the discovery of 

interesting regions in geo-referenced datasets based on a domain expert’s notion of 

interestingness. The problem of identifying interesting regions can be viewed as a spatial 

clustering problem: spatial clustering is performed to find regions that maximize an 

externally given fitness function; a function captures the notion of interestingness of 

clusters. Directly applying traditional clustering algorithms to cope with the first 

challenge is not feasible because very few of these algorithms support plug-in fitness 

functions: CHAMELEON (Karypis et al. 1999) and MOSAIC (Choo et al. 2007). In 

addition, different region discovery tasks require different fitness functions. For instance, 

in categorical hotspot detection, the search centers on finding regions with high class-

purity while identifying discrepancy areas with respect to a single continuous attribute, 

the fitness function needs to reward regions whose members have high variance with 

respect to the continuous attribute.  

In addition to task-specific spatial clustering, spatial context is one significant 

characteristic that guides clustering of spatial datasets. For example, instances spatially 

located together usually have similar patterns (Shekhar et al. 2003) and most useful 

patterns in spatial datasets have a geographically regional scope rather than a global scope 

(Ding et al. 2007). Moreover, by treating all attributes identically, traditional clustering 

algorithms find clusters in the complete attribute space. Spatial clustering algorithms, on 



the other hand, seek for contiguous clusters in the subspace of the geo-referenced 

attributes; e.g. they are looking for particular places or particular periods of time 

containing events with some predetermined characteristics. According to our 

investigation, current works in spatial clustering (Ester et al. 1996; Gao, Peuquet and 

Gahegan 2002; Duan et al. 2007) fail to separate spatial from non-spatial attributes. 

Another important characteristic of spatial clustering is that clusters may have arbitrary 

shape, e.g., in the volcano dataset (UCI repository 2008), active and inactive volcanoes 

locate in chain-like pattern. Clustering algorithms restricting their cluster formation to 

globular or convex shapes fail to identify this arbitrary pattern (Tan, Steinbach and 

Kumar 2005). Regarding the ability of discovering arbitrarily shaped clusters, two 

categories of clustering algorithms have been proposed to address this problem: 

agglomerative (Karypis et al. 1999; Choo et al. 2007; Chaoji et al. 2009) and density 

based clustering algorithms (Ester et al. 1996; Sander et al. 1998; Duan et al.2007). 

This paper focuses on the development of frameworks that support task-specific 

clustering and which are capable of identifying arbitrarily shaped clusters. In particular, 

we propose a Generic Agglomerative Clustering framework for GEO-referenced datasets 

(GAC-GEO) that explicitly utilizes spatial information to discover arbitrarily shaped 

clusters, and supports plug-in fitness functions for the task-specific analysis of geo-

referenced datasets. One principle of GAC-GEO is to reassemble existing clustering 

algorithms with minimal human effort with the goal to obtain better clustering results. 

GAC-GEO utilizes a two-phase clustering approach: a preprocessing phase constructs a 

set of initial clusters and spatial neighboring relationships among those clusters and an 

agglomerative phase that greedily merges neighboring clusters maximizing a given plug-

in fitness function. Relying on object-oriented design principles, GAC-GEO, as depicted 

in Fig. 1, reassembles three generic plug-in components to generate new clustering 

algorithms: 1) preprocessing algorithms that generate an initial set of clusters, 2) spatial 

neighboring relationship among clusters and 3) fitness functions. The contributions of this 

paper include: 

1. Provide powerful region discovery capabilities by introducing GAC-GEO, a highly 

generic clustering framework that enhances clustering quality of the obtained spatial 

clusters. GAC-GEO is capable of detecting arbitrarily shaped clusters, supports task-

specific clustering and supports finding patterns in geo-referenced data at different 

levels of granularity.  

2. Demonstrate five variations of GAC-GEO that glue one of the following five 

preprocessing methods with the same agglomerative algorithm in order to obtain five 

different clustering algorithms: a set of singleton clusters (SC), a representative based 

clustering algorithm (CLEVER), randomized sampling (RS), grid partitioning (GP) 

and divisive grid based clustering algorithm (SCMRG). The neighboring 

relationships for the first three variations are Gabriel graphs of cluster’s 

representatives whereas the latter two variations use an adjacency matrix of grid cells.  

3. Perform an empirical study on the five variations of GAC-GEO and evaluate their 

performance on an artificial dataset (DMML datasets 2008) in terms of fitness, 

consistency of obtained solutions and ability in detecting arbitrarily shaped clusters. 

Not only the benefits of the preprocessing techniques but also the benefits of the 

proposed agglomerative clustering framework are evaluated in the study. 

4. Demonstrate the capabilities of GAC-GEO in real world case studies involving an 

earthquake dataset.  



Fig. 1. Generic agglomerative 
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Region Discovery Algorithms. Given O and q, a region discovery algorithm searches for a 

set of regions (clusters) {x1,x2,x3,…,xk}∈R that maximizes q(R). Regions discovered must 

satisfy the following criteria: 

1.xi⊆O, i=1,2,3,…,k. 

2. xi∩xj  = ∅, i≠j. 

3. contiguous(xi), i=1,2,3,..,k. 

4. x1∪ x2∪ x3∪…∪xk ⊆ O. 

5. x1,x2,x3,…,xk are ranked based on their reward values. 

In summary, the discovered regions must be a disjoint set of contiguous regions 

(contiguous(xi)) which obtained from O. The generated regions are not required to be 

exhaustive with respect to the geo-referenced dataset O. The objects belonging to regions 

that receive no reward are treated as outliers in our approach. In many applications, we 

are interested in the top k regions with respect to q, similar to a search-engine. 

Consequently, we rank the regions based on the rewards. 

Region contiguity is one of the constraints required by region discovery algorithms. 

We derive a concept of the contiguity of a region from its spatial neighboring 

relationship, no. A region x is contiguous if for each pair of objects u and v in x there is a 

path between u and v that solely traverses x and no other regions.  The contiguity 

constraint guarantees that region discovery algorithms generate contiguous clusters. More 

formally, contiguity of region is defined as a predicate over subsets x of O: 

contiguous(x)⇔∀u∈x ∀v∈x ∃m≥2 ∃w1,w2,w3,…,wm ∈x: u=wi ∧ v=wi+1 ∧ no(wi, wi+1) 

(i=1,2,3,…,m). 

As a result, we also obtain contiguity of regions: contiguous(R) ⇔∀x∈R: contiguous(x). 

Region discovery algorithms are restricted to be applied on geo-referenced datasets, 

but in this paper we formally define a slightly simpler version of the framework that just 

operates in spatial datasets. We define a geo-referenced dataset O as a set of objects in an 

attribute space F. Objects belonging to O are tuples characterized by two kinds of 

attributes: spatial attributes S and non-spatial attributes N. In another word, each object in 

the geo-referenced dataset is a tuple that takes values in both spatial attributes’ space 

(Dom(S)) and non-spatial attributes’ space (Dom(N)). Datasets discussed in this paper 

conform to the notation of the geo-referenced dataset; as roles specified spatial attributes 

are used for calculating spatial neighboring distance whereas non-spatial attributes are 

used in fitness function computation.  

2.2  An agglomerative clustering framework in spatial domain 

This section provides formal definitions necessary for solving a problem of the spatial 

agglomerative clustering. First, we propose a generic agglomerative clustering framework 

in spatial domain, and give details of its preprocessing and agglomerative phases. Then, 

we provide discussion of incremental updating in the agglomerative phase and time 

complexity of the propose framework. 

 

Given O={o1,o2,o3,…,on}, O⊆F. R={x1,x2,x3,…,xk}, xi∩xj = ∅, � �⊆������ , where O is 

a geo-referenced dataset, F is relational database schema, S={s1,s2,s3,…,sp}, si∈ℜp
 is a set 

of spatial attributes, N={n1,n2,n3,..,nq}, ni∈ℜq
 is a set of other non-spatial attributes. 

 

DEFINITION 1 (Initial Clusters). Initial clusters are defined as clusters of objects that are 

non-overlapping and contiguous (traversable objects in cluster �′): 
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contiguous(��������). 
 

DEFINITION 2 (Agglomerative Clusters). Agglomerative clusters are defined as clusters 

that are unions of initial clusters�������� that have to be non-overlapping and contiguous: ��&&�' = {x1,x2,x3,…,xk}, xi∩xj = ∅ and ∀�′ ∈ �������� ��′⊆�, � � 
 � �*#������� , and 

contiguous(��&&�'). 

 

DEFINITION 3 (The Spatial Agglomerative Clustering Problem). Given a spatial 

dataset O in an attribute space F, a set of initial clusters ��������, a matrix of pairwise 

spatial neighboring relationship among clusters NC
1
 and a fitness function q, we define a 

problem of spatial agglomerative clustering as finding a set of clusters ��&&�' that 

maximizes the fitness function q(��&&�') subject to the following constraints: 

1. x1∪x2∪x3∪…∪xk = O. 

2. xi∩xj = ∅, i≠j.  

3. contiguous(xi), i=1,2,3,...,k. 

4. ∀ ∈ ��&&�', ∃, ≥ 1, ∃�′ ∃ ′ ∃!′ …∃#′ ∈ ��������:� 
 �′ ∪ ′ ∪!′ ∪…∪#′ . 

In other words, the solution obtained by the clustering algorithm must be exhaustive (all 

objects in O included), exclusive (non-overlapping clusters), contiguous (traversable 

objects in region xi) and agglomerative (new clusters are obtained by merging initial 

clusters).  

A pseudo code of the GAC-GEO algorithm is depicted in Fig. 2. The algorithm 

composes of two phases: The preprocessing phase forms a set of initial clusters ��������; 
Section 3 will discuss several strategies for form initial clusters.  The agglomerative 

phase iteratively merges neighboring clusters in �������� obtaining a final clustering ��&&�' whose clusters are unions of the clusters in ��������. We provide detailed 

description of the two phases of GAC-GEO algorithm in the following sub-sections. It 

should be mentioned that a matrix of pairwise spatial neighboring relations a clusters 

NC(��������) has to be constructed beforehand to perform the agglomerative phase. 

1. Preprocessing Phase �������� = createInitialClusters(O, F, NO, q) 

NC(��������) = createNeighboringRelationship(��������) 
2. Agglomerative Phase ��&&�' = agglomerateClusters(��������, NC, q) 

Fig. 2. An Overview of GAC-GEO Algorithm 

2.2.1 GAC-GEO’s Agglomerative Clustering Phase  

The major role of the agglomerative phase is to merge some clusters in �������� obtained 

from the preprocessing phase. Selecting merging candidates (clusters) is a challenging 

task. Traditional agglomerative clustering algorithms like AGNES merge two closest 

clusters to form large clusters. This merging strategy may result in generating bad 

clusterings, which is illustrated in Fig. 3. A hierarchical clustering algorithm that uses 

                                                           

1
 Two clusters, xi and xj are said to be neighboring clusters if there exists a spatial distance between 

the clusters that satisfies the user-defined neighboring constraint, e.g., nearest neighboring.  



average linkage
2
 would merge clusters C3 and C4, although the two clusters are not 

contiguous and hence, are not considered neighboring. This example emphasizes the need 

to disallow merging of non-neighboring clusters in agglomerative clustering. 

GAC-GEO, on the other hand, copes with this challenge of determining merging 

candidates which are clusters that are neighboring, captured by a matrix NC. An 

advantage of considering multiple merging candidates is that the clustering algorithm 

conducts a wider search in the agglomerative phase. For example, the clusters C1 and C2 

in Fig. 3 are contiguous and considered neighboring. These two clusters would be 

merged, if it results in enhancing the clustering fitness. C3 and C4, on the other hand, 

would never be merged, because they are not neighboring—guaranteeing contiguity of 

clustering results. 

 
Fig. 3.  Merging Elongated Clusters 

 

We provide of the two approaches for agglomerative clustering whose pseudo code is 

given in Fig. 4 and 5. In general, the algorithm obtains initial clusters with the 

corresponding spatial neighboring relations and a fitness function q as inputs. Then, it 

greedily merges a pair of merging candidates that enhance q the most. 

1.���&&�' AgglomerateClusters (��������, NC, and q) 

2.         R = Rinitial 

3.          NC = NC(Rinitial) 

4.          Rbest=Rinitial “initial clustering” 

5.         WHILE there are merge-candidates (xi ,xj) left in NC 

6.         BEGIN 

7.             Merge the pair of merge-candidates (xi,xj), that enhances fitness function q   

8.             the most, into a new cluster x’: * 
��∪% 
9.             Update Rbest by merging xi and xj; 

10.           Update merge-candidates in NC by removing merging candidates  

11.                xi, and xj and by adding candidates for x’:
3
 

12.                Merge-Candidate(x’,x)⇔(Merge-Candidate(xi,x)∨Merge-Candidate(xj,x))  

13.                                                         ∧ (Reward(x∪x’)≥Reward(x)+Reward(x’)) 

14.       END 

15. RETURN Rbest; 
Fig. 4. A Pseudocode of the First Approach of the Agglomerative Process 

 

In the step of updating merge-candidates in the spatial neighboring relations of clusters 

NC (at line 10 of Fig. 4 and 5): 

Merge-Candidate(x’,x) ⇔ Merge-Candidate(xi,x)∨Merge-Candidate(xj,x), 

the neighbors of a newly merged cluster is the union of the neighboring clusters of the 

clusters that were merged. Consequently, NC can be updated incrementally.  

 

                                                           

2
 Average linkage uses the average distance between the members of two clusters as its distance 

function. 
3
 This step is used for all clusters in R. 



1. ��&&�' AgglomerateClusters (��������, NC, and q) 

 2.         R = Rinitial 

 3.         NC = NC(Rinitial) 

 4.         Rbest=Rinitial  “initial clustering” 

 5.        Rcurrent =Rinitial 

6.         WHILE there are merge-candidates (xi ,xj) left in NC 

7.         BEGIN 

8.              Merge the pair of merge-candidates (xi,xj), that enhances fitness function q  

9.                the most, into a new cluster x’:  ′ 
��∪% 
10.            Update merge-candidates in NC by removing merging candidates for  

11.               xi, xj and adding candidates for x’:
4
 

12.              Merge-Candidate(x’,x) ⇔ Merge-Candidate(xi,x)∨Merge-Candidate(xj,x) 

13.            Update Rcurrent; 

14.            Update Rbest if a better clustering was found; 

15.       END 

16. RETURN the best clustering Rbest found. 
Fig. 5. A Pseudocode of the Second Approach of the Agglomerative Process 

2.2.2  Complexity of GAC-GEO  

The computational time of GAC-GEO varies and depends on the number of objects in the 

datasets, and on the number of cluster k that were obtained in the preprocessing. 

However, in general, it requires O(O(f(n)+O(g(k))+O(k
2
*O(q(X))) where O(f(n)), O(g(k)) 

and O(k
2
+O(q(X)) are the time complexity of the preprocessing algorithm, the 

neighboring relationship construction and the agglomeration of k clusters based on a 

fitness function q(X), respectively. As we will see later different preprocessing techniques 

have different complexities f(n). Different neighborhood graphs could be used whose 

construction g(k) cost vary, e.g., one of our current implementations uses Gabriel graphs 

to identify neighboring clusters whose construction cost are O(k
3
). 

As far as the agglomerative clustering phase is concerned, because neighborhood 

graphs are planar graphs we have O(k) initial merge-candidates. In each iteration, i is 

decreased by one. Therefore, O(k−i) merge-candidates have to be evaluated at the i
th
 

iteration and the complexity of total fitness function evaluations can be represented as: 

O(k−1)+O(k−2)+O(k−3)+…+1 which adds up to O(k
2
). Considering all these, the time 

complexity for GAC-GEO’s agglomerative phase becomes O(k
2
*O(q(X))) where O(q(X)) 

denotes the time complexity of the fitness function. However, this complexity can be 

significantly reduced by computing the fitness value of a clustering incrementally, where 

previous fitness function values of unchanged clusters are reused instead of recalculating 

their fitness values. 

3 Discussion of Five Preprocessing Generic Agglomerative 
Clustering Framework for Geo-Referenced Datasets (GAC-GEO) 

There are two motivations of supporting plug-and-play of initial clusters and neighboring 

relations in GAC-GEO. The first one is to reassemble existing clustering algorithms with 

minimal human effort with the goal to obtain better clustering results. There exist plenty 

of clustering algorithms that can generate good clusters, and a use of agglomeration on 

those clusters can further enhance clustering quality. The second one is to find arbitrarily 

shaped clusters, which is one of characteristics found in spatial domain. Many clustering 

                                                           

4
 This step is used for all clusters in R. 



algorithms, particularly prototype-based, limit themselves to identify non-convex shaped 

clusters. The agglomerative process can enable identifying arbitrarily shaped clusters.  

GAC-GEO provides an architecture of plug-and-play components to users; the three 

plug-in components of GAC-GEO are: 1) different types of initial clusters, 2) spatial 

neighboring relationships among clusters, and 3) a plug-in fitness function. Regarding the 

first component, we define three types of clusters used by GAC-GEO as following: 

 

Prototype-based Clusters. Prototype-based clusters are formed by using a set of 

representatives. The clustering is created by assigning individual objects to clusters 

having its nearest representative. The shape of this clusters’ type is convex-polygon, 

which is formed by generating Voronoi cells of clusters.  

 

Grid-based Clusters. Rectangle plays the same role as Voronoi cell but rectangle is much 

more restricted in shape. Given a set of grid cells in spatial space as a clustering, 

individual objects are assigned to grid cells covering them. The region contiguity of this 

type of initial clusters is determined from the boundary of the grid cells to which the 

cluster belongs, e.g., two grid-based clusters sharing k–1 edges of grid cells in k spatial 

dimension. 

 

Singleton Clusters. Singleton clusters is also defined as a restricted form of prototype-

based clusters in which a single object is assigned to a cluster. 

 

We also illustrate five variations of GAC-GEO to produce different types of initial 

clusters and spatial neighboring relationships in Table 1. The first variation (No. 1 (a) in 

Table 1) employs single-object clusters, and the spatial neighboring cluster relations are 

constructed by computing a proximity graph for the objects in the dataset, i.e., a Gabriel 

graph of spatial attributes of n objects. The AGglomerative NESted clustering algorithm 

(AGNES) [10] is similar to this approach except that 1) AGNES does not differentiate 

between spatial and non-spatial attributes and 2) AGNES uses single linkage and merges 

the closest pair of clusters, instead of using a plug-in fitness function and neighboring 

relations to agglomerate clusters.  

The second variation (No. 1 (b) in Table 1) uses a representative-based clustering 

algorithm that generates a set of initial clusters with corresponding representatives. 

Representative-based clustering algorithm that allows for a plug-in fitness function is 

used here to guarantee that initial clusters have good quality. Examples of eligible 

representative-based clustering algorithms are SPAM and CLEVER [20]. The set of 

representatives obtained is used to construct a proximity graph to identify a neighboring 

relation among clusters; our current implementation uses Gabriel graphs [26] to construct 

neighboring relations among clusters. The third variation (No. 1 (c) in Table 1) is similar 

to the second one except that it randomly selects representatives from a dataset and uses 

them to create initial clusters; non-representative objects are assigned to the cluster with 

closest representative to form initial clusters. 

The fourth and fifth variation (No. 2 (a) and (b) in Table 1) use grid cells as initial 

clusters; the fourth variation directly overlays a grid on a dataset, whereas the fifth 

variation runs a divisive grid-based clustering algorithm to create grid-based initial 

clusters. It is noted that for these alternatives the initial clusters are simply rectangular. A 

spatial neighboring relation is constructed by considering the contiguity of grid cells; two 

cells are neighboring if they share one edge.  

 



Table 1. The Alternative Plug-in Components in GAC-GEO 

No. Preprocessing 

Methods 

 

Cluster 

Representatives 

Types of 

Initial 

Cluster 

Spatial Neighboring 

Clusters 

Relationships 

1 (a) Individual 

objects  

Individual objects 

defined as initial 

clusters 

Objects The proximity graph of 

representatives, e.g., 

Voronoi cells, Gabriel 

graphs, the closest 

clusters, … 

(b) Representative-

based clustering 

algorithms 

Representatives of 

clusters 

(c) Randomize 

representatives 

2 (a) Individual grid 

cells 

Grid cell ids Grid cells Directly neighboring 

relationship of grid 

cells (b) Grid-based 

clustering 

algorithms 

 

We also explain in detail the five preprocessing methods to generate initial clusters (as 

shown in Table 2), which will be used in the experimental section as follows. 

 

Table 2. Five Variations of GAC-GEO 

Item Name Preprocessing 

Methods 

Spatial Neighboring 

Clusters Relationships 

1 Singleton Clusters (SC) No. 1 (a) of Table 1 Gabriel graphs 

2 CLEVER No. 1 (b) of Table 1 

3 Randomized Sampling (RS) No. 1 (c) of Table 1 

4 Grid Partitioning (GP) No. 2 (a) of Table 1 Directly neighboring 

relationship of grid cells 5 SCMRG No. 2 (b) of Table 1 

 

Preprocessing Method 1: Singleton Clusters (SC) (Item 1 in Table 2). We construct 

singleton clusters from the original dataset; each cluster contains one object.  

 

Preprocessing Method 2: CLEVER (Item 2 in Table 2). We run CLEVER (Eick et al. 

2008), the representative-based clustering that allows for plug-in fitness functions with 

different parameters: k’, neighborhood size, distance measure, P and P’. Then the 

clustering with the best fitness value is selected. 

 

Preprocessing Method 3: Randomized Sampling (RS) (Item 3 in Table 2). Given a 

number of initial clusters k, this preprocessing method randomly selects k representatives 

from objects in a dataset, which individually represents a cluster. Then, it assigns non-

representative objects to the cluster with its nearest representatives to form initial clusters 

and calculates a fitness value of the clustering. This process is repeated 1,000 times, and 

the clustering having maximum fitness value is selected as the set of initial clusters in the 

agglomerative phase. The numbers of initial clusters k are given by users. We can 

consider SC as applying RS where k is equal to the number of objects in the dataset. 

 

Preprocessing Method 4: Grid Partitioning (GP) (Item 4 in Table 2). We generate initial 

clusters using user-defined grid resolutions; different resolutions produce different 



numbers of initial clusters, e.g., a grid resolution of 12x12 generates 144 initial clusters 

including non-empty clusters. Moreover, empty grid cells are eliminated.  

 

Preprocessing Method 5: SCMRG (Item 5 in Table 2). We run SCMRG (Eick et al. 

2006)—a divisive grid-based clustering algorithm that allows for plug-in fitness 

functions—to generate initial clusters. SCMRG input parameters include: minimum cell 

size, dividing resolution, initial resolution and looking ahead level.  

4  Experimental Results 

We conducted three experiments to demonstrate the capabilities of the proposed 

agglomerative clustering framework GAC-GEO. The first experiment evaluated the 

performance of GAC-GEO among its variations using an artificial dataset. The second 

and third experiment evaluated the performance of GAC-GEO using a real-world 

problem: identifying high variance hotspots and high correlation hotspots of earthquakes. 

All of the experiments were conducted on a desktop with Intel(R) Pentium(R) M 1.6 GHz 

processor with 2.0 GB of RAM. 

  

Experiment 1. Supervised Clustering using GAC-GEO with Purity Fitness Function on a 

Complex9 Dataset.  

 

Dataset. The Complex9 dataset (DMML datasets 2008) depicted in Fig. 6 had several 

unique characteristics: the shape of some clusters was non-convex, some clusters were 

nested, and clusters were very pure and highly dense. The dataset contained 3,032 objects 

with 3 attributes: x, y and class_id, where x and y were coordinates and class_id had 9 

classes. 

 

Experimental Objectives. There were two main objectives of this experiment: to 

demonstrate the flexibility of GAC-GEO with respect to different sources of input 

provided by different preprocessing methods and to perform a comparative study on the 

variations of GAC-GEO on an artificial dataset. In particular, for the latter objective, this 

experiment demonstrated the ability of GAC-GEO to form arbitrarily shaped clusters, and 

investigated the capabilities and limitations of GAC-GEO based on the quality of initial 

input clusters and final output clusters.  

We applied five preprocessing methods to form initial input clusters, as discussed in 

Section 3, including randomized sampling (RS), singleton clusters (SC), grid partitioning 

(GP), the SCMRG clustering algorithm (Eick et al. 2006) and the CLEVER clustering 

algorithm (Eick et al. 2008). In order to create a comparable set of initial clusters, we 

anticipated an approximate number of initial clusters k using four different granularity 

levels (resolutions) using the scaling factor f = {1, 3, 9, 27} in Eq. (3): 0 
 12 (3) 

 

where n is the number of objects in the dataset. Therefore, k={3032, 1010, 336, 112}. For 

two-dimensional datasets, we computed a number of grid cells g proportional to 30 

obtaining g={55, 31, 18, 10}. It should also be noted that SCMRG did not require a 

number of initial input clusters, whereas CLEVER likely generated a number of initial 

clusters different from the number of clusters generated by RS, SC, and GP. We set 

SCMRG parameters as follows: minimum cell size=0.1, dividing resolution={2, 2}, 



looking ahead level=2; we set CLEVER parameters as follows: β=1.1, η=1.0, pTh=0.7, 

neighbor size=3, distance measure=2, p=10, p’=10, k={112, 336, 1010}. After obtaining 

initial input clusters from the 5 preprocessing methods, we applied GAC-GEO to those 

initial clusters with the following parameters: pTh={0.7, 0.8, 0.9}, η=1.0, 

β={1.0000000001, 1.01, 1.1, 1.2} obtaining 12 different experimental results. 

 

Employed Interestingness Function. This interestingness function rewards class purity 

in individual clusters: 

��	 
 4�567%∈8�9:��;<%�		 − ;ℎ	? 567%�9:��;<%�		 > ;ℎ0 B;ℎ������� C (4) 

 

purityj(x) denoted the normalized ratio of the number of objects belonging to class j∈J to 

the number of objects in the cluster x. Then, the class purity of the cluster x was the 

maximum purity calculated from all classes in J. η controlled the level of importance of 

purity; the greater value η was, the more importance of purity we emphasized on the 

clusters obtained.  

 

Experimental Results. The experimental results showed that given a sufficient number 

of initial clusters, GAC-GEO was capable of identifying arbitrarily shaped clusters 

irrespective of the initial input clusters generated by the five preprocessing methods. Fig. 

11 depicted four different initial clusters generated by GP and the corresponding final 

clusters generated by GAC-GEO. Due to the agglomerative nature of GAC-GEO global 

purity never decreased; in general, the number of minority class examples remains the 

same or increases as clusters were merged—the objects in original clusters stay together. 

Since the quality of final clusters is directly influenced by the quality of initial clusters, 

obtaining pure initial clusters is important. According to our experimental results depicted 

in Fig. 7, using a number of initial clusters greater than 335 in RS and using a number of 

initial clusters larger than 240 in GP could create initial clusters with 100% purity.  

    
(a) GP with 

Resolution 10×10 

Cells 

(b) GAC-GEO:GP 

with Resolution 10×10 

Cells 

(c) GP with 

Resolution 18×18 

Cells 

(d) GAC-GEO:GP 

with Resolution 

18×18 Cells 

    
(e) GP with 

Resolution 31×31 

Cells 

(f) GAC-GEO:GP with 

Resolution 31×31 

Cells 

(g) GP with 

Resolution 55×55 

Cells 

(h) GAC-GEO:GP 

with Resolution 

55×55 Cells 

Fig. 6. Initial Clusters on Complex9 Dataset Preprocessed by GP, and the Corresponding Final 

Clusters Post-processed by GAC-GEO  



  
Fig. 7. A Comparison of Average Purity Per 

Cluster Before and After Applying GAC-GEO 

to Two Preprocessing Methods: GP and RS 

Fig. 8. A Comparison of Fitness Before and 

After Applying GAC-GEO to Two 

Preprocessing Methods: GP and RS 

 

Additional evidence depicted in Fig. 8 illustrated the enhancement of fitness values 

before and after applying GAC-GEO to RS and GP. We found that, if used with proper 

parameter setting, SC, SCMRG and CLEVER could generate pure initial clusters. In 

summary, GAC-GEO could easily detect natural clusters from these high quality inputs.  

Experiment 2. Using GAC-GEO for Variance Analysis and Co-location Mining
5
.  

 

Dataset. We used an earthquake dataset available on the website of the U.S. Geological 

Survey Earthquake Hazards Program, http://earthquake.usgs.gov/. We sampled 4,132 

examples of earthquakes dated from January 1986 to November 1991. Information 

extracted included the location (longitude, latitude) and the depth (kilometers) of the 

earthquake. The statistics of the dataset were calculated as follows: Meandepth=48.518, 

StdDevdepth=87.589 and Variancedepth=7,671.809. Fig. 9 depicts the dataset, whose depth 

was divided equally into 20 ranges. Looking at the dataset we could visually identify 

three areas with high variance in earthquake depth in the south Pacific Ocean, and in the 

eastern and southeastern Asia. 

 
Fig. 9. A Visualization of the Earthquake Dataset; Depth of Earthquakes Is Discretized into 20 

Ranges from Shallow (Light Yellow) to Deep (Dark Purple). 

 

Experimental Objectives. In this case study, we were interested in discovering hotspots 

in geographical space where deep earthquakes were in close proximity to shallow 

earthquakes. The High Variance function given in Eq. (4) was employed to find such 

regions. The objectives of this experiment were similar to the previous ones except that 

we evaluated GAC-GEO on a real dataset. In particular, we depicted how GAC-GEO 

enhances the quality of the initial clusters, and analyzed how different preprocessing 

methods affected the quality of the final clustering. We compared the quality of initial 

                                                           

5
 In this experiment, GAC-GEO was used to identify high variance clusters with respect to 

earthquake depth for an earthquake dataset. Due to the fact that AGNES clusters datasets solely on 

distance information it is impossible to use AGNES for such a problem. 
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and final clusters using the following measures: fitness, reward per object (RO), average 

variance per cluster (AVC), number of clusters and the visualization of top five interesting 

regions discovered by the different variations. Fitness q defined in Eq. (1) measured 

quality of a clustering. RO measured the average reward per object of positive reward 

clusters: ���7	 
 D�E	�_G', (5) 

 

where k_po was the total number of objects in all positive reward clusters. The AVC 

measures raw interestingness, which was the average variance of earthquake depth for all 

clusters obtained: 6HI�7	 
 � J�K�L	MNOP�_GQ ,  (6) 

 

where Var(x) was the variance of earthquake depth in a cluster x, and k_pc was the 

number of positive reward clusters.  

We applied the five preprocessing methods to form initial clusters as performed in the 

first set of experiments. Details of the preprocessing methods are as follows. For GP, we 

used four grid resolutions: 12×12, 21×21, 37×37, and 64×64 to produce a different 

number of initial clusters: 104, 192, 344, and 572, respectively. The rationale for 

choosing the specified grid resolutions was discussed in the first set of experiments. Then, 

all empty grid cells were eliminated. For RS, the numbers of initial clusters k were as 

follows: 1377, 459, and 153. For SCMRG, we ran SCMRG using various parameter 

settings and chose one that gave the best fitness value as initial clusters. The best 

parameter setting of the SCRMG clustering algorithm was minimum cell size=0.0001, 

dividing resolution=2, initial resolution={2, 2}, looking ahead level=6, β=1.01, η=1.0, 

and variance threshold (th)=1.01. Finally, we ran CLEVER with different parameter 

settings and selected the one having the best fitness value, which had neighbor size=3, 

distance measure=2, P=10, P’=10, β=1.01, η=1.0, th=1.1. After that, we ran GAC-GEO 

to generate final clusters by plugging in a High Variance function defined in Eq. 7 with 

different parameter settings: β={1.01, 1.2}, η=1.0 and th={1.1, 1.2, 2.0}; the higher beta 

value, the larger regions were produced by GAC-GEO. In this paper, we discussed one of 

the good results using β=1.2 and th=2.0. 

 

Employed Interestingness Function. High variance function maximizes variance of a 

numeric attribute (Rinsurongkawong and Eick 2008). In other words, we were interested 

in areas where extremely high and low values of the attribute were in close proximity. 

The interestingness function was defined as follows: 

��	 
 RSH���, �	H����, �	 − ;ℎT? H���, �	H����, �	 > ;ℎ
0 B;ℎ������, C (7) 

where  H���, �	 
 �ULUV�� ���B	 − WX	 'YL . (8) 

 

z denotes earthquake’s depth in the dataset O; th>1 was a threshold; 0<η<∞ is a form 

parameter; µz was an average value of z for all objects in the cluster x; Var(x,z) denoted a 

regional variance of z in a cluster x whereas Var(O,z) denoted a global variance of z in the 

dataset. 

 



Experimental Results. First, we analyzed how different resolutions of initial clusters 

influence final clusters. For RS and GP, we defined 4 resolutions (1 to 4) from rough 

(k=153 and grid resolution=12×12) to fine granularity (k=4,132 and grid 

resolution=64×64). As shown in Fig. 10, the large initial clusters had higher fitness q than 

the small ones (as depicted by the blue and green bars). As shown in Fig. 11, the results 

measured by using RO
6
 were also comparative except the result generated by GP using 

the third resolution.  However, as far as final clusters were concerned, small initial 

clusters led to higher q and RO of the final clustering (as depicted by the red and purple 

bars in Fig. 10 and 11, respectively). Fig. 10 and 11 also illustrate the improvement of 

clustering quality in terms of fitness q and RO, when GAC-GEO was applied to the initial 

clusters generated by RS and GP. By employing the two simple preprocessing methods, 

GAC-GEO obtained better final clusters when giving small initial clusters.  

  
Fig. 10. Comparison of Fitness Values of 

Clustering Before and After Applying GAC-GEO 

to Four Resolutions of RS and GP 

Fig. 11. Comparison of RO Before and After 

Applying GAC-GEO to Four Resolutions of 

RS and GP 

 

Next, we compared the results of clusters before and after applying GAC-GEO to 

initial clusters generated by the five preprocessing methods. GAC-GEO and the 

preprocessing methods with different parameter settings produced a large number of 

results, and therefore, we chose the best results with the highest fitness q from each 

preprocessing method. The objective was to see which preprocessing approach performed 

the best in choosing initial clusters for GAC-GEO. As seen in Fig. 12, CLEVER, 

SCMRG, and GP were the top three preprocessing methods that gave the highest fitness q 

of initial clusters. After the agglomerative step, GAC-GEO using the initial clusters of SC 

led to the best result. Taking a broader view, using representative-based approaches (SC, 

CLEVER and RS) to create initial clusters, GAC-GEO obtained the better results than 

using grid-based approaches (GP and SCMRG). Regardless of the size of clusters, GP, 

RS, and CLEVER were the top three preprocessing methods that gave the highest reward 

per object of initial clusters, as depicted in Fig. 13. (This measure considers positive 

reward clusters only.) 

However, in the agglomerative step, the result of this measure was similar to the one 

measured by using fitness. Considering AVC of clustering, CLEVER and RS are 

comparative methods that returned superior initial clusters, as depicted in Fig. 14. 

However, in the agglomerative step, GAC-GEO with CLEVER and SCMRG became 

comparative methods that returned superior final clusters compared to SC, RS and GP. 

Fig. 15 showed the number of initial and final clusters before and after employing GAC-

GEO to the five preprocessing methods. 

 

                                                           

6
 RO is calculated using the total number of objects in positive reward clusters only.  
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Fig. 12. Comparison of Fitness Values of 

Clustering Before and After Applying GAC-

GEO to the Five Preprocessing Methods 

Fig. 13. Comparison of RO Before and After 

Applying GAC-GEO to the Five Preprocessing 

Methods 

 

  
Fig. 14. Comparison of AVC Before and After 

Applying GAC-GEO to the 5 Preprocessing 

Methods 

Fig. 15. Number of Clusters Before and After 

Applying GAC-GEO to the 5 Preprocessing 

Methods 

 

Next, we performed a comparison using the same resolution. Since SCMRG always 

returned a number of initial clusters less than 100, we only provide the comparison with 

respect to the roughest resolution. As depicted in Fig. 16 and 17, the results were identical 

to the previous comparison; GAC-GEO gave the better result, when representative-based 

approaches (RS and CLEVER) were used in creating initial clusters, as compared to grid-

based approaches (GP and SCMRG).  

  
Fig. 16. Comparison of Fitness Values of 

Clustering Before and After Applying GAC-

GEO to the Four Preprocessing Methods 

(Resolution=1) 

Fig. 17. Comparison of RO Before and After 

Applying GAC-GEO to the Four Preprocessing 

Methods (Resolution=1) 

 

In summary, for all the variations, GAC-GEO was capable of forming larger clusters 

while enhancing the clustering quality. In particular, GAC-GEO could improve the 

quality of the final result (in terms of fitness) even with initial clusters generated by 

simple preprocessing methods. For example, as shown in Fig. 18, for RS, GAC-GEO on 

average increased the quality of the final result 3.49 times that of the initial clusters, and 

for GP, it on average increased the quality of the final result 3 times that of the initial 
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clusters. Even for the two clustering algorithms SCMRG and CLEVER that produced 

high quality initial clusters, GAC-GEO could increase quality of the final result 1.7 times 

and 2.1 times that of the initial clusters. It should be noted that SCMRG weeded out low 

quality clusters as outliers, and hence, the fitness value of the final results was small 

compared to the other results. However, for SC, GAC-GEO merged very small clusters, 

and thus it obtained the highest fitness value. Fig. 19 showed the enhancements of GAC-

GEO using RO. Fig. 20 showed that the AVC of both initial and final clusters generated 

by the five preprocessing methods. It was observed that AVCs obtained from all of the 

five preprocessing methods were greater than the global variance of earthquake depth 

(7,672) in the dataset. 

Fig. 18. Comparison of Fitness Before and 

After Applying GAC-GEO to the Five 

Preprocessing Methods with Different 

Resolutions 

Fig. 19. Comparison of RO Before and After 

Applying GAC-GEO to the Five Preprocessing 

Methods with Different Resolutions 

 

 
Fig. 20. Comparison of AVC Before and After Applying GAC-GEO to the 5 Preprocessing 

Methods with Different Resolutions 
 

Fig. 21 illustrates hotspots obtained from the five variations of GAC-GEO by querying 

the top five regions as per the reward. Overall, after applying GAC-GEO, we were able to 

discover four regions of the dataset where deep and shallow earthquakes are located in 

proximity (see also Fig. 9). GAC-GEO: CLEVER returned regions with the scope most 

similar to the ground truth (Fig. 21 (e)). GAC-GEO: RS and GAC-GEO: GP returned 

similar results in the larger region (Fig. 21 (a) and (c), respectively). GAC-GEO: SCMRG 

returned a similar result in the smaller regions (Fig. 21 (d)). Finally, GAC-GEO: SC (Fig. 

21 (b)) agglomerated the interesting regions into 3 big regions. Considering variance and 

size of the top five hotspots (shown in Fig. 22), almost all of them were comparably high 

except GAC-GEO: SCMRG, which identified two small, very high variance regions. 
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(a) GAC-GEO: RS (

(c) GAC-GEO: GP (12

 

Fig. 21. Visualization of Top 

Fig. 22. Variance and Size of Top 

 

Experiment 3. Apply GAC

High Correlation
7
.  

 

Dataset. According to the earthquake dataset in the experiment

attributes: A0=depth and 

Fig. 23 shows the dataset used. The statistics of the dataset are calculated as follows: 

MeanProductOfZ-score=0.194, Stdev

Correlation (z-scoredepth

                                        

7
 In this experiment, GAC

earthquake dataset. Due to the fact that AGNES clusters datasets solely on distance information it 

is impossible to use AGNES for such a problem.
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GEO: RS (k=459) (b) GAC-GEO: SC

 
GEO: GP (12×12) (d) GAC-GEO: SCMRG

 

(e) GAC-GEO: CLEVER 
Visualization of Top Five Regions Produced by GAC-GEO Using the 

Methods (Ordered by Reward) 

 

Variance and Size of Top Five Positive Reward Regions Generated by GAC

the Five Preprocessing Methods 

Apply GAC-GEO on an Earthquake Dataset in Identifying 

According to the earthquake dataset in the experiment 

=depth and A1=severity and then pre-computed z-score: 

shows the dataset used. The statistics of the dataset are calculated as follows: 

=0.194, StdevProductOfZ-score=1.014, VarianceProductOfZ

depth,z-scoreseverity)= −0.113. 

                                                           

In this experiment, GAC-GEO was used to identify regions with high correlation for an 

earthquake dataset. Due to the fact that AGNES clusters datasets solely on distance information it 

is impossible to use AGNES for such a problem. 
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shows the dataset used. The statistics of the dataset are calculated as follows: 

ProductOfZ-score=1.029 and 

GEO was used to identify regions with high correlation for an 

earthquake dataset. Due to the fact that AGNES clusters datasets solely on distance information it 
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Fig. 23. Earthquake Dataset; the Product of z-score of Depth and Severity of Earthquakes is 

Discretized into 20 Ranges from Low (Light Yellow) to High (Dark Purple) 

 

Experimental Description. Objective of this study was to see which preprocessing 

methods suitably work with GAC-GEO in finding regions with high correlation between 

two continuous attributes: depth and severity of earthquakes. In general, we compared the 

results of clusters before and after applying GAC-GEO to the initial clusters generated by 

the five preprocessing methods. We chose the best results from each variation that gave 

the highest fitness value. We compared the quality of initial and final clusters using the 

following measures: the fitness, the reward per object (RO), the average raw 

interestingness of a clustering (AP1), the average raw interestingness of a cluster (AP2), 

number of clusters and the visualization of top five interesting regions discovered by the 

different variations. The formula of AP1 and AP2 were given in Eq. (9) and (10), 

respectively, 

6\1�7	 
 � ]U� ���^#'�� U������	 _�_GQ��� 0_9`  (9) 

6\2�	 
 ����^�����	 (10) 

where za and zb were the z-score of depth of earthquake and severity, respectively, and 

k_pc was the number of positive reward clusters. 

 

We applied the five preprocessing methods to form initial clusters as performed in the 

other experiments. Details of the preprocessing methods were the same as in the 

experiment 2. For SCMRG, the parameter settings that gave the best fitness value were 

that minimum cell size=0.0001, dividing resolution=2, initial resolution={2, 6} looking 

ahead level=2, β=1.01, η=1.0 and z threshold (zth)=0.3, and for CLEVER, the parameter 

settings were that neighbor size=3, distance measure=2, P=20, P’=20, β=1.01, η=1.0, zth 

=0.3. Then, we ran GAC-GEO by plugging in the interestingness function in Eq. (12) 

with the parameter setting: β=1.2, η=1.0 and zth =0.3. 

 

Employed Interestingness Function. This intererestingness function (Ding et al. 2008) 

sought for localized regions with high positive/negative correlation; the regions where 

continuous non-spatial attributes of objects attained together the values from the wings of 

their respective distributions.  

Given a set of continuous attributes A={A1,A2,A3,…,Aq} the interestingness of an object 

o∈O was measured as follows: 



��6, B	 
 b �Zc�B	D%�� . (11) 

 �Zc�B	 was the z-score of the continuous attribute Aj. Objects with |i(A,o)|>>0 were 

clustered as hotspots, where the attributes in A happened to attain sum of products of z-

scores. The products of z-scores were considered an estimate of a correlation of A. Then, 

the definition of interestingness to regions was extended as the absolute value of the sum 

of the interestingness of the objects belonging to it: 

��6, 	 
 R�U� ��6, B	'∈K U�����	 − ��d	 �2 U � ��6, B	'∈K U�����	 > � ��d0 B;ℎ������� C (12) 

 

Eq. (12) estimates the absolute value of a regions’ correlation. In this formula, the 

interestingness threshold zth was introduced to weed out regions with i(x) close to 0, 

which prevented clustering solutions from containing only large clusters of low 

interestingness. 

 

Experimental Results. As seen in Fig. 24, CLEVER, RS, and GP are the top three 

preprocessing methods that gave the highest fitness value of the initial clusters. After the 

agglomerative step, GAC-GEO: SC returned the highest fitness values. In a broader view, 

using representative-based approaches (SC, CLEVER and RS) in creating initial clusters, 

GAC-GEO gave better results than those obtained using grid-based approaches (GP and 

SCMRG). Regardless of the size of clusters, CLEVER, GP, and SCMRG were the top 

three preprocessing methods that gave the highest reward per object of initial clusters, as 

depicted in Fig. 25. (This measure considered positive reward clusters only.) 

  
Fig. 24. Comparison of Fitness Values of 

Clustering Before and After Applying GAC-

GEO to Five Preprocessing Methods 

Fig. 25. Comparison of RO Before and After 

Applying GAC-GEO to Five Preprocessing 

Methods 

 

However, in the agglomerative step, GAC-GEO: SCMRG, GAC-GEO: SC and GAC-

GEO: CLEVER returned the top three best results. Consider AP1, the average difference 

of correlation of clusters before and after applying the four variations of GAC-GEO 

slightly decreased (Fig. 26); this result showed that the agglomerative process sometimes 

created a tradeoff between the quality and size of clusters. However, the tradeoff was not 

significant (the average difference of AP1 was less than 0.2). On the other hand, GAC-

GEO could effectively increase the size of clusters (Fig. 27); it was able to reduce more 

than 83% of the number of initial clusters when applying with representative-based 

approaches, and was able to reduce 69% and 29% for GP and SCMRG, respectively. 

Considering all of the measures, CLEVER is the best preprocessing method that returned 

superior initial clusters and results in superior final clusters when applying to GAC-GEO. 
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Fig. 26. Comparison of AP1 Before and After 

Applying GAC-GEO to Five Preprocessing 

Methods 

Fig. 27. Comparison of Number of Clusters 

Before and After Applying GAC-GEO to Five 

Preprocessing Methods 

Fig. 28 illustrated the hotspots obtained from the five variations of GAC-GEO by 

querying the top five regions as per reward. Results obtained before and after applying 

GAC-GEO were arranged on the left and right panel, respectively. In summary, the five 

variations of GAC-GEO found similar regions which had the extreme density of 

extremely high (low) severity and depth of earthquakes. SC and SCMRG identified fewer 

regions; especially for SCMRG, the size of the hotspots was smaller than those found by 

other approaches. These figures also convinced us of the capability of GAC-GEO to form 

larger clusters. The interesting point was that after the agglomerative process, GAC-GEO 

further identified new hotspots in the top ranks. This was because some small hotspots in 

close proximity were merged to form the larger ones.  

The comparison of the top five regions in Table 3 showed in particular that GAC-GEO 

was able to identify high positive correlation of earthquakes’ severity and depth in the 

southern part of Alaska (except for GAC-GEO: SCMRG, which due to the small size of 

the region, identified this hotspot as a negative correlation). The other four hotspots were 

considered positive correlation. 

Table 3. AP2 and Cluster Size of the Top Five Regions Produced by GAC-GEO Using the Five 

Preprocessing Methods: Ordered by Reward 

Algorithms\ 

(AP2, size) 

Rank1= 

regionred 

Rank2= 

regionorange 

Rank3= 

regionyellow 

Rank4= 

regiongreen 

Rank5= 

regionblue 

RS(k=1377) (5.64, 7) (5.80, 5) (7.49, 4) (5.26, 5) (4.22, 6) 

GAC-GEO: 

RS 
(2.63, 118) (0.52, 284) (-0.64, 155) (0.82, 92) (1.81, 38) 

SC (13.99, 1) (12.41, 1) (-10.86, 1) (9.38, 1) (-8.26, 1) 

GAC-GEO: 

SC 
(2.80, 111) (0.62, 222) (-0.77, 135) (2.47, 27) (0.63, 125) 

GP (64××××64) (4.66, 30) (4.50, 20) (-0.67, 80) (1.13, 39) (5.68, 7) 

GAC-GEO: 

GP 
(2.42, 123) (0.81, 159) (0.41, 391) (1.78, 32) (-0.66, 100) 

SCMRG (4.44, 64) (0.49, 262) (5.43, 11) (-0.78, 62) (1.03, 31) 

GAC-GEO: 

SCMRG 
(4.77, 37) (5.25, 20) (4.98, 12) (1.42, 23) (6.92, 4) 

CLEVER 

(ik=459) 
(5.14, 29) (5.40, 19) (5.86, 9) (-0.83, 56) (6.46, 5) 

GAC-GEO: 

CLEVER 
(1.67, 175) (0.52, 281) (1.92, 36) (-0.71, 106) (1.39, 45) 
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domain expert—which parameters are selected is determined based on what kind of 

clusters the domain expert is interested in. For example, the parameter β, which is used in 

all experiments discussed earlier, determines how much reward is put on cluster size; 

consequently, if the domain expert is interested in obtaining a lot small clusters 

containing a few objects, a small value for β would be selected.  

As far as parameters of preprocessing methods and clustering algorithms are 

concerned, their values are chosen maximizing the plug-in fitness function q—the fitness 

function serves as with the “ground truth”. Basically, we select the parameter setting that 

leads to a clustering X for which q(X) is higher than q(X’) for other clusterings X’ that 

were obtained using other parameter setting. This leads to question how these parameter 

settings are actually determined.  In the presented work, we employed the following three 

strategies to select preprocessing and clustering algorithm parameters: 

1. Exhaustive approaches that a fixed number of values for each parameter are 

preselected manually, and then all combinations of parameter values are evaluated by 

running the clustering algorithm, and selecting the parameter combination that leads 

to the best clustering. 

2. Round robin approaches that change one parameter while keeping all the other 

parameters fixed; this process continues until there is no more improvement in q(X). 

3. “One after the other” approaches, which select values of a subset of the parameters 

first, and then the values of the remaining parameters are chosen without 

backtracking.
8
 

In the presented experimental results we mostly used methods 1 and 3 for selecting 

parameters. However, it is worth mentioning that in the recent Netflix contest more 

sophisticated techniques (Pilotte and Chabbert 2009), which can be downloaded at 

Netflix Prize official website (Netflix 2009), such as the Nelder-Mead Simplex Method 

(Nelder and Mead 1965), have been successfully used to select prediction algorithm 

parameters, and it might be interesting to evaluate their usefulness in conjunction with 

GAC-GEO.  

5 Related Work 

In general, the idea of two-phase clustering is to create a set of small clusters using some 

preprocessing methods and then, merge them to form larger clusters. Most research 

emphasizes the preprocessing phase while keeping the agglomerative phase simple, i.e., 

merging the closest pair of clusters. As far as the preprocessing phase is concerned, the 

Hybrid Cell Density Clustering method (HyCeltyc) (Otoo et al. 2001) proposed by Otoo 

et al. obtains initial clusters by sampling and performing dimensional reduction to 

identify cell-density clustering of samples in lower dimensional space. Lin and Chen (Lin 

and Chen 2002) obtain initial clusters by running representative-based clustering, and 

Zhong and Ghosh (Zhong and Ghosh 2003) partition data using a model-based 

partitioning clustering algorithm. Xiong et al. use hyper-clique patterns to define the 

initial clusters to preserve interesting patterns used in hierarchical clustering with pattern 

preservation algorithm (Xiong et al. 2009). As far as the agglomeration phase is 

concerned, the algorithm proposed by Lin and Chen (Lin and Chen 2002) employs 

different merging criterion, cohesion rather than single linkage whereas Zhong whereas 

                                                           

8
 For example, in most experiments, we selected the preprocessing methods parameters prior to 

selecting the agglomerative clustering algorithm parameters. 



Ghosh (Zhong and Ghosh 2003) propose modified Kullback-Leibler (KL) distances to be 

employed with the single linkage.  

In comparison, GAC-GEO provides a very generic preprocessing phase that it accepts 

different forms of initial clusters, such as grid cells, clusters of objects and polygons. 

Therefore, it is capable to interface with any algorithms to generate initial clusters. Many 

clustering algorithms can be considered variations of GAC-GEO, such as AGNES, 

MOSAIC and some divisive-and-agglomerative grid-based algorithms. Agglomerative 

Nesting algorithm (AGNES) (Kaufman and Rousseeuw 1990) uses single linkage and 

merges the closest pair of clusters. MOSAIC (Choo et al. 2007) applies a representative-

based clustering algorithm to form initial clusters. It forms a neighboring relationship 

using Gabriel graphs and employs plug-in fitness functions. Regarding the agglomerative 

phase, GAC-GEO considers all spatial neighboring clusters, and selects to merge the pair 

that returns the maximum fitness value. This merging criterion differs from the others 

because GAC-GEO aims to compromise the optimization of both spatial and non-spatial 

attributes space, in form of spatial distance and fitness, separately and simultaneously. 

One challenge that we focus in this paper is capability to identify arbitrarily shaped 

clusters. In particular to our case study, we aim to identify interesting non-convex shaped 

clusters having similar characteristics, such as high-variance and high-correlation with 

respect to non-spatial attribute(s). 2 categories of clustering algorithms providing this 

capability are hierarchical and density-based. Generally hierarchical clustering algorithms 

applying single linkage claim to provide the same capability
9
 (Kaufman and Rousseeuw 

1990). Chaoji et al. proposed SPARCL that runs a modified version of K-Means 

considering local outlier factor to generate sufficient number of seed clusters, and then 

iteratively merges neighboring clusters considering three cluster similarity criteria: 

closeness in Euclidean space, comparable densities and wide hyperplane of two clusters. 

(Chaoji et al. 2009). Jiang (Jiang 2004) proposes spatial clustering techniques that employ 

hierarchical clustering accompanied by tree-like diagrams beneficial for visualizing 

cluster hierarchies at different levels of detail. Various neighborhood graphs are 

employed to define coarse-to-fine hierarchical segmentation of data. For instance, Anders 

(Anders 2003) proposed Hierarchical Parameter-free Graph Clustering (HPGCL), an 

unsupervised graph-based clustering algorithm that utilizes the hierarchy of proximity 

graphs for cartographic generalization. CHAMELEON, a graph-partitioning-based 

clustering method, integrates the agglomerative phase to form arbitrarily shaped clusters; 

its merging criteria determine the homogeneous density and closeness of merging 

candidates (Karypis et al. 1999). 

A major drawback of agglomerative clustering is high computational time, especially, 

if agglomerative clustering algorithms uses single objects as initial clusters; traditional 

hierarchical agglomerative algorithms—using single linkage and complete linkage to 

merge clusters—require the time complexity of O(n
2
). Many agglomerative clustering 

algorithms aim to reduce their computational times using different techniques. Cohesion-

based Self-Merging algorithm runs a faster algorithm, e.g., K-Means to produce a number 

of initial clusters in linear time (Lin and Chen 2002). Another popular technique 

employed in CURE is to cluster randomly-sampled data instead of the original dataset 

and use these clusters to label the remaining objects (Guha, Rastogi and Shim 1998). 

                                                           

9
 In practice there is a lack of evidence that supports this claim. There has been no report of 

experimental results where traditional agglomerative clustering algorithms have been successfully 

used to identify arbitrarily shaped clusters for some popular benchmarks.  



Another agglomerative clustering algorithm proposed by Hisashi et al. uses locality-

sensitive hashing to find the nearest clusters (Hisashi et al. 2006). 

In addition to the hierarchical clustering techniques, density-based clustering methods 

(Ester et al. 1996; Ankerst et al. 1999; Kriegel and Pfeifle 2005; Hinneburg and Keim 

1998) are also capable of discovering dense arbitrarily shaped clusters. However, the 

main drawbacks of the density-based clustering algorithms are difficulties of parameters 

tuning, and non-robustness with respect to datasets with varying density. 

Another challenge in clustering addressed in this paper is the use of plug-in fitness 

function. Typically, clustering algorithms do not allow for plug-in fitness functions 

except work by (Karypis et al. 1999) and (Choo et al. 2007). In addition, some work on 

semi-supervised clustering takes prior knowledge into account enabling them to obtain 

clusters that satisfy a given set constraints; Davidson and Ravi propose an agglomerative 

hierarchical clustering that incorporates must-link and cannot-link constraints in 

clustering. (Davidson and Ravi 2005). 

6  Conclusion 

We proposed an agglomerative clustering geo-referenced framework (GAC-GEO) for 

geo-referenced datasets that cleverly utilizes spatial information to discover arbitrarily 

shaped clusters in geo-referenced datasets. The framework relies on a two-phase 

clustering methodology consisting of preprocessing and agglomerative clustering phases. 

For the preprocessing phase, we introduced efficient ways to generate initial clusters: by 

running representative-based clustering or grid-based clustering algorithms. The former 

option is preferable when dealing with large datasets due to its fast computational time. 

On the other hand, the latter option trades off speed for clustering quality.  

For the agglomerative phase, we introduced concepts of neighboring relationships 

compatible with different forms of initial clusters: proximity graphs like Gabriel graphs 

for the clusters with representatives and the contiguity of grid cells for grid-based 

clusters. Neighboring relationships are the powerful component of GAC-GEO that 

seamlessly bridge clustering algorithms in the two phases and guarantee that contiguous 

clusters have to be neighboring. Relying on the neighboring relationships, the GAC-GEO 

conducts a much wider search which, we claim, results in clusters of higher quality. 

Moreover, the expensive, agglomerative clustering algorithm is only run for usually less 

than 1,000 iterations; therefore, the impact of its high complexity on the overall run time 

is alleviated, particularly for very large datasets.  

In addition, the use of plug-in fitness functions enables GAC-GEO to successfully 

serve different region discovery tasks. Our broader perspective on the generalization of 

the proposed framework is that with minimal effort potential users will employ it as a 

base framework for other combinations of clustering algorithms in future investigations. 

Many hybrid clustering algorithms can be considered variations of GAC-GEO, e.g., 

MOSAIC and CHAMELEON. 

Experimental results on artificial datasets illustrated the ability of five variations of 

GAC-GEO in detecting arbitrarily shaped clusters. We found that the quality of initial 

clusters has a direct affect on the quality of final clusters generated by the post-processing 

phase. In other words, any flaw occurring in the initial clusters degrades quality of the 

final clusters. Therefore, a choice of good clustering algorithms in the preprocessing 

phase is important. Nevertheless, even for low quality clusters, the post-processing phase 

enhances clustering quality.  



We also conducted experiments on the five variations of GAC-GEO for two region 

discovery applications on an earthquake dataset: to identify hotspots of high variance of 

depth in earthquake occurrences, and to identify hotspots with high positive/negative 

correlation of earthquakes’ depth and severity. Our method was able to identify larger 

hotspots of higher clustering quality. Comparing results among the variations for 

preprocessing methods, representative-based clustering algorithms are superior to the 

grid-based clustering algorithms in terms of clustering quality. On the other hand, the 

grid-based algorithms are superior in terms of computational time. According to our 

investigation, the CLEVER algorithm is the best choice for region discovery tasks in that 

it returns both superior initial clusters and final clusters. Surprisingly, using singleton 

initial clusters lead to superior final clusters for some datasets.  

Our current implementation uses Gabriel graphs to identify neighboring clusters which 

is quite expensive. As far as future work is concerned, we plan to explore using other 

neighborhood graphs, such as spanning trees. We also plan to explore more flexible 

neighboring relationships for grid-based preprocessing methods; for example which that 

allow small gap between cells. In addition, the current version of GAC-GEO limits 

merging only to a single pair of clusters that leads to suboptimal solutions for some 

datasets. Allowing merging of multiple neighboring in parallel may lead to better cluster 

quality and might also speed up the agglomerative phase. 
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