
 
 

 

  

Abstract—This paper addresses two main challenges for 
clustering which require extensive human effort: selecting 
appropriate parameters for an arbitrary clustering algorithm 
and identifying alternative clusters. We propose an 
architecture and a concrete system MR-CLEVER for multi-run 
clustering that integrates active learning with clustering 
algorithms. The key hypothesis of this work is that better 
clustering results can be obtained by combining clusters that 
originate from multiple runs of clustering algorithms. By 
defining states that represent parameter settings of a clustering 
algorithm, the proposed architecture actively learns a state 
utility function. The utility of a parameter setting is assessed 
based on clustering run-time, quality and novelty of the 
obtained clusters. Furthermore, the utility function plays an 
important role in guiding the clustering algorithm to seek novel 
solutions. Cluster novelty measures are introduced for this 
purpose. Finally, we also contribute a cluster summarization 
algorithm that assembles a final clustering as a combination of 
high-quality clusters originating from multiple runs. Merits of 
our proposed system are that it is generic and therefore can be 
used in conjunction with different clustering algorithms, and it 
reduces human effort for selecting the parameters, for 
comparing clustering results and for assembling clustering 
results. We evaluate the proposed system in conjunction with a 
representative based clustering algorithm namely CLEVER for 
a challenging data mining task involving an earthquake 
dataset. The obtained results demonstrate that, in comparison 
to the best single-run clustering, multi-run clustering discovers 
solutions of higher quality. 

I. INTRODUCTION 

lustering is a very popular descriptive data mining 
technique that aids describing characteristics of data 

sets. The goal of clustering is to form groups of objects with 
similar characteristics. More recently, clustering has been 
used for scientific discovery, for instance in medical field to 
identify cancers clusters [1], [2], and in environmental 
sciences where scientists look for associations between 
pollutants and other factors [3].  

The use of clustering algorithms to aid scientific 
discovery faces several challenges. Firstly, almost all 
clustering algorithms require the setting of input parameters 
which is a non-trivial task and choosing proper values for 
those parameters is critical for obtaining high-quality 
clusters. Moreover, many clustering algorithms are 
probabilistic and different runs, even with the same 
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parameters, lead to different results. For example, many 
papers have been published to address the problem of 
choosing proper values for a single input parameter k of the 
popular K-means algorithm. Furthermore, different data sets 
have unique implicit characteristics, which require different 
parameter settings of clustering algorithms. In addition, 
domain experts frequently look for clusters which exhibit 
additional characteristics that go far beyond the capabilities 
of traditional clustering algorithms. A second challenge in 
employing clustering algorithms is finding alternative 
clustering; in descriptive data mining, domain scientists are 
frequently interested in exploring alternative clusters. As for 
an instance, in [3] a clustering algorithm is applied in finding 
hotspots in spatial datasets at different granularities, ranging 
from very local to regional. In general, it not realistic to 
discover all significant characteristics of a dataset in a single 
run of a clustering algorithm; even for simple clustering 
tasks clustering algorithms have to be run multiple times. 
This establishes the need to analyze the results of several 
runs of a clustering algorithm which is quite time-
consuming. Some recent research focuses on addressing this 
challenge: alternative clustering [4] constructs a new 
clustering based on an already known clustering, and 
ensemble clustering aggregates multiple clusters into a 
single consolidated clustering [6], [5]. Our work is closely 
related to the latter approach in that we gather many 
solutions from multiple runs of a clustering algorithm. 
However, whereas ensemble approaches assume that all 
clusters are given beforehand, our approach creates novel 
and high-quality clusters on the fly: Multi-run clustering 
seeks for alternative clusters that complement an already 
given set of clusters.  

In this paper, we address the following two challenges in 
highly automated fashion: 1) selecting parameters of an 
arbitrary clustering algorithm, and 2) comparing, managing, 
and summarizing multiple solutions produced by multiple 
runs of a clustering algorithm. We propose a unified 
architecture and a concrete system of multi-run clustering 
that intuitively and automatically select parameters of a 
clustering algorithm relying on an active learning approach. 
One of the key components in the proposed architecture is 
learning the utility of a parameter setting of a clustering 
algorithm. By representing parameters of a clustering 
algorithm as states, a state utility function is learnt that 
guides the search for alternative clustering. The key idea is 
that our system seeks for novel solutions. When the repeated 
use of similar parameter settings leads to clusters that were 
already discovered, the utility of these parameter settings 
drops, leading to the exploration of alternative parameter 
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settings. The paper proposes several measures and algori-
thms including: 

1. A new measure, called Novelty to evaluate a 
clustering; Novelty takes into account two measures: 
cluster similarity and quality.  

2. Cluster List Management algorithm that selectively 
stores incoming clusters in a cluster repository.  

3. Dominance-guided cluster Reduction algorithm, that 
creates a final clustering by assembling “distinct and 
good” clusters that originate from multiple runs.  

4. A utility update function that updates utilities of 
parameter settings based on new clustering results. 

The proposed work provides 3 advantages: firstly, it 
automatically selects parameters of a clustering algorithm 
and incrementally obtains and maintains a set of distinct and 
good clusters. Secondly, it also generates a final clustering 
automatically. Finally, multi-run clustering can be used to 
automatically create “better” inputs for ensemble clustering. 

The rest of our paper is organized as follows: we describe 
architecture and a concrete system of multi-run clustering in 
section 2 and 3, respectively. Section 4 provides a 
demonstration and experimental evaluation of our proposed 
system. Section 5 discusses related work and Section 6 
summarizes our findings.  

II. AN ARCHITECTURE OF MULTI-RUN CLUSTERING SYSTEM 

A. Goals of Multi-Run Clustering  

In this paper, we propose multi-run clustering—a novel 
approach for clustering. The goal of multi-run clustering is 
to find a set of distinct and high quality clusters that 
originate from different runs. Architecture of the multi-run 
clustering system (MRCS) composes of four components: 
state utility learning (L), a clustering algorithm (CA), storage 
unit (SU) and cluster summarization unit (CU), as depicted 
in Fig. 1, which performs three essential tasks: 

1. Finding good parameter settings for a clustering 
algorithm 

2. Determining which clusters—that have been obtained 
by running a clustering algorithm—are worth saving as 
candidate solutions, to be considered for inclusion in the 
final clustering result 

3. Generating a final clustering from candidate clusters 
The multi-run clustering generates a final clustering M’ 

from a dataset O by learning a utility of parameters of a 
clustering algorithm in a state space, through active 
exploration and by incrementally storing the different and 
high-quality clusters M, which are generated from a group 
of parameters. Details of the four components and their 
corresponding roles are given in the following sections. 
Table I provides commonly used notations in the paper. 
 

Fig. 1.  An architecture of multi-run clustering system (MRCS) 
 

TABLE I  
NOTATION REFERENCE: LIST OF COMMONLY USED NOTATIONS 

State utility learning parameters 
s ∈ S A state in a state space 
π ∈ Π A policy in a policy space 
U(s) A utility of a state 
U’(s) A utility update function of a state 
α A learning rate 
RCQ A relative clustering quality function 
CLEVER’s parameters 
k Number of initial clusters 
k’ Number of final clusters 
p,p’ Sampling size 
Multi-run clustering 
xi ∈ X  A cluster in a clustering X 
yi ∈ M  A cluster in a stored cluster list M
oi ∈ O An object in a spatial dataset O 
q(X) A fitness value of a clustering  
Reward(xi) A reward of a cluster 
i(xi) An interestingness of a cluster 
P(π) A probability of applying a policy
M’ A final clustering of MRCS 
MRS A set of states of multi-run clustering 
L A state utility learning 
CA A clustering algorithm 
SU A storage unit 
CU A cluster summarization unit 

B. State Utility Learning  
An essential key of multi-run clustering is to automate 

parameter selection of an arbitrary clustering algorithm. We 
employ a state utility learning (L) to find good values for the 
parameters leading to novel and high-quality clusterings. 
Firstly, we give all definitions regarding of the use of state 
utility learning in parameter selection and parameter 
evaluation, and then explain its working principles in MRCS.  

 
Definition 1: States in MRCS—A state s in a state space 

S (S∈R2bm) contains ranges of parameters of a clustering 
algorithm:  

s = {s1_min, s1_max,…, sm_min, sm_max}, si ∈ ℜ 2b  
where m is the number of parameters of a clustering 

algorithm and b is the number of bins in a parameter space. 
Parameter values are discretized into several ranges to 
reduce the number of states.   

 



 
 

 

Definition 2: Policies Π in MRCS 
Let  
π ∈ {π1,…, πr} ⊆ Π 
π denotes a policy which is defined as follows, 
π : MRS → S  
where MRS denotes a set of states of MRCS. 
 
Definition 3: A state utility function U 
U: S → ℜ 
U(s) denotes a utility of a state s in the state space S. 
  
Definition 4: A relative clustering quality function RCQ 
Let 
O = {o1,…,on} be a dataset. 
X = {x1, x2,…,xk}, xi∩xj = ∅, (i≠j), ⊆ , and ⊆  

be a current clustering generated by CA. 
M ={x1, x2,…,xp}, ⊆  be a set of clusters stored in 

MRCS. 
We define a relative clustering quality function (RCQ) as 
RCQ: X×M ℜ 
 
In particular, our approach uses REQ defined in (1) to 

compute a utility of the state s. REQ evaluates the utility of a 
state considering three measures: novelty of X with respect 
to M, computational time (Speed(X)) needed and quality of 
the clustering (q(X)). 

,  ,         1  
 
Definition 5: Utility Update U’—the following update 

rule is used to update state utilities:  
 1 · ·                           2  

where α is the learning rate .  
 
By representing parameters of CA as states (in Definition 

1), MRCS uses a policy π (in Definition 2) to select a state s 
to be explored next based on utilities (in Definition 3) of 
other factors. Then, MRCS chooses a particular parameter 
setting of CA at random from the state range of s, and 
applied it to CA in order to produce a clustering X. After that 
MRCS evaluates X using RCQ in (1) (in Definition 4); RCQ 
assesses a utility of s based on the quality of X relative to a 
set of previously found clusters M. Finally, it applies the 
update rule in (2) (in Definition 5) to update the utility of s 
based on the relative clustering quality obtained from X in 
the context of M.  

C. Storage Unit and Cluster Summarization Unit 
Storage unit (SU) maintains a set of distinct, good 

candidate clusters in incremental fashion during multiple 
runs of the clustering algorithm (CA). It takes an incoming 
clustering X produced by CA as an input to update its cluster 
list M.  

After multiple runs of parameter selection and clustering, 
Cluster summarization unit (CU) finally assembles a final 
clustering; it takes a set of clusters in M as inputs, and 
generates the final clustering M’⊂ M.  

D. Spatial Clustering Algorithms  
In addition to other components in the multi-run clustering 
we assume that clustering algorithms perform the follow 
tasks: 
 

Definition 6: A clustering algorithm (CA) 
Given 
O = {o1,…,on} as a dataset 
A clustering algorithm seeks for a clustering X that 

maximizes a fitness function q(X).   
X = {x1, x2,…,xk}, xi ∩ xj = ∅, (i≠j), ⊆ , and 

⊆ . 
Our approach uses reward-based fitness functions in 

Definition 7 that allow us to compare different clusters (x) 
and clusterings (X). 

 
Definition 7: Fitness Function  
q(X) measures the quality of a clustering X as a sum of the 

rewards obtained from each cluster xj (j=1,…,k), where the 
interestingness function, i(xj) computes the interestingness of 
the cluster xj, size(xj) is the number of objects in the cluster 
xj, and β is a parameter to tune the significance of cluster 
size.  

                                                       3  

                                          4  

III. THE MULTI-RUN CLUSTERING SYSTEM MR-CLEVER 
In this section, we propose a concrete system of multi-run 

clustering called MR-CLEVER based on the architecture of 
MRCS; the goals of MR-CLEVER are to search for distinct 
clusters automatically, and to enhance cluster results 
produced by a clustering algorithm. First, we give an 
overview of CLEVER [9], a clustering algorithm that is a 
part of MR-CLEVER, then we discuss MR-CLEVER and its 
measures and policies in Section B. 

A. The CLEVER Clustering Algorithm  
CLEVER (CLustEring using representatiVEs and 

Randomized hill climbing) searches for a clustering that 
maximizes an externally given, fitness function q(X). The 
representative-based clustering algorithm forms clusters by 
assigning objects in a dataset to their closest representatives. 
The algorithm starts with randomly selecting k’ 
representatives from O where k’ denotes the number of 
initial clusters. It samples p solutions in the neighborhood of 
the current solution. The neighboring solutions are created 
using one of the following three operators: insert, delete and 
replace. Each operator has a certain selection probability and 
representatives to be manipulated are chosen at random. 
Next, CLEVER evaluates all the p neighbors, and if there is 
an improvement, it picks the best among them which 
becomes the new current solution. To battle premature 
convergence, CLEVER re-samples p’>p solutions before 



 
 

 

terminating. It should be mentioned that number of final 
clusters (k) are not necessarily equal to k’. 

CLEVER requires 3 main parameters: the number of 
initial clusters k’ and sampling sizes p and p’ which are 
discretized to form a state space in which states are 
represented as follows: {k’min, k’max, pmin, pmax, p’min, p’max}.  

B. MR-CLEVER. 
MR-CLEVER is composed of 6 steps (S1 to S6) as 

depicted in Figure 1. The system iteratively runs t iterations 
of steps S1 through S5, and then creates the final clustering 
(step S6).  

 
Pre-processing step. Compute necessary statistics to set 

up multi-run clustering system. Before we start running 
multi-run clustering system, background knowledge 
(statistics) concerning applying the clustering algorithm on a 
given dataset is required. Therefore, we run m rounds of 
CLEVER by randomly selecting k’, p and p’ to compute 
necessary statistics, such as mean and standard deviation, 
regarding of clustering quality and runtimes.  

 
Step 1. Select parameters of a clustering algorithm. MR-

CLEVER uses policies given externally by the users to select 
an anticipated state (CLEVER’s parameters) to be explored. 
The system employs the policies which are chosen 
probabilistically. After obtaining a state, a parameter setting 
within ranges of the selected state is selected at random and  
CLEVER is run for this parameter setting. 

 
An example: Given a set of policies (in Fig. 2) with 

associated probabilities: P(π1) = 0.2, P(π2) = 0.6, P(π3) = 
0.2. We assume that visited states for two iterations of multi-
run clustering are s1 = {k’min=1, k’max=10, pmin=1, pmax=10, 
p’min=11, p’max=20} and s2 = {k’min=11, k’max=20, pmin=41, 
pmax=50, p’min=31, p’max=40} and that s2 is the state with the 
highest utility; in the 3rd iteration, MR-CLEVER chooses π2 
at random as a state policy and the policy picks s2 from the 
visited states. Next, it further chooses k’=12, p=45, q=40 at 
random from s2 as current parameters of CLEVER. 

 
π1. Randomly select a state.  
π2. Choose state with the maximum state utility value. 
π3. Choose state in the neighborhood of the state having the 
maximum state utility value. 
Fig. 2.  Examples of the policies 

 
Step 2. Run CLEVER to generate a clustering with 

respect to given parameters.  
 
Step 3. Compute a state utility. State utilities are 

computed using formula 1. In particular, the novelty of a 
state s in (1) is assessed based on the obtained clustering X, 
which relies on two measures:  

 
Novelty measures the degree of novelty of a new 

clustering X with respect to a set of clusters M stored in the 

cluster repository (given in (5)). In general, in multi-run 
clustering, we are interested in finding high-quality clusters 
that are either different or better than the clusters that have 
been found so far. Consequently, novelty is assessed using 
two measures: dissimilarity and enhancement. Both 
measures compare each cluster in X with the most similar 
cluster in M. As shown in (6), Similarity evaluates the 
average degree of overlap between clusters in X and the 
most similar ones in M. On the other hand, Enhancement 
evaluates the quality of X in the context of M as given in (7). 
In this paper, enhancement assesses number of clusters in X 
having higher reward per object than their closest 
competitors in M.  

 
Novelty X,M         
 1–Similarity X,M ×Enhancement X,M   5  

where 

,
 ∑ ,

                                 6  

where ,  |   |
|   |

 , X = {x1,…,xk}, and yi be the 

most similar cluster in the stored cluster list M to xi∈X. 
 

,      7  

where 
| |

  
 
Speed. The speed function assesses how quickly a 

clustering algorithm produces a clustering. An interpolation 
function is applied based on 3 inputs: average and standard 
deviation of the runtimes and an acceptable runtime, to 
calculate speed between range of 0 and 1; the speed drops 
dramatically if runtime is over 70%. First two inputs are 
computed in the preprocessing step, while last input is given 
by the users.  

 
Let 

M be the current set of multi-run clusters.  
X be a new clustering to be processed for updating M. 
θsim be a similarity threshold. 
rth be a reward storage threshold.  

 
X will be processed as follows:  
FOR c∈X DO 
       Let m be the most similar cluster in M to c. 
IF sim(m,c)> θsim AND Reward(m)<Reward(c) THEN 
     replace(m,c,M) 
ELSE IF Reward(c)>rth THEN  insert(c,M) 
ELSE discard(c);  
Fig. 3.  Cluster List Management algorithm (CLM) 

 
Step 4. Update a state utility. The system updates the 

utility of the current state by using the utility value 
computed in S3 in the utility update rule (Definition 5). 

 



 
 

 

Step 5. Update cluster lists to maintain a set of distinct 
and high quality clusters. Our system uses multiple 
strategies to incrementally update the cluster list M. The 
experiments in the paper use Cluster List Management 
algorithm described in Fig. 3. In short, the strategy inserts 
dissimilar clusters, if their quality is above a given threshold; 
on the other hand, if a similar cluster exists in M, this cluster 
is only replaced if the cluster in X is better than the 
corresponding cluster in M.  

 
Let  
DEDGE:={(c1,c2)|c1∈M ∧ c2∈M ∧ sim(c1,c2)>θrem ∧  
                    better(c2,c1)} 
REMCAND:={c|∃d (c,d)∈DEDGE} 
DOMINANT:={c|∃d (d,c)∈DEDGE ∧ c∉REMCAND} 
REM:={c|∃d ((c,d)∈DEDGE ∧ d∈DOMINANT)} 
Better(c1,c2)↔ Reward(c1)>Reward(c2) ∨   
                         (Reward(c1)=Reward(c2) ∧  
                          clusterNumber(c1)>clusterNumber(c2)) 
Remark: Ties have to broken so that DEDGE is always a 
DAG; no cycles in DEDGE are allowed to occur.  
 
Input: M, θrem 

Output: M’⊆M 
 
Compute DEDGE from M;  
Compute REMCAND; 
Compute DOMINANT; 
WHILE true DO 
 { 
  Compute REM; 
  IF REM=∅ THEN EXIT ELSE M=M/REM;  
  Update DEDGE by removing edges of deleted clusters in  
  REM;   
  Update REMCAND based on DEDGE; 
  Update DOMINANT based on DEDGE and REMCAND 
} 
RETURN(M). 
Fig. 4.  Dominance-guided Cluster Reduction algorithm (DCR) 

 
Step 6. Generate final clustering. We use Dominance-

guided Cluster Reduction algorithm, displayed in Fig. 4, to 
produce the final clustering M’ from M. After steps 1 to 5 in 
MR-CLEVER are repeatedly run for a while, M usually 
contains a lot of overlapping clusters. The goal of the 
presented algorithm is to remove clusters from M so that M’ 
does not contain any pair of clusters (c1,c2) such that   
sim(c1,c2)>θrem, where θrem is a similarity threshold. The 
challenge of designing such algorithm is to avoid 
unnecessary removals of clusters from M when generating 
M’. The algorithm relies on dominant clusters which are 
clusters that do not contain any better clusters in their θrem-
neighborhood, and therefore have to remain in M. The 
algorithm loops over the following 2 steps until there is no 
cluster to be removed in the second step: 
1. Compute dominant clusters. 
2. Remove clusters in the θrem-proximity of dominant 

clusters. 

By following this strategy, only those clusters that are 
similar to dominant clusters are deleted; the other clusters 
are remained in M. 

IV. EXPERIMENTAL EVALUATION 
We illustrate our algorithm on an artificial dataset in 

section A and evaluate the algorithm in a real world dataset 
in section B. 

A. Illustration of Multi-Run Clustering on an Artificial 
Dataset 
This experiment illustrates how the proposed multi-run 

clustering system (MR-CLEVER) works. We perform multi-
run clustering using CLEVER algorithm with Purity 
interestingness function [7] on 9Diamonds dataset available 
in [8]. The dataset consists of 3,000 objects with 9 natural 
clusters. The Purity function measures a purity degree of 
each cluster, i.e. a ratio of number of objects in a majority 
class to the cluster size. The fitness of a clustering is a 
summation of the purity degrees of all clusters. The 
parameter settings are shown in Table II; we assume that the 
number of natural clusters is unknown by the clustering 
algorithm. 

In the 1st run of the multi-run clustering, CLEVER 
generates 13 clusters (Fig. 5 (a)); clusters c1, c2, and c3 are 
inserted into M. After that CLEVER generates 14 clusters in 
the 2nd run (Fig. 5 (b)); cluster c1 of the 1st run is replaced by 
c1 of this round because of superior purity. Moreover, novel 
clusters c4, c5 and c6 that also have high purity are inserted 
in M. Fig. 5 (c) depicts distinct and high-purity clusters 
collected in the cluster repository at the end of the 2nd run. 
By using insert/replace strategies to manage each incoming 
clustering (CML in Fig. 3), MR-CLEVER can quickly 
discover the correct 9 clusters (in Fig. 5 (d)) at the end of the 
5th run of CLEVER. We observe that CLEVER discovers the 
correct solution at the 20th run. 

 
TABLE II  

PARAMETER SETTINGS FOR THE 9DIAMONDS DATASET 
β=1.5  θsim=0.8 θrem=0.6 Run = 20 rounds 
State bound k’=[1,40] p=[1,50]  p’=[1,50] 
Bin size k'=10  p=5 p’=5 

   

   
(a) (b) (c) (d) 

Fig. 5.  An illustration of MR-CLEVER: (a) and (b) depict clustering results 
of the 1st and 2nd runs respectively, (c) depicts the distinct and high quality 
clusters in M at the end of the 2nd run, and (d) depicts the final clusters 
produced by MR-CLEVER. 

B. Evaluation of Multi-Run Clustering on Real Dataset 
In this section, we show how MR-CLEVER can discover 

interesting and alternative clusters in spatial data. We 
employ an earthquake dataset available on the website of the 
U.S. Geological Survey Earthquake Hazards Program 



 
 

 

http://earthquake.usgs.gov/. We sampled 4,132 examples of 
earthquakes dated from January 1986 to November 1991. 
Information recorded includes the location (longitude, 
latitude) and the depth (kilometers) of the earthquake. 

In this case study, we are interested in discovering places 
in geographical space where variance of depth of 
earthquakes is high. In other words, we are interested in 
areas where deep earthquakes are in close proximity to 
shallow earthquakes. In this experiment, we use the High 
Variance function in [10] to find such regions. The 
interestingness function is defined as follows: 

0
,
,

,
,

               8  

where ,
| |

∑  
z denotes an attribute of interest in the dataset O which is 

the depth attribute in the earthquake dataset. th>1 is a setting 
threshold. 0<η<∞ is a form parameter. µz is an average depth 
of all earthquakes in the cluster c. Var(c,z) denotes a 
regional variance of z in a cluster c whereas Var(O,z) 
denotes a global variance of z in the dataset. The parameter 
settings are shown in Table III. 

 
TABLE III  

PARAMETER SETTINGS FOR THE EARTHQUAKE DATASET 
β=1.5  th=1.05 η=2.0 θsim=0.6 rth=3361 
Preprocessing run = 5 rounds  Run = 20 rounds 
State bound k’=[11,80] p=[1,50]  p’=[1,50] 
Bin size k'=10  p=5 p’=5 

 

(a) (b) 
Fig. 6.  Multi-run clustering results; (a) depicts top 5 clusters of XTheBestRun 
(ordered by reward) and (b) depicts clusters in M’. 

 
TABLE IV  

INFORMATION OF TOP 5 CLUSTERS OF XTHEBESTRUN (ORDERED BY REWARD) 
Cluster id Reward Interestingness Size 

c17 108524 34 213 
c0 15875 19 87 
c12 6742 19 50 
c22 1807 66 9 
c27 1714 13 25 

 
This experiment illustrate 4 benefits of MR-CLEVER in: 

1) enhancing quality of clusters (by finding similar but better 
clusters), 2) maintaining high-quality clusters, 3) finding 
alternative clusters, and 4) finding new high-quality clusters 
from other runs whereas filtering out low-quality clusters.  

Firstly, we analyze behaviors of MR-CLEVER by using 
the best run of CLEVER found at Run No. 2 (XTheBestRun). We 
focus on the top 5 clusters in XTheBestRun as visualized in Fig. 
6 (a); the corresponding details: reward, interestingness and 

size of the clusters are also given in Table IV. According to 
our observation, we distinguish 3 cases as follows: 

Survival Clusters. We find that only one clusters c0, that 
is inserted into a stored cluster list M, still survives in the 
final clustering M’. 

Non-survival Clusters. We observe that there are two 
clusters c12 and c17 that are at first inserted in M, but are 
replaced by similar but higher-reward clusters in the next 
run. 

Discarded Clusters. The last case differs from the 2nd case 
in that MR-CLEVER considers low-reward clusters 
uninteresting and never inserts them into M; the last two 
clusters c22 and c27 fall into this case—rewards of the two 
clusters are lower than rth in Table III. 

We further analyze XTheBestRun by comparing them with 
their corresponding most similar clusters in M’ (as shown in 
Table VI.) Apparently, most clusters in M’ are superior to 
ones in XTheBestRun. In particular, MR-CLEVER is able to 
enhance quality of clusters, e.g. finding cluster m5 and m0 
which are similar but superior to c12 and c17, respectively. 
On the other hand MR-CLEVER also maintains high quality 
clusters obtained in the best single run as shown in Item 2; 
cluster m1 in M’ is cluster c0 in XTheBestRun. In addition, MR-
CLEVER weeds out the low-quality clusters as seen in Item 
4 and 5; MR-CLEVER does not keep any cluster in M’ that 
similar to c22 and c27. Figure 6 (b) also visually confirms 
absence of clusters c22 and c27 in M’. 

 
TABLE V  

INFORMATION OF TOP 10 CLUSTERS IN M’ (ORDERED BY REWARD) 
Cluster Id Reward Interestingness Cluster Size Run No. 

m0 108865 35 215 0 
m30 100569 29 231 13 
m1 15875 20 87 2 
m15 15740 5 210 6 
m40 10979 15 80 19 
m33 10570 51 35 15 
m9 9570 14 77 5 
m5 6777 25 42 1 
m39 5846 2 200 17 
m2 4691 17 42 0 

 
TABLE VI  

COMPARE REWARDS AND SIMILARITIES OF THE TOP 5 CLUSTERS OF 
XTHEBESTRUN AND THE CORRESPONDING MOST SIMILAR CLUSTERS IN M’ 

Item 
The top 5 clusters of 

XTheBestRun 
The most similar 

clusters in M’ Similarity 
Cluster id Reward Cluster id Reward 

1 c17 108524 m0 108865 0.776 
2 c0 15875 m1 15875 1 
3 c12 6742 m5 6776 0.673 
4 c22 1807 N/A N/A 0 
5 c27 1714 m15 15740 0.049 

 
Next, we illustrate an ability of MR-CLEVER to discover 

alternative clusters. Refer to Table V which provides details 
of the final 10 clusters of MR-CLEVER (M’), we consider 
m0 and m30 alternative clusters. It can be seen from Fig. 7, 
that these two clusters are highly overlapping (m0 is almost 
contained in m30.) The two clusters are alternative clusters 
to each other in different aspects; refer to Table V, m30 is 



 
 

 

superior in terms of cluster size, whereas m0 is superior in 
terms of cluster interestingness and reward. At this stage, the 
users can decide to keep both or only one of them. It is noted 
that DCR algorithm in the cluster summarization unit is 
opened to allow different measures of cluster quality, e.g. 
using interestingness instead of reward. 

Next, we show an ability of MR-CLEVER to find new 
high-quality clusters from other runs. Table VII maps the 
most similar positive-reward clusters in XTheBestRun to the final 
clusters in M’; with overlapping threshold greater than 30%, 
there are 70% of the clusters that are found in M’ but not in 
the positive-reward clusters of XTheBestRun. This implies that 
MR-CLEVER can find 70% of the new and high-quality 
clusters that do not exist in the best single run. On the other 
hand, Table VIII shows that with overlapping threshold 
greater than 20%, there are 42.86% of the clusters that are 
found in the positive-reward clusters of the best run but not 
in M’. This indicates that MR-CLEVER weeds out most of 
the low quality clusters produced in the best single run. 

 
TABLE VII 

THE MOST SIMILAR (POSITIVE 
REWARD) CLUSTERS IN XTHEBESTRUN 
TO THE FINAL CLUSTERS IN M’ 

 TABLE VIII 
THE MOST SIMILAR CLUSTERS IN 
M’ TO THE POSITIVE-REWARD 
CLUSTERS IN XTHEBESTRUN 

Cluster 
id in  
M’ 

Cluster  
id in 

XTheBestRun 
Similarity 

 Cluster 
id in 

XTheBestRun 

Cluster 
id in 
M’ 

Similarity 

m0 c17 0.776  c0 m1 1 
m1 c0 1  c6 m9 0.182 
m2 c12 0.15  c12 m5 0.673 
m5 c12 0.673  c14 N/A 0 
m9 c6 0.182  c17 m0 0.776 
m15 c0 0.286  c22 N/A 0 
m30 c17 0.237  c27 m15 0.049 
m33 c0 0.162     
m39 c12 0.244     
m40 c0 0.113     
 

Fig. 7.  Overlay the multi-run clustering result (in color) by the top 5 
rewards clusters of the best run (in black). 
 
Finally, in Fig. 7, we overlay the multi-run clustering 

result M’ (in color) and the top 5 clusters of the best run (in 
black). The overlap of clusters convince the same argument 
that MR-CLEVER is able to capture the high quality clusters 
(c0, c12 and c17) from the best run, and to discard some 
clusters (c22 and c27) whose reward does not satisfy the 
threshold. By performing multiple runs, it is able to 
accumulate novel clusters having high reward that are not 
found in the best run, e.g. cluster m9. This visualization 

assures us that CLEVER cannot find all of the best clusters in 
a single run, but MR-CLEVER can discover them 
automatically and effectively. 

V. RELATED WORK 
Active learning has been originally proposed to perform 

instance selections to enhance performance in classification 
[11], [12]. Our work adapts active learning to assist 
parameters selection in clustering. There is some work that 
uses active learning for cluster enhancement. Klein et al. 
propose constrained complete-link in [13], a clustering 
algorithm that actively propagates cannot-link constraints 
during agglomerative clustering; the merging process results 
in an implicitly reduction of number of pairwise constraints 
in the next iteration. Basu et al. present a framework in [14] 
that actively and explicitly selects a set of representatives by 
utilizing must-link and cannot-link constraints, and employs 
them in the partition-based clustering algorithm PCKmeans. 
Our work is generally similar to the latter work in that it 
aims to automatically find good parameters. However, the 
mentioned work focuses on seeking for a set of good initial 
representatives that produces the optimal clustering, whereas 
our work centers on finding parameter setting to generate 
diverse and high-quality clusters.  

Reinforcement learning is another approach recently 
applied to assist clustering ([15], [16]). However, both 
approaches center on finding the optimal single-run 
clustering. In addition to the aforementioned work, ReCoM 
[17] applies reinforcement technique to re-cluster multi-type 
interrelated data objects. By considering inter-relationship 
among objects in the different type, it iteratively propagates 
the clustering result from one type to enhance clustering in 
the other interrelated type until the clustering converges. 

COALA introduced in [4] is an agglomerative clustering 
algorithm that finds alternative optimal clustering by using 
prior information of cannot-link instances. Because our 
approach combines clusters from different runs, it is similar 
to ensemble clustering and meta-clustering. In this paper, we 
roughly categorize those approaches into two categories 
based on aspects of final results produced by the algorithms. 
The first category assumes that the best clustering is 
subjective; different users have different opinions in defining 
the best clustering result. In [18], Caruana et al. early create 
diverse clusterings, cluster them into groups afterward, and 
finally let users choose a group of clusterings that is the best 
for their needs. On the other hand, work belonging to the 
second category aggregates different clusterings into one 
consolidated clustering; Gionis et al. propose clustering 
aggregation algorithms in [6] to generate a final clustering 
that minimizes the total number of disagreements among all 
clusterings. Zeng et al. [5] introduce an approach to combine 
different hard clusterings using probability; objects are 
assigned to the final clusters based on the probabilities 
obtained from all the input clusterings. According to the 
given categories, our work falls into the second category. 
Whereas the ensemble clustering approach does not address 



 
 

 

the problem how its input clusterings are generated, our 
approach finds inputs automatically, and incrementally 
based on what clusters have been found so far.  Another 
difference is that our approach assumes the presence of an 
objective function that assesses the clustering quality when 
creating initial clusters, whereas ensemble approaches use an 
objective function when creating the final clustering. 

VI. SUMMARY AND CONCLUSION 
We propose an architecture and a concrete system for 

multi-run clustering (MRCS and MR-CLEVER) to cope with 
parameters selection of a clustering algorithm, and to obtain 
alternative clusters in highly automated fashion; our 
approach uses active learning to automate the parameter 
selection, and various techniques to find both different 
clusters and good clusters on the fly. At last, a Dominance-
guided Cluster Reduction algorithm is proposed, that post-
processes clusters from the multiple runs to generate a final 
clustering by restricting cluster overlap. The merit of the 
proposed system is that all tasks in multi-run clustering are 
performed in highly automated fashion: selecting clustering 
algorithm parameters, running the clustering algorithm, 
maintaining and analyzing cluster candidates, and 
assembling final clusters. Moreover, our MRCS can be used 
to produce inputs for ensemble clustering. 

 The experimental result with the artificial dataset shows 
that our proposed system performs better than running 
CLEVER independently multiple times; MR-CLEVER 
identifies the optimal solution more quickly. The 
experimental result on the real dataset supports our claim 
that multi-run clustering outperforms single-run clustering 
with respect to clustering quality. Only 43% of clusters in 
the best single run occur in the multi-run solution. We also 
find that 70% of the multi-run clusters do not occur in the 
best single run clustering. Moreover clusters in the multi-run 
clustering tend to be significantly better than the 
corresponding clusters of the best single run clustering. The 
experimental results also indicate that MR-CLEVER can find 
alternative clusters. In conclusion MR-CLEVER can discover 
additional novel, alternative, high-quality clusters and 
enhance the quality of clusters found using single-run 
clusterings. 
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