

Abstract—This paper addresses two main challenges for
clustering which require extensive human effort: selecting
appropriate parameters for an arbitrary clustering algorithm
and identifying alternative clusters. We propose an
architecture and a concrete system MR-CLEVER for multi-run
clustering that integrates active learning with clustering
algorithms. The key hypothesis of this work is that better
clustering results can be obtained by combining clusters that
originate from multiple runs of clustering algorithms. By
defining states that represent parameter settings of a clustering
algorithm, the proposed architecture actively learns a state
utility function. The utility of a parameter setting is assessed
based on clustering run-time, quality and novelty of the
obtained clusters. Furthermore, the utility function plays an
important role in guiding the clustering algorithm to seek novel
solutions. Cluster novelty measures are introduced for this
purpose. Finally, we also contribute a cluster summarization
algorithm that assembles a final clustering as a combination of
high-quality clusters originating from multiple runs. Merits of
our proposed system are that it is generic and therefore can be
used in conjunction with different clustering algorithms, and it
reduces human effort for selecting the parameters, for
comparing clustering results and for assembling clustering
results. We evaluate the proposed system in conjunction with a
representative based clustering algorithm namely CLEVER for
a challenging data mining task involving an earthquake
dataset. The obtained results demonstrate that, in comparison
to the best single-run clustering, multi-run clustering discovers
solutions of higher quality.

I. INTRODUCTION

lustering is a very popular descriptive data mining
technique that aids describing characteristics of data

sets. The goal of clustering is to form groups of objects with
similar characteristics. More recently, clustering has been
used for scientific discovery, for instance in medical field to
identify cancers clusters [1], [2], and in environmental
sciences where scientists look for associations between
pollutants and other factors [3].

The use of clustering algorithms to aid scientific
discovery faces several challenges. Firstly, almost all
clustering algorithms require the setting of input parameters
which is a non-trivial task and choosing proper values for
those parameters is critical for obtaining high-quality
clusters. Moreover, many clustering algorithms are
probabilistic and different runs, even with the same

R. Jiamthapthaksin is with University of Houston, TX 77204 USA

(phone: 713-743-3350; fax: 713-743-3335; e-mail: rachsuda@cs.uh.edu).
V. Rinsurongkawong is with University of Houston, TX 77204 USA (e-

mail: vadeerat@cs.uh.edu).
C. F. Eick is with University of Houston, TX 77204 USA (e-mail:

ceick@cs.uh.edu).

parameters, lead to different results. For example, many
papers have been published to address the problem of
choosing proper values for a single input parameter k of the
popular K-means algorithm. Furthermore, different data sets
have unique implicit characteristics, which require different
parameter settings of clustering algorithms. In addition,
domain experts frequently look for clusters which exhibit
additional characteristics that go far beyond the capabilities
of traditional clustering algorithms. A second challenge in
employing clustering algorithms is finding alternative
clustering; in descriptive data mining, domain scientists are
frequently interested in exploring alternative clusters. As for
an instance, in [3] a clustering algorithm is applied in finding
hotspots in spatial datasets at different granularities, ranging
from very local to regional. In general, it not realistic to
discover all significant characteristics of a dataset in a single
run of a clustering algorithm; even for simple clustering
tasks clustering algorithms have to be run multiple times.
This establishes the need to analyze the results of several
runs of a clustering algorithm which is quite time-
consuming. Some recent research focuses on addressing this
challenge: alternative clustering [4] constructs a new
clustering based on an already known clustering, and
ensemble clustering aggregates multiple clusters into a
single consolidated clustering [6], [5]. Our work is closely
related to the latter approach in that we gather many
solutions from multiple runs of a clustering algorithm.
However, whereas ensemble approaches assume that all
clusters are given beforehand, our approach creates novel
and high-quality clusters on the fly: Multi-run clustering
seeks for alternative clusters that complement an already
given set of clusters.

In this paper, we address the following two challenges in
highly automated fashion: 1) selecting parameters of an
arbitrary clustering algorithm, and 2) comparing, managing,
and summarizing multiple solutions produced by multiple
runs of a clustering algorithm. We propose a unified
architecture and a concrete system of multi-run clustering
that intuitively and automatically select parameters of a
clustering algorithm relying on an active learning approach.
One of the key components in the proposed architecture is
learning the utility of a parameter setting of a clustering
algorithm. By representing parameters of a clustering
algorithm as states, a state utility function is learnt that
guides the search for alternative clustering. The key idea is
that our system seeks for novel solutions. When the repeated
use of similar parameter settings leads to clusters that were
already discovered, the utility of these parameter settings
drops, leading to the exploration of alternative parameter

An Architecture and Algorithms for Multi-Run Clustering
Rachsuda Jiamthapthaksin, Christoph F. Eick, and Vadeerat Rinsurongkawong

C

settings. The paper proposes several measures and algori-
thms including:

1. A new measure, called Novelty to evaluate a
clustering; Novelty takes into account two measures:
cluster similarity and quality.

2. Cluster List Management algorithm that selectively
stores incoming clusters in a cluster repository.

3. Dominance-guided cluster Reduction algorithm, that
creates a final clustering by assembling “distinct and
good” clusters that originate from multiple runs.

4. A utility update function that updates utilities of
parameter settings based on new clustering results.

The proposed work provides 3 advantages: firstly, it
automatically selects parameters of a clustering algorithm
and incrementally obtains and maintains a set of distinct and
good clusters. Secondly, it also generates a final clustering
automatically. Finally, multi-run clustering can be used to
automatically create “better” inputs for ensemble clustering.

The rest of our paper is organized as follows: we describe
architecture and a concrete system of multi-run clustering in
section 2 and 3, respectively. Section 4 provides a
demonstration and experimental evaluation of our proposed
system. Section 5 discusses related work and Section 6
summarizes our findings.

II. AN ARCHITECTURE OF MULTI-RUN CLUSTERING SYSTEM

A. Goals of Multi-Run Clustering

In this paper, we propose multi-run clustering—a novel
approach for clustering. The goal of multi-run clustering is
to find a set of distinct and high quality clusters that
originate from different runs. Architecture of the multi-run
clustering system (MRCS) composes of four components:
state utility learning (L), a clustering algorithm (CA), storage
unit (SU) and cluster summarization unit (CU), as depicted
in Fig. 1, which performs three essential tasks:

1. Finding good parameter settings for a clustering
algorithm

2. Determining which clusters—that have been obtained
by running a clustering algorithm—are worth saving as
candidate solutions, to be considered for inclusion in the
final clustering result

3. Generating a final clustering from candidate clusters
The multi-run clustering generates a final clustering M’

from a dataset O by learning a utility of parameters of a
clustering algorithm in a state space, through active
exploration and by incrementally storing the different and
high-quality clusters M, which are generated from a group
of parameters. Details of the four components and their
corresponding roles are given in the following sections.
Table I provides commonly used notations in the paper.

Fig. 1. An architecture of multi-run clustering system (MRCS)

TABLE I
NOTATION REFERENCE: LIST OF COMMONLY USED NOTATIONS

State utility learning parameters
s ∈ S A state in a state space
π ∈ Π A policy in a policy space
U(s) A utility of a state
U’(s) A utility update function of a state
α A learning rate
RCQ A relative clustering quality function
CLEVER’s parameters
k Number of initial clusters
k’ Number of final clusters
p,p’ Sampling size
Multi-run clustering
xi ∈ X A cluster in a clustering X
yi ∈ M A cluster in a stored cluster list M
oi ∈ O An object in a spatial dataset O
q(X) A fitness value of a clustering
Reward(xi) A reward of a cluster
i(xi) An interestingness of a cluster
P(π) A probability of applying a policy
M’ A final clustering of MRCS
MRS A set of states of multi-run clustering
L A state utility learning
CA A clustering algorithm
SU A storage unit
CU A cluster summarization unit

B. State Utility Learning
An essential key of multi-run clustering is to automate

parameter selection of an arbitrary clustering algorithm. We
employ a state utility learning (L) to find good values for the
parameters leading to novel and high-quality clusterings.
Firstly, we give all definitions regarding of the use of state
utility learning in parameter selection and parameter
evaluation, and then explain its working principles in MRCS.

Definition 1: States in MRCS—A state s in a state space

S (S∈R2bm) contains ranges of parameters of a clustering
algorithm:

s = {s1_min, s1_max,…, sm_min, sm_max}, si ∈ ℜ 2b
where m is the number of parameters of a clustering

algorithm and b is the number of bins in a parameter space.
Parameter values are discretized into several ranges to
reduce the number of states.

Definition 2: Policies Π in MRCS
Let
π ∈ {π1,…, πr} ⊆ Π
π denotes a policy which is defined as follows,
π : MRS → S
where MRS denotes a set of states of MRCS.

Definition 3: A state utility function U
U: S → ℜ
U(s) denotes a utility of a state s in the state space S.

Definition 4: A relative clustering quality function RCQ
Let
O = {o1,…,on} be a dataset.
X = {x1, x2,…,xk}, xi∩xj = ∅, (i≠j), ⊆ , and ⊆

be a current clustering generated by CA.
M ={x1, x2,…,xp}, ⊆ be a set of clusters stored in

MRCS.
We define a relative clustering quality function (RCQ) as
RCQ: X×M ℜ

In particular, our approach uses REQ defined in (1) to

compute a utility of the state s. REQ evaluates the utility of a
state considering three measures: novelty of X with respect
to M, computational time (Speed(X)) needed and quality of
the clustering (q(X)).

, , 1

Definition 5: Utility Update U’—the following update

rule is used to update state utilities:
 1 · · 2

where α is the learning rate .

By representing parameters of CA as states (in Definition

1), MRCS uses a policy π (in Definition 2) to select a state s
to be explored next based on utilities (in Definition 3) of
other factors. Then, MRCS chooses a particular parameter
setting of CA at random from the state range of s, and
applied it to CA in order to produce a clustering X. After that
MRCS evaluates X using RCQ in (1) (in Definition 4); RCQ
assesses a utility of s based on the quality of X relative to a
set of previously found clusters M. Finally, it applies the
update rule in (2) (in Definition 5) to update the utility of s
based on the relative clustering quality obtained from X in
the context of M.

C. Storage Unit and Cluster Summarization Unit
Storage unit (SU) maintains a set of distinct, good

candidate clusters in incremental fashion during multiple
runs of the clustering algorithm (CA). It takes an incoming
clustering X produced by CA as an input to update its cluster
list M.

After multiple runs of parameter selection and clustering,
Cluster summarization unit (CU) finally assembles a final
clustering; it takes a set of clusters in M as inputs, and
generates the final clustering M’⊂ M.

D. Spatial Clustering Algorithms
In addition to other components in the multi-run clustering
we assume that clustering algorithms perform the follow
tasks:

Definition 6: A clustering algorithm (CA)
Given
O = {o1,…,on} as a dataset
A clustering algorithm seeks for a clustering X that

maximizes a fitness function q(X).
X = {x1, x2,…,xk}, xi ∩ xj = ∅, (i≠j), ⊆ , and

⊆ .
Our approach uses reward-based fitness functions in

Definition 7 that allow us to compare different clusters (x)
and clusterings (X).

Definition 7: Fitness Function
q(X) measures the quality of a clustering X as a sum of the

rewards obtained from each cluster xj (j=1,…,k), where the
interestingness function, i(xj) computes the interestingness of
the cluster xj, size(xj) is the number of objects in the cluster
xj, and β is a parameter to tune the significance of cluster
size.

 3

 4

III. THE MULTI-RUN CLUSTERING SYSTEM MR-CLEVER
In this section, we propose a concrete system of multi-run

clustering called MR-CLEVER based on the architecture of
MRCS; the goals of MR-CLEVER are to search for distinct
clusters automatically, and to enhance cluster results
produced by a clustering algorithm. First, we give an
overview of CLEVER [9], a clustering algorithm that is a
part of MR-CLEVER, then we discuss MR-CLEVER and its
measures and policies in Section B.

A. The CLEVER Clustering Algorithm
CLEVER (CLustEring using representatiVEs and

Randomized hill climbing) searches for a clustering that
maximizes an externally given, fitness function q(X). The
representative-based clustering algorithm forms clusters by
assigning objects in a dataset to their closest representatives.
The algorithm starts with randomly selecting k’
representatives from O where k’ denotes the number of
initial clusters. It samples p solutions in the neighborhood of
the current solution. The neighboring solutions are created
using one of the following three operators: insert, delete and
replace. Each operator has a certain selection probability and
representatives to be manipulated are chosen at random.
Next, CLEVER evaluates all the p neighbors, and if there is
an improvement, it picks the best among them which
becomes the new current solution. To battle premature
convergence, CLEVER re-samples p’>p solutions before

terminating. It should be mentioned that number of final
clusters (k) are not necessarily equal to k’.

CLEVER requires 3 main parameters: the number of
initial clusters k’ and sampling sizes p and p’ which are
discretized to form a state space in which states are
represented as follows: {k’min, k’max, pmin, pmax, p’min, p’max}.

B. MR-CLEVER.
MR-CLEVER is composed of 6 steps (S1 to S6) as

depicted in Figure 1. The system iteratively runs t iterations
of steps S1 through S5, and then creates the final clustering
(step S6).

Pre-processing step. Compute necessary statistics to set

up multi-run clustering system. Before we start running
multi-run clustering system, background knowledge
(statistics) concerning applying the clustering algorithm on a
given dataset is required. Therefore, we run m rounds of
CLEVER by randomly selecting k’, p and p’ to compute
necessary statistics, such as mean and standard deviation,
regarding of clustering quality and runtimes.

Step 1. Select parameters of a clustering algorithm. MR-

CLEVER uses policies given externally by the users to select
an anticipated state (CLEVER’s parameters) to be explored.
The system employs the policies which are chosen
probabilistically. After obtaining a state, a parameter setting
within ranges of the selected state is selected at random and
CLEVER is run for this parameter setting.

An example: Given a set of policies (in Fig. 2) with

associated probabilities: P(π1) = 0.2, P(π2) = 0.6, P(π3) =
0.2. We assume that visited states for two iterations of multi-
run clustering are s1 = {k’min=1, k’max=10, pmin=1, pmax=10,
p’min=11, p’max=20} and s2 = {k’min=11, k’max=20, pmin=41,
pmax=50, p’min=31, p’max=40} and that s2 is the state with the
highest utility; in the 3rd iteration, MR-CLEVER chooses π2
at random as a state policy and the policy picks s2 from the
visited states. Next, it further chooses k’=12, p=45, q=40 at
random from s2 as current parameters of CLEVER.

π1. Randomly select a state.
π2. Choose state with the maximum state utility value.
π3. Choose state in the neighborhood of the state having the
maximum state utility value.
Fig. 2. Examples of the policies

Step 2. Run CLEVER to generate a clustering with

respect to given parameters.

Step 3. Compute a state utility. State utilities are

computed using formula 1. In particular, the novelty of a
state s in (1) is assessed based on the obtained clustering X,
which relies on two measures:

Novelty measures the degree of novelty of a new

clustering X with respect to a set of clusters M stored in the

cluster repository (given in (5)). In general, in multi-run
clustering, we are interested in finding high-quality clusters
that are either different or better than the clusters that have
been found so far. Consequently, novelty is assessed using
two measures: dissimilarity and enhancement. Both
measures compare each cluster in X with the most similar
cluster in M. As shown in (6), Similarity evaluates the
average degree of overlap between clusters in X and the
most similar ones in M. On the other hand, Enhancement
evaluates the quality of X in the context of M as given in (7).
In this paper, enhancement assesses number of clusters in X
having higher reward per object than their closest
competitors in M.

Novelty X,M
 1–Similarity X,M ×Enhancement X,M 5

where

,
 ∑ ,

 6

where , | |
| |

 , X = {x1,…,xk}, and yi be the

most similar cluster in the stored cluster list M to xi∈X.

, 7

where
| |

Speed. The speed function assesses how quickly a

clustering algorithm produces a clustering. An interpolation
function is applied based on 3 inputs: average and standard
deviation of the runtimes and an acceptable runtime, to
calculate speed between range of 0 and 1; the speed drops
dramatically if runtime is over 70%. First two inputs are
computed in the preprocessing step, while last input is given
by the users.

Let

M be the current set of multi-run clusters.
X be a new clustering to be processed for updating M.
θsim be a similarity threshold.
rth be a reward storage threshold.

X will be processed as follows:
FOR c∈X DO
 Let m be the most similar cluster in M to c.
IF sim(m,c)> θsim AND Reward(m)<Reward(c) THEN
 replace(m,c,M)
ELSE IF Reward(c)>rth THEN insert(c,M)
ELSE discard(c);
Fig. 3. Cluster List Management algorithm (CLM)

Step 4. Update a state utility. The system updates the

utility of the current state by using the utility value
computed in S3 in the utility update rule (Definition 5).

Step 5. Update cluster lists to maintain a set of distinct
and high quality clusters. Our system uses multiple
strategies to incrementally update the cluster list M. The
experiments in the paper use Cluster List Management
algorithm described in Fig. 3. In short, the strategy inserts
dissimilar clusters, if their quality is above a given threshold;
on the other hand, if a similar cluster exists in M, this cluster
is only replaced if the cluster in X is better than the
corresponding cluster in M.

Let
DEDGE:={(c1,c2)|c1∈M ∧ c2∈M ∧ sim(c1,c2)>θrem ∧
 better(c2,c1)}
REMCAND:={c|∃d (c,d)∈DEDGE}
DOMINANT:={c|∃d (d,c)∈DEDGE ∧ c∉REMCAND}
REM:={c|∃d ((c,d)∈DEDGE ∧ d∈DOMINANT)}
Better(c1,c2)↔ Reward(c1)>Reward(c2) ∨
 (Reward(c1)=Reward(c2) ∧
 clusterNumber(c1)>clusterNumber(c2))
Remark: Ties have to broken so that DEDGE is always a
DAG; no cycles in DEDGE are allowed to occur.

Input: M, θrem

Output: M’⊆M

Compute DEDGE from M;
Compute REMCAND;
Compute DOMINANT;
WHILE true DO
 {
 Compute REM;
 IF REM=∅ THEN EXIT ELSE M=M/REM;
 Update DEDGE by removing edges of deleted clusters in
 REM;
 Update REMCAND based on DEDGE;
 Update DOMINANT based on DEDGE and REMCAND
}
RETURN(M).
Fig. 4. Dominance-guided Cluster Reduction algorithm (DCR)

Step 6. Generate final clustering. We use Dominance-

guided Cluster Reduction algorithm, displayed in Fig. 4, to
produce the final clustering M’ from M. After steps 1 to 5 in
MR-CLEVER are repeatedly run for a while, M usually
contains a lot of overlapping clusters. The goal of the
presented algorithm is to remove clusters from M so that M’
does not contain any pair of clusters (c1,c2) such that
sim(c1,c2)>θrem, where θrem is a similarity threshold. The
challenge of designing such algorithm is to avoid
unnecessary removals of clusters from M when generating
M’. The algorithm relies on dominant clusters which are
clusters that do not contain any better clusters in their θrem-
neighborhood, and therefore have to remain in M. The
algorithm loops over the following 2 steps until there is no
cluster to be removed in the second step:
1. Compute dominant clusters.
2. Remove clusters in the θrem-proximity of dominant

clusters.

By following this strategy, only those clusters that are
similar to dominant clusters are deleted; the other clusters
are remained in M.

IV. EXPERIMENTAL EVALUATION
We illustrate our algorithm on an artificial dataset in

section A and evaluate the algorithm in a real world dataset
in section B.

A. Illustration of Multi-Run Clustering on an Artificial
Dataset
This experiment illustrates how the proposed multi-run

clustering system (MR-CLEVER) works. We perform multi-
run clustering using CLEVER algorithm with Purity
interestingness function [7] on 9Diamonds dataset available
in [8]. The dataset consists of 3,000 objects with 9 natural
clusters. The Purity function measures a purity degree of
each cluster, i.e. a ratio of number of objects in a majority
class to the cluster size. The fitness of a clustering is a
summation of the purity degrees of all clusters. The
parameter settings are shown in Table II; we assume that the
number of natural clusters is unknown by the clustering
algorithm.

In the 1st run of the multi-run clustering, CLEVER
generates 13 clusters (Fig. 5 (a)); clusters c1, c2, and c3 are
inserted into M. After that CLEVER generates 14 clusters in
the 2nd run (Fig. 5 (b)); cluster c1 of the 1st run is replaced by
c1 of this round because of superior purity. Moreover, novel
clusters c4, c5 and c6 that also have high purity are inserted
in M. Fig. 5 (c) depicts distinct and high-purity clusters
collected in the cluster repository at the end of the 2nd run.
By using insert/replace strategies to manage each incoming
clustering (CML in Fig. 3), MR-CLEVER can quickly
discover the correct 9 clusters (in Fig. 5 (d)) at the end of the
5th run of CLEVER. We observe that CLEVER discovers the
correct solution at the 20th run.

TABLE II

PARAMETER SETTINGS FOR THE 9DIAMONDS DATASET
β=1.5 θsim=0.8 θrem=0.6 Run = 20 rounds
State bound k’=[1,40] p=[1,50] p’=[1,50]
Bin size k'=10 p=5 p’=5

(a) (b) (c) (d)

Fig. 5. An illustration of MR-CLEVER: (a) and (b) depict clustering results
of the 1st and 2nd runs respectively, (c) depicts the distinct and high quality
clusters in M at the end of the 2nd run, and (d) depicts the final clusters
produced by MR-CLEVER.

B. Evaluation of Multi-Run Clustering on Real Dataset
In this section, we show how MR-CLEVER can discover

interesting and alternative clusters in spatial data. We
employ an earthquake dataset available on the website of the
U.S. Geological Survey Earthquake Hazards Program

http://earthquake.usgs.gov/. We sampled 4,132 examples of
earthquakes dated from January 1986 to November 1991.
Information recorded includes the location (longitude,
latitude) and the depth (kilometers) of the earthquake.

In this case study, we are interested in discovering places
in geographical space where variance of depth of
earthquakes is high. In other words, we are interested in
areas where deep earthquakes are in close proximity to
shallow earthquakes. In this experiment, we use the High
Variance function in [10] to find such regions. The
interestingness function is defined as follows:

0
,
,

,
,

 8

where ,
| |

∑
z denotes an attribute of interest in the dataset O which is

the depth attribute in the earthquake dataset. th>1 is a setting
threshold. 0<η<∞ is a form parameter. µz is an average depth
of all earthquakes in the cluster c. Var(c,z) denotes a
regional variance of z in a cluster c whereas Var(O,z)
denotes a global variance of z in the dataset. The parameter
settings are shown in Table III.

TABLE III

PARAMETER SETTINGS FOR THE EARTHQUAKE DATASET
β=1.5 th=1.05 η=2.0 θsim=0.6 rth=3361
Preprocessing run = 5 rounds Run = 20 rounds
State bound k’=[11,80] p=[1,50] p’=[1,50]
Bin size k'=10 p=5 p’=5

(a) (b)
Fig. 6. Multi-run clustering results; (a) depicts top 5 clusters of XTheBestRun
(ordered by reward) and (b) depicts clusters in M’.

TABLE IV

INFORMATION OF TOP 5 CLUSTERS OF XTHEBESTRUN (ORDERED BY REWARD)
Cluster id Reward Interestingness Size

c17 108524 34 213
c0 15875 19 87
c12 6742 19 50
c22 1807 66 9
c27 1714 13 25

This experiment illustrate 4 benefits of MR-CLEVER in:

1) enhancing quality of clusters (by finding similar but better
clusters), 2) maintaining high-quality clusters, 3) finding
alternative clusters, and 4) finding new high-quality clusters
from other runs whereas filtering out low-quality clusters.

Firstly, we analyze behaviors of MR-CLEVER by using
the best run of CLEVER found at Run No. 2 (XTheBestRun). We
focus on the top 5 clusters in XTheBestRun as visualized in Fig.
6 (a); the corresponding details: reward, interestingness and

size of the clusters are also given in Table IV. According to
our observation, we distinguish 3 cases as follows:

Survival Clusters. We find that only one clusters c0, that
is inserted into a stored cluster list M, still survives in the
final clustering M’.

Non-survival Clusters. We observe that there are two
clusters c12 and c17 that are at first inserted in M, but are
replaced by similar but higher-reward clusters in the next
run.

Discarded Clusters. The last case differs from the 2nd case
in that MR-CLEVER considers low-reward clusters
uninteresting and never inserts them into M; the last two
clusters c22 and c27 fall into this case—rewards of the two
clusters are lower than rth in Table III.

We further analyze XTheBestRun by comparing them with
their corresponding most similar clusters in M’ (as shown in
Table VI.) Apparently, most clusters in M’ are superior to
ones in XTheBestRun. In particular, MR-CLEVER is able to
enhance quality of clusters, e.g. finding cluster m5 and m0
which are similar but superior to c12 and c17, respectively.
On the other hand MR-CLEVER also maintains high quality
clusters obtained in the best single run as shown in Item 2;
cluster m1 in M’ is cluster c0 in XTheBestRun. In addition, MR-
CLEVER weeds out the low-quality clusters as seen in Item
4 and 5; MR-CLEVER does not keep any cluster in M’ that
similar to c22 and c27. Figure 6 (b) also visually confirms
absence of clusters c22 and c27 in M’.

TABLE V

INFORMATION OF TOP 10 CLUSTERS IN M’ (ORDERED BY REWARD)
Cluster Id Reward Interestingness Cluster Size Run No.

m0 108865 35 215 0
m30 100569 29 231 13
m1 15875 20 87 2
m15 15740 5 210 6
m40 10979 15 80 19
m33 10570 51 35 15
m9 9570 14 77 5
m5 6777 25 42 1
m39 5846 2 200 17
m2 4691 17 42 0

TABLE VI

COMPARE REWARDS AND SIMILARITIES OF THE TOP 5 CLUSTERS OF
XTHEBESTRUN AND THE CORRESPONDING MOST SIMILAR CLUSTERS IN M’

Item
The top 5 clusters of

XTheBestRun
The most similar

clusters in M’ Similarity
Cluster id Reward Cluster id Reward

1 c17 108524 m0 108865 0.776
2 c0 15875 m1 15875 1
3 c12 6742 m5 6776 0.673
4 c22 1807 N/A N/A 0
5 c27 1714 m15 15740 0.049

Next, we illustrate an ability of MR-CLEVER to discover

alternative clusters. Refer to Table V which provides details
of the final 10 clusters of MR-CLEVER (M’), we consider
m0 and m30 alternative clusters. It can be seen from Fig. 7,
that these two clusters are highly overlapping (m0 is almost
contained in m30.) The two clusters are alternative clusters
to each other in different aspects; refer to Table V, m30 is

superior in terms of cluster size, whereas m0 is superior in
terms of cluster interestingness and reward. At this stage, the
users can decide to keep both or only one of them. It is noted
that DCR algorithm in the cluster summarization unit is
opened to allow different measures of cluster quality, e.g.
using interestingness instead of reward.

Next, we show an ability of MR-CLEVER to find new
high-quality clusters from other runs. Table VII maps the
most similar positive-reward clusters in XTheBestRun to the final
clusters in M’; with overlapping threshold greater than 30%,
there are 70% of the clusters that are found in M’ but not in
the positive-reward clusters of XTheBestRun. This implies that
MR-CLEVER can find 70% of the new and high-quality
clusters that do not exist in the best single run. On the other
hand, Table VIII shows that with overlapping threshold
greater than 20%, there are 42.86% of the clusters that are
found in the positive-reward clusters of the best run but not
in M’. This indicates that MR-CLEVER weeds out most of
the low quality clusters produced in the best single run.

TABLE VII

THE MOST SIMILAR (POSITIVE
REWARD) CLUSTERS IN XTHEBESTRUN
TO THE FINAL CLUSTERS IN M’

 TABLE VIII
THE MOST SIMILAR CLUSTERS IN
M’ TO THE POSITIVE-REWARD
CLUSTERS IN XTHEBESTRUN

Cluster
id in
M’

Cluster
id in

XTheBestRun
Similarity

 Cluster
id in

XTheBestRun

Cluster
id in
M’

Similarity

m0 c17 0.776 c0 m1 1
m1 c0 1 c6 m9 0.182
m2 c12 0.15 c12 m5 0.673
m5 c12 0.673 c14 N/A 0
m9 c6 0.182 c17 m0 0.776
m15 c0 0.286 c22 N/A 0
m30 c17 0.237 c27 m15 0.049
m33 c0 0.162
m39 c12 0.244
m40 c0 0.113

Fig. 7. Overlay the multi-run clustering result (in color) by the top 5
rewards clusters of the best run (in black).

Finally, in Fig. 7, we overlay the multi-run clustering

result M’ (in color) and the top 5 clusters of the best run (in
black). The overlap of clusters convince the same argument
that MR-CLEVER is able to capture the high quality clusters
(c0, c12 and c17) from the best run, and to discard some
clusters (c22 and c27) whose reward does not satisfy the
threshold. By performing multiple runs, it is able to
accumulate novel clusters having high reward that are not
found in the best run, e.g. cluster m9. This visualization

assures us that CLEVER cannot find all of the best clusters in
a single run, but MR-CLEVER can discover them
automatically and effectively.

V. RELATED WORK
Active learning has been originally proposed to perform

instance selections to enhance performance in classification
[11], [12]. Our work adapts active learning to assist
parameters selection in clustering. There is some work that
uses active learning for cluster enhancement. Klein et al.
propose constrained complete-link in [13], a clustering
algorithm that actively propagates cannot-link constraints
during agglomerative clustering; the merging process results
in an implicitly reduction of number of pairwise constraints
in the next iteration. Basu et al. present a framework in [14]
that actively and explicitly selects a set of representatives by
utilizing must-link and cannot-link constraints, and employs
them in the partition-based clustering algorithm PCKmeans.
Our work is generally similar to the latter work in that it
aims to automatically find good parameters. However, the
mentioned work focuses on seeking for a set of good initial
representatives that produces the optimal clustering, whereas
our work centers on finding parameter setting to generate
diverse and high-quality clusters.

Reinforcement learning is another approach recently
applied to assist clustering ([15], [16]). However, both
approaches center on finding the optimal single-run
clustering. In addition to the aforementioned work, ReCoM
[17] applies reinforcement technique to re-cluster multi-type
interrelated data objects. By considering inter-relationship
among objects in the different type, it iteratively propagates
the clustering result from one type to enhance clustering in
the other interrelated type until the clustering converges.

COALA introduced in [4] is an agglomerative clustering
algorithm that finds alternative optimal clustering by using
prior information of cannot-link instances. Because our
approach combines clusters from different runs, it is similar
to ensemble clustering and meta-clustering. In this paper, we
roughly categorize those approaches into two categories
based on aspects of final results produced by the algorithms.
The first category assumes that the best clustering is
subjective; different users have different opinions in defining
the best clustering result. In [18], Caruana et al. early create
diverse clusterings, cluster them into groups afterward, and
finally let users choose a group of clusterings that is the best
for their needs. On the other hand, work belonging to the
second category aggregates different clusterings into one
consolidated clustering; Gionis et al. propose clustering
aggregation algorithms in [6] to generate a final clustering
that minimizes the total number of disagreements among all
clusterings. Zeng et al. [5] introduce an approach to combine
different hard clusterings using probability; objects are
assigned to the final clusters based on the probabilities
obtained from all the input clusterings. According to the
given categories, our work falls into the second category.
Whereas the ensemble clustering approach does not address

the problem how its input clusterings are generated, our
approach finds inputs automatically, and incrementally
based on what clusters have been found so far. Another
difference is that our approach assumes the presence of an
objective function that assesses the clustering quality when
creating initial clusters, whereas ensemble approaches use an
objective function when creating the final clustering.

VI. SUMMARY AND CONCLUSION
We propose an architecture and a concrete system for

multi-run clustering (MRCS and MR-CLEVER) to cope with
parameters selection of a clustering algorithm, and to obtain
alternative clusters in highly automated fashion; our
approach uses active learning to automate the parameter
selection, and various techniques to find both different
clusters and good clusters on the fly. At last, a Dominance-
guided Cluster Reduction algorithm is proposed, that post-
processes clusters from the multiple runs to generate a final
clustering by restricting cluster overlap. The merit of the
proposed system is that all tasks in multi-run clustering are
performed in highly automated fashion: selecting clustering
algorithm parameters, running the clustering algorithm,
maintaining and analyzing cluster candidates, and
assembling final clusters. Moreover, our MRCS can be used
to produce inputs for ensemble clustering.

 The experimental result with the artificial dataset shows
that our proposed system performs better than running
CLEVER independently multiple times; MR-CLEVER
identifies the optimal solution more quickly. The
experimental result on the real dataset supports our claim
that multi-run clustering outperforms single-run clustering
with respect to clustering quality. Only 43% of clusters in
the best single run occur in the multi-run solution. We also
find that 70% of the multi-run clusters do not occur in the
best single run clustering. Moreover clusters in the multi-run
clustering tend to be significantly better than the
corresponding clusters of the best single run clustering. The
experimental results also indicate that MR-CLEVER can find
alternative clusters. In conclusion MR-CLEVER can discover
additional novel, alternative, high-quality clusters and
enhance the quality of clusters found using single-run
clusterings.

REFERENCES
[1] R. T. Ng, J. Sander, and M. C. Sleumer, “Hierarchical cluster analysis

of SAGE data for cancer profiling,” in Workshop on Data Mining in
Bioinformatics, 7th ACM SIGKDD Int. Conf. Knowledge Discovery
and Data Mining, 2001.

[2] E. Malo, R. Salas, M. Catalán, and P. López, “A mixed data clustering
algorithm to identify population patterns of cancer mortality in
Hijuelas-Chile,” in Lecture Notes in Computer Science, Artificial
Intelligence in Medicine, vol.4594, 2007, pp.190–194.

[3] W. Ding, C. F. Eick, J. Wang, and X. Yuan, “A framework for
regional association rule mining in spatial datasets,” in Proc. IEEE
Int. Conf. Data Mining, 2006.

[4] E. Bae, and J. Bailey, “COALA: A novel approach for the extraction
of an alternate clustering of high quality and high dissimilarity,” in
Proc. 6th Int. Conf. Data Mining, 2006, pp. 56-62.

[5] Y. Zeng, J. Tang, J. Garcia-Frias, and R. G. Gao, “An adaptive meta-
clustering approch: combining the information from different

clustering results,” in Proc. IEEE Computer Society Conf.
Bioinformatics, 2002.

[6] A. Gionis, H. Mannila, and P. Tsaparas, “Clustering aggregation,” in
Proc. 21st Int. Conf. Data Engineering, 2005.

[7] C. F. Eick, B. Vaezian, D. Jiang, and J. Wang, “Discovery of
interesting regions in spatial datasets using supervised clustering,” in
Proc. 10th European Conf. Principles and Practice of Knowledge
Discovery in Databases, 2006.

[8] Data Mining and Machine Learning Group website, University of
Houston, Texas. Available: http://www.tlc2.uh.edu/dmmlg/Datasets

[9] C. F. Eick, R. Parmar, W. Ding, T. Stepinki, and J.-P. Nicot, “Finding
regional co-location patterns for sets of continuous variables in spatial
datasets,” in Proc. 16th ACM SIGSPATIAL Int. Conf. Advances in
GIS, 2008.

[10] V. Rinsurongkawong, and C. F. Eick, “Change analysis in spatial
datasets by interestingness comparison,” in ACM SIG SPATIAL
Newsletter, 2008.

[11] D. Angluin, “Queries and concept learning,” in Machine Learning,
vol. 2(4), 1987, pp. 319–342.

[12] L. Atlas, D. A. Cohn, and R. E. Ladner, “Training connectionist
networks with queries and selective sampling,” in NIPS, 1989, pp.
566–573.

[13] D. Klein, S. D. Kamvar, and C. D. Manning, “From instance-level
constraints to space-level constraints: making the most of prior
knowledge in data clustering,” in Proc. the 9th Int. Conf. Machine
Learning, 2002, pp. 307–314.

[14] S. Basu, A. Banerjee, and R. J. Mooney, “Active semi-supervision for
pairwise constrained clustering,” in Proc. 2004 SIAM Int. Conf. Data
Mining, 2004.

[15] A. Bagherjeiran, C. F. Eick, C.-S. Chen, and R. Vilalta, “Adaptive
clustering: obtaining better clusters using feedback and past
experience,” in Proc. 5th IEEE Int. Conf. Data Mining, 2005.

[16] C.-H. Oh, E. Ikeda, K. Honda, and H. Ichihashi, “Parameter
specification for fuzzy clustering by Q-learning,” in Proc. Int. Joint
Conf. Neural Networks, 2000.

[17] J. Wang, H. Zeng, Z. Chen, H. Lu, L. Tao, and W.-Y. Ma, “ReCoM:
reinforcement clustering of multi-type interrelated data objects,” in
Proc. 26th Annu. Int. ACM SIGIR Conf. Research and development in
information retrieval, 2003, pp. 274–281.

[18] R. Caruana, M. Elhawary, N. Nguyen, and C. Smith, “Meta
clustering,” in Proc. 6th IEEE Int. Conf. Data Mining, 2006.

