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Abstract. Domain experts are frequently interested to analyze multiple related 

spatial datasets. This capability is important for change analysis and contrast 

mining. In this paper, a novel clustering approach called correspondence 

clustering is introduced that clusters two or more spatial datasets by 

maximizing cluster interestingness and correspondence between clusters 

derived from different datasets. A representative-based correspondence 

clustering framework and clustering algorithms are introduced. In addition, the 

paper proposes a novel cluster similarity assessment measure that relies on re-

clustering techniques and co-occurrence matrices. We conducted experiments in 

which two earthquake datasets had to be clustered by maximizing cluster 

interestingness and agreement between the spatial clusters obtained.  The 

results show that correspondence clustering can reduce the variance inherent to 

representative-based clustering algorithms, which is important for reducing the 

likelihood of false positives in change analysis. Moreover, high agreements 

could be obtained by only slightly lowering cluster quality. 

Keywords: Spatial Data Mining, Mining Related Spatial Datasets, Variance in 

Clustering, Representative-based Clustering Algorithms, Change Analysis. 

1   Introduction 

Domain experts are frequently interested to compare clustering results of two or more 

related datasets. For example, meteorologists may want to understand the change in 

this year’s sea water temperature patterns with respect to those observed in previous 

years. Zoologists may attempt to relate animals’ habitats and their source of foods. 

We can use traditional clustering algorithms to cluster each dataset separately and 

compare the results, but this approach frequently will not lead to good results due to 

the following reasons: 

1. The clustering algorithms do not take into consideration the correspondences 

between the datasets. 

2. The randomness inherent in most clustering algorithms further complicates 

the correspondence analysis of clusterings. For example, K-means is 

sensitive to initialization, noise, and outliers.  



In this paper, we introduce a novel spatial clustering approach called 

correspondence clustering. Correspondence clustering clusters two or more spatial 

datasets by taking the correspondence between the different clustering into 

consideration. Therefore, the obtained clusterings relate to one another; that is, the 

clustering of one dataset depends on the clusterings of the other datasets. 

Consequently, variances in clusterings produced by traditional clustering algorithms 

are reduced. Moreover, the hidden relationships between related clusterings can be 

discovered. 

Applications for correspondence clustering include: 

1. Change analysis [7] where changes between two datasets are compared; 

correspondence clustering reduces the likelihood of identifying false change 

patterns by enhancing agreement between the clustering results for different 

datasets. 

2. Regional co-location mining [2] that seeks for regions in which two types of 

events are co-located; for example, correspondence clustering can find 

regions where deep and severe earthquakes co-locate. 

3. Correspondence clustering can help dealing with missing values. For 

example, when identifying clusters with high ozone concentration, failures of 

ozone measurement equipments result in missing values. Correspondence 

clustering can use past clusterings to guide clustering when missing values 

are present. 

Challenges to develop a good correspondence clustering framework include: 

1. Techniques have to be developed to deal with the variance inherent to most 

clustering algorithms. If it is not dealt properly, false changes, and false 

novelties will be detected.  

2. Methods have to be developed that measure the correspondence between two 

clusterings which is a non-trivial problem if object identity is not known.  

3. Clustering algorithms have to be extended to cluster multiple datasets jointly 

considering cluster agreement or other relationships between the clustered 

datasets.  

4. Measuring cluster correspondence is usually quite expensive, and efficient 

techniques have to be developed to keep its overhead in check. 

The main contributions of the presented paper include:  

1. A unique framework for correspondence clustering is introduced. 

2. Representative-based correspondence clustering algorithms that allow for 

plug-in fitness functions are introduced. 

3. Novel techniques that measure the agreement between two clusterings are 

proposed.  

2   Correspondence Analysis Framework 

In this section, we propose a correspondence analysis framework. Basically, our 

framework is designed for spatial data, especially for geo-referenced datasets. The 



challenges of discovering interesting patterns in spatial data include the complexity of 

spatial data types, the presence of hidden spatial relationships, and spatial 

autocorrelation. Moreover, spatial space is continuous and contains many patterns at 

different levels of granularities. 

Let us assume that a set of related spatial datasets O={O1,…,On} are given. We are 

interested in finding interesting relationship among these datasets. In general, our 

framework seeks for clustering results that maximize two objectives: (1) the 

interestingness in each clustering, (2) the correspondence between the set of obtained 

clusterings. Correspondence clustering is defined as follows. 

Definition 1. A correspondence clustering algorithm clusters data in two or more 

datasets O={O1,…,On} and generates clustering results X={X1,…,Xn} such that for 

1in, Xi is created from Oi and the correspondence clustering algorithm seeks for 

Xi’s such that each Xi maximizes interestingness i(Xi) with respect to Oi as well as 

maximizes the correspondence Corr(X1,…,Xn) between itself and the other clusterings 

Xj for 1jn, j i. 

In summary, correspondence clustering can be viewed as a multi-objective 

optimization problem in which the interestingness of clustering and their 

correspondence are maximized. Moreover, different interestingness functions i and 

correspondence functions Corr can be used for different correspondence clustering 

tasks. In the next section, a representative-based correspondence clustering approach 

is introduced. The approach allows for plug-in fitness functions that are capable to 

capture different interestingness functions i and correspondence functions Corr. 

3   Representative-based Correspondence Clustering Algorithms 

Since our representative-based correspondence clustering approach employs a region 

discovery framework, we first introduce the region discovery framework. 

3.1   Region Discovery Framework 

The region discovery framework [1] gears towards finding scientifically interesting 

places in spatial datasets. The framework adapts clustering algorithms for the task of 

region discovery by allowing plug-in fitness functions to support variety of region 

discovery applications corresponding to different domain interests. The goal of region 

discovery is to find a set of regions X that maximize an externally given fitness 

function q(X); q is assumed to have the following structure: 

   (3-1) 

where i(c) is the interestingness of a region c and |c| is the number of objects 

belonging to a region c is denoted by |c|. The reward associated with region sizes is 

controlled by parameter  (>1). 



3.2   Representative-based Correspondence Clustering Algorithms 

In general, representative-based clustering algorithms seek for a subset of the objects 

in the datasetcalled the “representatives”—and form clusters by assigning the 

remaining objects to the closest representative. In this section, representative-based 

correspondence clustering algorithms are introduced. The proposed algorithms are 

modifications of a region discovery algorithm named CLEVER [2]. CLEVER is a 

representative-based clustering algorithm that applies randomized hill climbing to 

maximize the fitness function q. Figure 3-1 gives the pseudo-code of CLEVER. 

Inputs: Dataset O, k’, neighborhood-size, p, p’, 

Outputs: Clustering X, fitness q 

Algorithm:  
1. Create a current solution by randomly selecting k’ representatives from O.  

2. Create p neighbors of the current solution randomly using the given neighborhood 

definition.  

3. If the best neighbor improves the fitness q, it becomes the current solution. Go back 

to step 2.  

4. If the fitness does not improve, the solution neighborhood is re-sampled by 

generating p’ more neighbors. If re-sampling does not lead to a better solution, 

terminate returning the current solution; otherwise, go back to step 2 replacing the 

current solution by the best solution found by re-sampling. 

Figure 3-1. Pseudo-code of CLEVER  

Given two datasets O1 and O2, the goal of correspondence clustering is to discover 

sets of clusterings X1 and X2 that maximize the compound fitness function q(̃X1,X2). 

The compound fitness function q(̃X1,X2) is defined as follows: 

 (3-2) 

where q is a fitness function that assess the quality of X1 and X2. The correspondence 

parameter  is a user-defined parameter. The correspondence function Corr(X1,X2) 

measures the correspondence between X1 and X2. 

CLEVER is modified to maximize the compound fitness function q ̃ instead of the 

fitness function q. Two approaches that implement correspondence clustering are 

introduced in the following: (1) The Interleaved approach (C-CLEVER-I), and (2) 

The Concurrent approach (C-CLEVER-C). The algorithms of C-CLEVER-I and C-

CLEVER-C are given in Figure 3-2 and 3-3, respectively.  

The C-CLEVER-C uses the compound fitness function (equation 3-2) to cluster 

two data sets concurrently. For the C-CLEVER-I, dataset O1 and O2 are clustered one 

at a time—not concurrently— therefore, the compound fitness function (equation 3-2) 

simplifies to (3-3) and (3-4) when clustering the first and second dataset, respectively. 

 (3-3) 

 (3-4) 



In general, there are many possible choices in selecting initial representatives of C-

CLEVER-I and C-CLEVER-C. Our current implementation supports three options: 

The first option is to randomly select a subset of size k’ from O as in CLEVER. The 

second option uses the final set of representative R from the previous iteration as the 

initial set of representatives. The third option uses the set of representatives R’ of its 

counterpart clustering X’ to compute a set of “nearby” representatives R taken from 

the dataset O as follows:  

1. For each r’ in R’ determine its (1-)nearest neighbor in O obtaining a set R 

2. Remove duplicates from R.  

There are many choices for termination condition (TCond). The possible choices 

are: (1) fix the number of iterations; (2) terminate the program if the compound 

fitness function in the present iteration does not improve from the previous iteration. 

Input: O1 and O2, TCond, k’, neighborhood-size, p, p’,,  

Output: X1, X2, q(X1), q(X2), q̃(X1,X2), Corr(X1,X2) 

Algorithm: 

1. Run CLEVER on dataset O1 with fitness function q and get clustering result X1 and a 

set of representative R1:  

(X1,R1) :=Run CLEVER(O1, q);  

2. Repeat until the Termination Condition TCond is met. 

a. Run CLEVER on dataset O2 with compound fitness function q̃2 that uses 

the representatives R1 to calculate Corr(X1,X2): 

(X2,R2) :=Run CLEVER(O2,R1, q2̃) 

b. Run CLEVER on dataset O1 with compound fitness function q̃1 that uses 

the representatives R2 to calculate Corr(X1,X2): 

(X1,R1) :=Run CLEVER(O1,R2, q1̃)  

Figure 3-2. Pseudo-code of C-CLEVER-I 

Input: O1 and O2, TCond, k’, neighborhood-size, p, p’, ,  

Output: X1, X2, q(X1), q(X2), q̃(X1,X2), Corr(X1,X2) 

Algorithm: 

1. Run CLEVER on dataset O1 with fitness function q and get clustering result X1 and a 

set of representative R1:  

(X1,R1) :=Run CLEVER(O1, q);  

2. Run CLEVER on dataset O2 with fitness function q and get clustering result X2 and a 

set of representative R2:  

(X2,R2) :=Run CLEVER(O2, q);  

3. Repeat until the Termination Condition TCond is met. 

a. Run CLEVER on datasets O1 and O2 concurrently maximizing the 

compound fitness function q:̃ 

(X1,R1,X2,R2):=Run CLEVER(O1,R1,O2,R2, q)̃  

Figure 3-3. Pseudo-code of C-CLEVER-C 



4   Agreement Assessment by Forward and Backward Re-

clustering Techniques and Co-occurrence Matrices 

Using agreement between two clusterings X1 and X2 is a popular choice for a 

correspondence function. In applications such as change analysis [7] or co-location 

mining [2], domain experts want to discover clusterings that are good and agree at 

least to some extent. In such case, Agreement(X1,X2) would be used as the 

correspondence function. In addition, domain experts might be interested to discover 

regions with disagreement between the two datasets in anti-co-location or novelty 

detection. In the later case, Corr(X1,X2) can be defined as (1-Agreement(X1,X2)). For 

the remaining of the paper, Agreement(X1,X2) will be used as correspondence function 

Corr(X1,X2); in the section we will introduce a measure to assess agreement. 

First, we introduce re-clustering techniques that use the clustering model of one 

clustering to cluster the data in another dataset. In case of representative-based 

clustering, the cluster models are sets of representatives. Given two clusterings X1 and 

X2 of two datasets O1 and O2 and two sets of representatives of R1 and R2 of the two 

clusterings X1 and X2, forward and backward re-clusterings can be created using the 

representatives of one dataset to cluster the other dataset. More formally:  

Definition 2. Let O be a dataset and R be an arbitrary set of representatives. Then 

REC(O,R) denotes the result of re-clustering dataset O using the set of representatives 

R. The clusters of REC(O,R) are created by assigning objects oO to the closest 

representative rR obtaining |R| clusters. 

Definition 3. REC(O2,R1) is called forward re-clustering and  REC(O1,R2) is called 

backward re-clustering.  

To assess cluster similarity, the similarity between two representative-based 

clusterings X1 and X2 is computed by comparing X1 with REC(O1,R2) and X2 with 

REC(O2,R1).To assess the similarity of two clusterings, we construct a co-occurrence 

matrix MX for each clustering X of O as follows: 

1. If oj and oi belong to the same cluster in X, entries (i,j) and (j,i) of MX are set 

to 1. 

2. If oi is not an outlier in X, set (i,i) in MX to 1 

3. The remaining entries of MX are set to 0 

Let MX and MX’ be two co-occurrence matrices that have been constructed for two 

clusterings X and X’ of the same dataset O; then the similarity between X and X’ can 

be computed as follows:  

 (4-1) 

Sim(X,X’) in equation (4-1) is a generalization of the popular Rand Index [8] that 

additionally takes outliers into consideration. Finally, we define agreement between 



clustering X1 and X2, by comparing the clusterings of the two datasets with their 

respective forward and backward re-clusterings as follows:  

 (4-2) 

The advantage of the proposed agreement assessment method based on re-

clustering techniques and co-occurrence matrices is that it can deal with: (1) datasets 

with unknown object identity, (2) different number of objects in two datasets, (3) 

different number of clusters in the two clusterings. Therefore, we claim that it is 

suitable for most types of spatial data. 

5   Experiments 

In the first experiment, we show that correspondence clustering provides comparable 

or better results than the traditional clustering. Moreover, the experimental results 

show that by enhancing agreement between two corresponding datasets, 

correspondence clustering produces clusterings that have lower variance than a 

traditional clustering algorithm. In the second experiment, we evaluate and compare 

different cluster initialization strategies for correspondence clustering. 

5.1   Earthquake Dataset and Interestingness Function 

We run our experiments on an earthquake dataset that is available on website of the 

U.S. Geological Survey Earthquake Hazards Program http://earthquake.usgs.gov/. 

The data includes the location (longitude, latitude), the time, the severity (Richter 

magnitude) and the depth (kilometers) of earthquakes. We uniformly sampled 

earthquake events from January 1986 to November 1991 as dataset O1 and earthquake 

events between December 1991 and January 1996 as dataset O2. Each dataset contains 

4132 earthquakes. 

Suppose that a domain expert interests in finding regions where deep and shallow 

earthquakes are in close proximity; that is, he/she is interested in regions with a high 

variance for the attribute earthquake depth. The following interestingness function 

captures the domain expert’s notion of interestingness.  

  (5-1) 

where       (5-2) 

The attribute of interest z(o) is depth of earthquake o; |c| is the number of objects in 

region c and µz is the average value of z in region c; th1 is the reward threshold that 

captures what degree of earthquake depth variance the domain expert find news 

http://earthquake.usgs.gov/


worthy; in general, regions with i(c)=0 are considered outliers. Finally,  with 

>>0 is the reward function form parameter.  

5.2   Experiment Investigating Variance Reduction 

We run the interleaved approach of the representative based correspondence 

clustering, C-CLEVER-I, and the traditional clustering algorithm, CLEVER, and 

compare the results with respect to cluster quality and agreement.  

First we run CLEVER on dataset O1 and O2 five times to generate five clusterings 

for each dataset. Then we run C-CLEVER-I for five iterations with =1.0e-4 and 

=2.0e-6 for five times each. Figure 5-1 summarizes the experiments conducted. 

Each circle represents each clustering. The dashed lines between Clustering X1 and X2 

in CLEVER show that fitness values (q(X1)+q(X2)), and Agreement(X1,X2) of 

CLEVER are computed from all twenty five possible pairs of X1 and X2. When 

correspondence clustering is used, those values are only computed for the five pairs of 

clusterings obtained by C-CLEVER-I (one for each run; indicated by solid lines with 

two ways arrows). For each clustering of C-CLEVER-I, the representatives from the 

previous iteration of its own clustering are used as initial representatives of the 

present iteration. The parameter settings of CLEVER and C-CLEVER-I are shown in 

Table 5-1 and Table 5-2. All parameters for CLEVER and C-CLEVER-I are set to the 

same values except for the values of p and p’. Since C-CLEVER-I is run for five 

iterations for each pair of clustering X1 and X2, for a fair comparison, we set the p and 

p’ of CLEVER to be five times higher than C-CLEVER-I. The experiment is 

evaluated by fitness function (equation (3-1)), agreement (equation (4-2)) and 

similarity (equation (4-1)). Table 5-3 shows average values of all the experimental 

results. The computation time measures the average wall clock time in milliseconds 

used by the algorithms to generate a pair of clusterings X1 and X2. We use similarity 

measure Sim(X,X’) in equation (4-1) to assess variance between two clusterings 

generated using the same dataset. In general, the algorithm that produces higher 

Sim(X,X) creates clusterings that are more similar in different runs, thus, exhibiting 

lower variance. 

Table 5-1. Parameter settings of CLEVER 

=2.0 p=100 p’=100 =2.0 th=1.2  

Neighborhood size = 3 Probabilities for add, delete, and replace representatives : 0.2, 0.2, 0.6 

Table 5-2. Parameter settings of C-CLEVER-I 

TCond = 5 iterations =2.0 p=20 p’=20 =2.0 th=1.2  

Neighborhood size = 3 Probabilities for add, delete, and replace representatives : 0.2, 0.2, 0.6 



 

Figure 5-1. Illustration of the experiment 

Table 5-3. Comparison of average results of CLEVER and C-CLEVER-I 

 CLEVER 

 

C-CLEVER-I 

(=1.0e-5) 

C-CLEVER-I 

(=2.0e-6) 

Fitness q(X1) 1896492 1896821 1870152 

Fitness q(X2) 1756189 1713519 1685332 

q(X1) + q(X2) 3652681 3610341 3555485 

Agreement(X1,X2) 0.332909 0.349231 0.776172 

Sim(X1,X1) 0.665973 0.703770 0.663314 

Sim(X2,X2) 0.344895 0.623614 0.619446 

Computation Time 5.48E+06 2.18E+06 2.30E+06 

From Table 5-3, C-CLEVER-I with =1.0e-5 produces higher fitness values for 

clustering X1 and but lower fitness values of X2 than CLEVER. For Agreement(X1,X2) 

and Sim(X1,X1), C-CLEVER-I with =1.0e-5 produces slightly higher values than 

CLEVER but for Sim(X2,X2), C-CLEVER-I produces significantly higher value than 

CLEVER. From this point of view, the higher values of Sim(X1,X1) and Sim(X2,X2) 

indicate than each run of C-CLEVER-I creates more similar clustering results for 

each clustering X1 and X2 which means that C-CLEVER-I produces lower variance 

than CLEVER. With =2.0e-6, C-CLEVER-I is forced to emphasize agreement. 

Therefore, the fitness values of clustering X1 and X2 of C-CLEVER-I are slightly 

lower than CLEVER but Agreement(X1,X2), and Sim(X2,X2) of C-CLEVER-I are 

significantly higher than CLEVER. Moreover, C-CLEVER-I computes its results 

about half of the runtime CLEVER uses. 

From the experimental results, we conclude that correspondence clustering can 

reduce the variance inherent to representative-based clustering algorithms. Since the 

two datasets are related to each other, using one dataset to supervise the clustering of 

the other dataset can lead to more reliable clusterings by reducing variance among 

clusterings that would have resulted from using traditional representative-based 

clustering algorithms, as they are more susceptible to initial representatives and 

outliers. Moreover, obtaining higher agreement could be accomplished with only a 

very slight decrease in cluster quality. 



5.3   Experiment for Representative-based Correspondence Clustering with 

Different Methods of Initial Representative Settings 

We run experiments to compare results of three initialization strategies for C-

CLEVER-I; the three tested strategies are as follows : (1) random representatives (C-

CLEVER-I-R), (2) representatives from the nearest neighbor of representatives of the 

counterpart clustering (C-CLEVER-I-C), and (3) the final representatives from the 

previous iteration are used as the initial representatives for the next iteration (C-

CLEVER-I-O). For each option of the initial representative setting techniques, five 

pairs of clustering X1 and X2 are generated, similar to the previous experiment. Table 

5-4 shows parameter settings used in the experiments. The average values of the 

experimental results are shown in Table 5-5.  

Table 5-4. Parameter settings of C-CLEVER-I  

TCond = 5 iterations =2.0e-8 =2.8 p=20 p’=20 =2.0 th=1.2  

Neighborhood size = 3 Probabilities for add, delete, and replace representatives : 0.2, 0.2, 0.6 

Table 5-5. Comparison of average results of C-CLEVER-I with different means of initial 

representative settings 

 C-CLEVER-I-C C-CLEVER-I-O C-CLEVER-I-R 

Compound Fitness q̃(X1,X2)  9.857655 10.10406 9.952686 

Fitness q(X1) 2.3E+08 2.66E+08 2.46E+08 

Fitness q(X2) 2.14E+08 2.17E+08 2.13E+08 

q(X1) + q(X2) 4.44E+08 4.82E+08 4.59E+08 

Agreement(X1,X2) 0.977259 0.459206 0.771505 

Computation Time 3.23E+06 2.72E+06 7.10E+06 

From Table 5-5, C-CLEVER-I-C produces clusterings with the highest agreement 

but the lowest compound fitness value. This is because C-CLEVER-I-C uses initial 

representatives that are closest to the representatives of its counterpart clustering. 

Then C-CLEVER-I-C generates clusterings X1 and X2 that are very similar which 

results in very high agreement. Though, the agreement is very high, the low fitness 

values lead to the low compound fitness value. For C-CLEVER-I-O, the initial 

representatives used are the final representatives from the previous iteration. In 

contrast to C-CLEVER-I-C, with =2.0e-8, C-CLEVER-I-O favors increasing fitness 

values rather than increasing agreement between the two clusterings. This is indicated 

by the highest fitness values but the lowest agreement value. As for C-CLEVER-I-R, 

it produces comparable fitness values and intermediate agreement value but consumes 

the highest computation time. This is due to the fact that C-CLEVER-I-R randomizes 

its initial representatives, which allows the algorithm to explore the dataset more 

thoroughly than the others but in return, it needs more time to find the solution. 



6   Related Work 

Correspondence clustering relates to coupled clustering, and co-clustering which both 

cluster more than one dataset at the same time. Coupled clustering [3] is introduced to 

discover relationships between two textual datasets by partitioning the datasets into 

corresponding clusters where each cluster in one dataset is matched with its 

counterpart in the other dataset. Consequently, the coupled clustering requires that the 

number of clusters in two datasets be equal. In general, the coupled clustering ignores 

intra-dataset similarity and concentrates solely on inter-dataset similarity. Our 

approach, on the other hand, provides no limitation on number of clusters. It considers 

both intra-dataset and inter-dataset similarities. The intra-dataset similarity is included 

through interestingness measures and the inter-dataset similarity is included through 

correspondences in sets of representatives. 

Co-clustering has been successfully used for applications in text mining [4], 

market-basket data analysis, and bioinformatics [5]. In general, the co-clustering 

clusters two datasets with different schemas by rearranging the datasets. In brief, 

datasets are represented as a matrix with one dataset is organized into rows while the 

other dataset is organized into columns. Then, the co-clustering partitions rows and 

columns of the data matrix and creates clusters which are subsets of the original 

matrix. In case of spatial data mining, re-organizing the data into data matrix causes 

spatial relationships related to location of data points to be lost: clusters are no longer 

guaranteed to be contiguous. Accordingly, co-clustering is not applicable to spatial 

clustering.  

Correspondence clustering is also related to evolutionary clustering [6] that is used 

for multi-objective clustering. Evolutionary clustering clusters streaming data based 

on two criteria: the clustering quality of present data and its conformity to historical 

data.  

In conclusion, the three reviewed clustering techniques cluster data based on 

distances alone whereas the correspondence clustering approach allows to cluster 

multiple datasets based on a domain expert’s definition of interestingness and 

correspondence. Consequently, correspondence clustering is more general and can 

serve a much larger group of applications. For example, none of the three approaches 

can be used for the earthquake clustering problem we used in the experimental 

evaluation; in the experiment, clusters are formed by maximizing the variance of a 

continuous variable and not by minimizing the distances between objects that belong 

to the same cluster.  

7   Conclusion 

In this paper, we introduce a novel clustering approach called correspondence 

clustering that clusters two or more related spatial datasets by maximizing cluster 

interestingness and correspondence between clusters for the different datasets. A 

representative-based correspondence clustering framework is introduced and two 

representative-based correspondence clustering algorithms are proposed. We 

conducted experiments in which two datasets had to be clustered by maximizing 



cluster interestingness and agreement between the spatial clusters obtained. The 

results show that correspondence clustering can reduce the variance inherent to 

representative-based clustering algorithms. Moreover, high agreements could be 

obtained by only slightly lowering clustering quality. In general, correspondence 

clustering is beneficial for many applications, such as change analysis, co-location 

mining and applications that are interested in analyzing particular, domain-specific 

relationships between two or more datasets. 

In addition, the paper proposes a novel agreement assessment measure that relies 

on re-clustering techniques and co-occurrence matrices. The agreement assessment 

technique proposed is applicable for (1) datasets with unknown object identity, (2) 

different number of objects in two datasets, (3) different number of clusters in two 

clusterings. Therefore, it is suitable for most types of spatial data. 

References 

1. Ding, W., Jiamthapthaksin, R., Parmar, R., Jiang, D., Stepinski, T., and Eick, C. F.: Towards 

Region Discovery in Spatial Datasets. In Proceedings of 12th Pacific-Asia Conference on 

Knowledge Discovery and Data Mining (2008) 

2. Eick, C. F., Parmar, R., Ding, W., Stepinki, T., and Nicot, J.-P.: Finding Regional Co-

location Patterns for Sets of Continuous Variables in Spatial Datasets. In Proceedings of 

16th ACM SIGSPATIAL International Conference on Advances in Geographic Information 

Systems (2008) 

3. Marx, Z., Dagan, I., Buhmann, J. M., and Shamir, E.: Coupled Clustering: A Method for 

Detecting Structural Correspondence. Journal of Machine Learning Research 3, 747-780 

(2002) 

4. Dhillon, I. S.: Co-clustering Documents and Words using Bipartite Spectral Graph 

Partitioning. In Proceedings of 7th ACM SIGKDD International Conference on Knowledge 

Discovery and Data Mining (2001) 

5. Cheng, Y., and Church, C. M.: Biclustering of Expression Data. In Proceedings of 8th 

International Conference on Intelligent Systems for Molecular Biology (2000) 

6. Chakrabarti, D., Kumar, R., and Tomkins, A.: Evolutionary Clustering. In Proceedings of 

12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 

(2006) 

7. Chen, C. S., Rinsurongkawong, V., Eick, C. F., and Twa, M. D.: Change Analysis in Spatial 

Data by Combining Contouring Algorithms with Supervised Density Functions. In 

Proceedings of 13th Pacific-Asia Conference on Knowledge Discovery and Data Mining 

(2009) 

8. Rand, W.: Objective Criteria for the Evaluation of Clustering Methods. Journal of the 

American Statistical Association, 66, 846-850 (1971) 


