
Piece-Wise Model Fitting Using Local Data Patterns
Ricardo Vilalta and Muralikrishna Achari and Christoph Eick 1

Abstract. In this paper we propose a novel classification algorithm
that fits models of different complexity on separate regions of the in-
put space. The goal is to achieve a balance between global and local
learning strategies by decomposing the classification task into sim-
pler subproblems; each task narrows the learning problem to a local
region of high example density over the input space. Specifically, our
proposed approach is to apply a clustering algorithm to every set of
training examples that belong to the same class; each cluster becomes
an intermediate concept that is learned by selecting a model with an
(estimated) optimal degree of complexity. Experimental results on
real-world domains show consistent good performance in predictive
accuracy with our piece-wise model fitting strategy.

1 INTRODUCTION

Research in machine and statistical learning has placed at our dis-
posal a rich set of classification algorithms, enabling us to group and
understand these algorithms based on their different data-analysis
strategies. A rough categorization deals with the kind of information
used in computing class posterior probabilities; we can either employ
all available training examples (i.e., global strategy) or give higher
weight to those training examples in the neighborhood of the query
example (i.e., local strategy). Both global and local learning strate-
gies sit at two extremes of a large spectrum of possible compromises
that exploit information from labelled examples. Our goal is to ex-
plore intermediate points of this spectrum based on established facts
about the strengths and limitations of each strategy.

On the one hand, global learning algorithms fit a single model to
the whole training data, even when the complexity of the model re-
sults inadequate on different regions of the input space. For example,
a simple global model (e.g., linear combination of feature values,
Naive Bayes, single logical rules, etc.) is often inadequate under re-
gions of high example density if Bayes error is low and higher flex-
ibility in the decision boundaries lowers the empirical risk [3]. Here
the final hypothesis is drawn from a small class of approximating
functions; the poor repertoire of functions produces high bias (since
the best approximating function may lie far from the target function)
but low variance (since there is little dependence on local irregular-
ities in the data). The alternative is to increase the degree of com-
plexity by drawing a hypothesis from a large class of approximating
functions (e.g., neural networks with a large number of hidden units);
here the hypothesis exhibits flexible decision boundaries (low bias)
but becomes sensitive to small variations in the data (high variance).
This is inadequate if data is sparse or a function with lower variance
achieves the same empirical risk. In both cases the final hypothesis is
simply averaged altogether, prone to overshoot the bias or variance

1 Department of Computer Science, University of Houston. 4800 Calhoun
Rd. Houston TX 77204-3010. Email: {vilalta,amkchari,ceick}@cs.uh.edu

component of error as example densities vary throughout the input
space.

At the other extreme of the spectrum sit local learning algorithms
[1, 3, 13]. These algorithms fit a different model around each query
example and so pay attention to local irregularities in the data at
the expense of using biased estimates of class (posterior or condi-
tional) probabilities (e.g., k-nearest neighbor classifiers with small
values for k). Reducing the degree of locality (e.g., by increasing k

or the width of a kernel function) improves the probability estimates
but loses sensitivity to small variations in the data. Estimating class
probabilities by gathering statistics around a query example fails to
capture how class clusters distribute throughout the input space.

In this study we propose a learning strategy that fits models of dif-
ferent complexity to separate regions of the input space. Our goal is
to achieve a balance between local and global learning by gaining
more control over the bias-variance tradeoff in generalization error
[4]. First, locality is achieved by decomposing each class into dif-
ferent clusters, each cluster representing a local characterization of
the class-conditional distribution [15]. Instead of modelling this dis-
tribution as a mixture of components [6], we treat each cluster as a
subclass that must be learned independently of the rest. This hierar-
chical representation of classes where each class divides into clusters
enables us to fit models of varying complexity on different regions of
the input space, while retaining most available examples for training.
Empirical results on real world domains show consistent good per-
formance with this approach, particularly when each cluster contains
enough examples to be modelled accurately.

This paper is organized as follows. Section 2 introduces back-
ground information on classification and discriminant functions. Sec-
tion 3 compares our strategy to that of global and local learning meth-
ods. Section 4 describes our piece-wise model fitting strategy. Sec-
tion 5 discusses related work. Section 6 reports on our experimental
analysis. Finally, Section 7 gives a summary and discusses future
work.

2 BASIC TERMS AND NOTATION

Let (A1, A2, · · · , An) be an n-component vector-valued random
variable, where each Ai represents an attribute or feature; the space
of all possible attribute vectors is called the input space X . Let
{y1, y2, · · · , yk} be the possible classes or categories; the space of
all possible classes is called the output space Y . A learning algo-
rithm receives as input a set of training examples T = {(x, y)},
where x = (a1, a2, · · · , an) is a vector or point of the input space
and y is a point of the output space. The outcome of the learning al-
gorithm is a function h (i.e., hypothesis) mapping the input space to
the output space, h : X → Y . Function h can then be used to predict
the class of previously unseen attribute vectors.

We consider the case where a learning algorithm defines a discrim-

inant function for each class gj(x), j = 1, 2, · · · , k and chooses the
class corresponding to the discriminant function with highest value
(ties are broken arbitrarily):

h(x) = ym iff gm(x) ≥ gj(x) ∀j 6= m (1)

Discriminant functions can be seen as instantiations of generic
models. For example, a simple discriminant function is based on a
linear model:

gj(x) = w0 +

n∑

i=1

wiai (2)

where each wi, 0 ≤ i ≤ n, is a coefficient that must be estimated by
the learning algorithm.

Discriminant functions can also be instantiations of probabilistic
models; these models are often proportional to the class posterior
probabilities:

gj(x) = P (yj |x) = αP (yj)P (x|yj) (3)

where P (yj) is the a priori probability of class yj , P (x|yj) is called
the likelihood or class-conditional probability, and α is a normaliza-
tion factor.

3 DATA-DRIVEN ADAPTATION OF MODEL
COMPLEXITY

Our approach to achieve a compromise between global and local
learning in classification is based on varying the complexity of a
model according to the characteristics of the data distribution. To
begin we detail on some limitations pertaining to global and local
learning methods. Consider first the case of a global estimation of
model parameters when the learning algorithm is simple. The limited
size of the space of approximating functions results in many exam-
ple distributions appearing identical; the learning algorithm tends to
smooth all class probabilities, often by relying on data projections
on single features. As an example consider the mechanism behind
Naive Bayes [11], where every discriminant function is equivalent
to Equation 3, and class conditional probabilities are simple product
approximations:

gj(x) = P (yj)P (x|yj) = P (yj)

n∏

i

P (ai|yj) (4)

By computing class-conditional probabilities on each feature sepa-
rately, Naive Bayes attempts to reconstruct the true joint input-output
distribution using a product of low-order class conditional proba-
bilities (i.e., low order components). The reconstruction is prone to
miss local irregularities in the data, since among all distributions that
can produce those same low-order components, Naive Bayes selects
only the distribution having maximum entropy [9]. The same can be
said of linear models (Equation 2) where the number of approximat-
ing functions is limited by the space of linear feature combinations.
Many distributions map into the same function despite evident dif-
ferences in local data patterns.

The problem of naively ignoring local irregularities in the data
by collapsing multiple distributions into few functions can be tack-
led by simply increasing the capacity of the learning machine (i.e.,
the model complexity). But the advantage of this approach is soon
downplayed by the additional increase in variance, as well known in
statistical inference[4, 5]. As an illustration, Figure 1 shows a two di-
mensional input space with two classes. The distribution of examples

A1

A2

Figure 1. A high-order polynomial (dashed line) improves the
classification of a linear model (bold line) at the expense of increased
variance. A local classifier (circle) fails to identify cluster membership

information.

precludes a simple linear model attaining good performance (Fig-
ure 1 bold line). One way to increase the complexity of the model
is to enlarge the original space of linear combinations to allow for
more flexibility on the decision boundaries, for example by adding
higher order polynomials (Figure 1, dashed line). But this comes at
the expense of increased variance and possibly data overfitting.

A different solution is to follow a local learning strategy by trac-
ing a graded circular area around the query example (Figure 1 cir-
cle). This is normally achieved by placing a kernel around the query
example (e.g., a Gaussian kernel) that dictates how much weight is
assigned to neighbor examples. This method pays too much attention
to irregularities in the data (often resulting in high variance). In ad-
dition, it disregards the location of the query example with respect to
dense areas of high posterior probabilities. Figure 1 (circle) shows a
scenario where the query example is assigned class negative, despite
it having a higher degree of cluster membership on class positive.

3.1 Class-cluster decomposition

Our compromise between global and local learning strategies is to
increase the number of discriminant functions by assigning each an
easier task, narrowing the location of its decision boundaries to a
more confined region of the input space. The idea is to exploit infor-
mation on the example distribution through a pre-processing step that
identifies natural clusters in data [14, 15]. Each corresponding clus-
ter represents a local characterization of the class-conditional distri-
bution.

As an illustration, Figure 2 shows an example distribution identical
to Figure 1, but with the new goal of fitting three models correspond-
ing to the different clusters into which class positive can be decom-
posed. Each resulting function is in charge of distinguishing between
examples within the cluster from examples outside the cluster. By in-
creasing the number of decision boundaries per class we enable the
learning algorithm to choose models of different complexity accord-
ing to variations in example density. This hierarchical representation
where each class divides into multiple clusters adds locality to the
classification problem while retaining all examples for training.

Before providing a more detailed description of our approach
(Section 4) we justify the importance behind using multiple decision
boundaries within each class as a means to reduce bias while limiting
the growth in variance.

A1

A2

Figure 2. Learning clusters in a piece-wise manner using models of
varying complexity; class positive decomposes into three clusters.

3.2 Capacity and the VC dimension

We make use of the VC-dimension [12] to compare the increase in
complexity obtained by augmenting the number of boundaries per
class (our approach) to the increase in complexity obtained by aug-
menting the capacity of a single global learning algorithm. First, con-
sider a learning algorithm that has a small class of approximating
functions φ from which to draw a hypothesis. If we wish to make
class φ stronger we must increase its size. Recall, however, that
adding too much representational power increases the variance com-
ponent of error. Here we provide evidence showing that our approach
increases the representational power of φ in small steps, enabling us
to gain more control over the bias-variance tradeoff in generalization
error. We start by introducing standard definitions (extracted from
[5]):

Definition 1. A set of points D is said to be shattered by a class of
functions φ, if for every possible assignment of (binary) class labels
to the points in D, there is a member function h ∈ φ that perfectly
classifies all examples in D.

Definition 2. The VC dimension of a class of functions φ, VC(φ), is
the size of the largest set D than can be shattered by φ.

The VC dimension quantifies the representational power of φ in
separating examples away and plays an important role in our un-
derstanding of generalization error [12]. For our purposes, we look
at how VC(φ) varies as φ grows in representational power. Con-
sider first the case where we wish to increase the complexity of a
global learning algorithm by enlarging the class of functions to in-
clude high-order polynomials.

Observation 1. (extracted from [2]). For any positive integer l, if φl

is the class of functions of polynomials of degree l in the input space
Rn, then VC(φl) is of order O(nl).

Therefore, the VC dimension grows exponentially as we increase
the degree of the polynomial. Consider now our proposed approach
where the goal is to increase the number of decision boundaries per
class while trying to keep the complexity of each boundary as low as
possible.

Observation 2. (extracted from [8, 2]) Let φl be the class of func-
tions made of l intersecting hyperplanes (i.e., polygons). That is each
function partitions the input space by intersecting l different hyper-
planes. The VC dimension of this class of functions (over the plane
R2) is VC(φl) = 2l + 1.

Thus, in this case the VC dimension grows linearly with the num-
ber of hyperplanes (i.e., of linear boundaries). The results above sug-

{(x,y') | y'=(-,1)}

{(x,y') | y'=(+,2)}

{(x,y') | y'=(+,3)}

{(x,y') | y'=(+,1)}

A1

A2

Figure 3. The class-decomposition process relabels examples to encode
both class and cluster.

gest the complexity of a classifier, as measured by the VC dimension,
grows at a slower rate when we increase the number of boundaries
but limit their complexity (e.g., three boundaries on Figure 2), than
when we increase the flexibility of a single global decision bound-
ary (e.g., dashed boundary on Figure 1). This is expected to be true
as long as each local classifier has complexity lower than the com-
plexity of the global classifier under comparison. Thus in looking
for a trade-off between bias and variance, our approach provides an
interesting mechanism to reduce bias while limiting the growth in
variance.

4 PIECE-WISE MODEL FITTING

In this section we provide a detailed description of our piece-wise
model fitting approach. Our solution is a two-step process: 1) decom-
pose classes into clusters; 2) fit a model with the right (estimated)
complexity for each data cluster. We look to each step in turn.

4.1 The decomposition process

The first step pre-processes the training data by clustering examples
that belong to the same class, that is T = {Tj}, where each Tj com-
prises all examples in T labelled with class yj , Tj = {(x, y) ∈
T |y = yj}. Specifically, for each set Tj we apply a clustering al-
gorithm C to find sets of examples (i.e., clusters) grouped together
according to some distance metric over the input space2. Let {cj

i} be
the set of such clusters. We map the set of examples in Tj into a new
set T ′

j by renaming every class label to indicate not only the class but
also the cluster to which each example belongs. One simple way to
do this is by making each class label a pair (a, b), where the first ele-
ment represents the original class and the second element represents
the cluster that the example falls into. In that case, T ′

j = {(x, y′

j)},
where y′

j = (yj , i) whenever example x is assigned to cluster c
j
i .

An illustration of the decomposition process is shown in Figure 3.
The transformation relabels every example to encode class and clus-
ter label. As a result, dataset T ′ has now four different classes. Fi-
nally the new dataset T ′ is simply the union of all sets of examples
of the same class relabelled according to the cluster to which each
example belongs, T ′ =

⋃k

j=1
T ′

j .

4.2 The model-fitting process

The second step fits models of varying complexity to each cluster.
Algorithm 1 (Figure 4) shows the logic behind this step. The input

2 We consider a flat type of clustering (as opposed to hierarchical) and assume
each object is assigned to exactly one cluster.

Algorithm 1: Model-Fitting Process
Input: dataset T ′

Output: set of discriminant functions G

MODEL-FITTING(T ′)
(1) foreach class-uniform set T ′

j in T ′

(2) Relabel all examples outside T ′

j as (−)
(3) foreach model M of increasing complexity
(4) Learn function gj using model M in Tj

(5) Assess gj on validation set
(6) Keep track of most accurate function g∗

j

(7) end
(8) end
(9) return G = {g∗

j }

Figure 4. The process to fit models of varying complexity on each of the
original clusters.

to the algorithm is dataset T ′, where examples in T have been re-
labelled to include class and cluster label. Hence, each new class in
dataset T ′ corresponds to a cluster derived from the original dataset
T ; if at least one class decomposes into more than one cluster, the
number of classes in T ′ is larger than the classes in T .

Our goal is to investigate a new approach to the problem of mod-
elling class-conditional distributions. Assuming a mixture of (Gaus-
sian) models where each cluster distributes in a similar way is often
unrealistic. Instead we try to learn each cluster separately as follows.
For each class in T ′ (i.e., for each cluster in T comprising exam-
ples of the same class) we relabel all examples outside the class as
negative (−) (Algo. 1, line 2). The goal at this point is to find a dis-
criminant function that can accurately separate the two classes; this
is equivalent to finding a function to classify the original cluster.

To achieve our goal we fit models of varying complexity to the
relabelled data, and select the function that is most accurate on a val-
idation set (Algo. 1, lines 3-7). Fitting models of varying complexity
can be achieved in different ways. Our experiments use a support
vector machine with a polynomial kernel; the degree of the polyno-
mial is varied from one to three; the final degree is based on the best
accuracy obtained on a validation set. Since we favor local models
of low complexity, ties are broken by selecting the polynomial with
lowest degree. The rationale behind this idea is twofold: 1) learn-
ing to classify each cluster does not necessarily assume a parametric
model, and 2) the use of local models allows to increase model com-
plexity in finer steps (Section 3.2).

The output of the model-fitting process is a set of discriminant
functions G = {g∗

j }, each function g∗

j learning to classify each of
the original clusters (Algo. 1, line 9). Upon arrival of a new query ex-
ample, we simply select the discriminant function with highest value
(Equation 1). To know the actual prediction in the original output
space Y , we predict class label yj whenever example x is assigned
to any of the clusters of class yj . This is simply achieved by re-
moving the cluster label from the predicted class-cluster pair (i.e.,
(yj , i) → yj).

5 RELATED WORK

The idea of identifying clusters of examples as a pre-processing step
to classification had been used before to improve the mechanism
of Naive Bayes [14, 15]. Instead of applying a global classifier to
the transformed space, however, our approach attempts to learn each
cluster separately.

Our work bears some similarity to the idea of mixtures of local

experts [6, 7], in which different classifiers compete to control differ-
ent regions of the input space, and a gate network is used to weight
the output of the classifiers (i.e., models the mixing parameters of a
mixture distribution). Instead of searching for regions of expertise as
part of the classification process, our approach differs in separating
the problem into a clustering and a classification step; the clustering
phase serves to pre-identify local patterns that can then be learned
using models of varying complexity.

The connection between our approach and local learning can be
established by looking at the difference between costs functions. In
local learning [3, 13, 1], parameter estimation of the approximating
function is based on minimizing a local cost:

C(x) =
∑

i

L(h(xi), t(xi))K(||xi − x||) (5)

where the sum goes over all training examples3, L is the loss or
cost of predicting class h(xi) when the true class is t(xi), and K is
a kernel function that gives higher weight to those examples closer
to x. In contrast, our class decomposition process first detects the
existence of local patterns through clustering, and then transforms
the output space to capture those patterns. Generally speaking, we
try to minimize a global cost:

C =
∑

i

L(h′(xi), t
′(xi)) (6)

where h′ and t′ are now functions mapping input vectors to a new
output space: X → Y ′. The mapping leaves the input space X intact
but changes the output space Y into a (possibly) larger space Y ′ (i.e.,
|Y ′| ≥ |Y|, where | · | is the cardinality of the space), depending
on the amount of cluster decomposition. Since the kernel function
is eliminated, all examples bear now equal importance to classifica-
tion. Local information of the data distribution is encoded in the new
output space.

Our work can be compared to the mechanism of radial basis func-
tions [5], where the final hypothesis is represented as a linear combi-
nation of models. Commonly the shape of each model follows a stan-
dard Gaussian density (through a prototype and scale parameters). In
practice, however, the Gaussian assumption comes unwarranted; our
approach instead is to learn local distributions by fitting local models
to each cluster.

6 EXPERIMENTS

In our experiments, the clustering algorithm follows the Expectation
Maximization (EM) technique [10]; it groups examples into clusters
by modelling each cluster through a probability density function.
Each example in the dataset has a probability of class membership
and is assigned to the cluster with highest posterior probability. The
number of clusters is estimated using cross-validation. All our im-
plementations use the WEKA machine-learning class library [16],
set with default values.

On each run we use 80% of the examples for training, 10% for val-
idation, and 10% for testing. Reports on accuracy are the average of
ten runs (over the testing set). Tests of significance are reported at the
p = 0.05 level using a two-tailed t-student distribution. Our datasets
come from the University of California at Irvine (UCI) Repository.
To prevent the situation where the clustering algorithm lacks enough
evidence, we considered only datasets with at least 200 examples.

3 The summation is replaced by an integral if the input space is continuous.

Table 1 displays our results. The second and third columns report
the mean accuracy4 of a local learning algorithm (Nearest Neigh-
bor with k = 1) and a global learning algorithm (Neural Network)
respectively. The fourth column corresponds to our approach where
each cluster is learned using a support vector machine with a polyno-
mial kernel of varying degree (Section 4.2). The fifth column shows
if there is a significant difference between our approach and Nearest
Neighbor (∗), and/or if there is a significant difference between our
approach and Neural Network (+). The sixth column shows the av-
erage degree of the polynomial kernel for each class-unform cluster.

Compared to Nearest Neighbor our approach is significantly bet-
ter in ten datasets, and only worse in two datasets. Compared to Neu-
ral Network, our approach is similar, with two significant wins and
two significant losses. Two datasets, Letter and Vowel, appear diffi-
cult to learn under our approach. Both datasets decompose into the
highest number of clusters. The average number of clusters obtained
from the class decomposition step over all datasets in Table 1 is 16.4.
The Letter and Vowel datasets decompose into 76 and 51 clusters re-
spectively. Results can be explained by observing that decomposing
classes into many clusters increases the likelihood of finding clusters
comprising few examples. When learning each cluster this results in
a class imbalance conflict; the size of each cluster is much lower than
the size of the complement dataset.

An interesting observation is that our approach is never signifi-
cantly worse than both other algorithms (except for dataset Letter,
explained above), which points to an interesting balance between lo-
cal and global learning strategies. In addition, the average degree for
the polynomial kernel on each dataset shows most clusters can be
learned with simple linear or quadratic models (last column, Table 1),
which facilitates their interpretation.

Table 1. Predictive accuracy on real-world domains.

Domain Nearest Neural Local Test Avg.
Neighbor Network Fitting Sig. Degree

Autos 74.73 77.30 72.10 1.40

Balance-Scale 86.19 92.38 91.26 ∗ 1.40

Breast-Cancer 69.64 68.92 70.3 1.39

Breast-W 96.28 96.28 96.14 1.28

Colic 80.55 79.44 81.38 ∗ 1.49

Credit-a 82.70 82.17 85.78 ∗+ 1.40

Credit-g 70.80 70.60 72.40 1.40

Diabetes 67.40 72.80 75.58 ∗+ 1.80

Heart-c 74.60 78.90 81.33 ∗ 1.20

Heart-Statlog 76.29 78.88 84.81 ∗ 1.50

Hypothyroid 63.48 71.66 71.96 ∗ 1.60

Chess 90.60 97.49 96.95 ∗ 1.21

Letter 73.26 72.49 67.21 ∗+ 2.00

Mushroom 99.77 99.55 99.55 1.00

Tumor 41.47 41.45 45.29 1.30

Sick 87.30 90.6 92.17 ∗ 1.70

Soybean 90.94 94.56 94.20 1.09

Vehicle 68.92 82.38 79.16 ∗+ 2.00

Vote 93.72 93.95 95.81 1.20

Vowel 98.48 92.62 93.53 ∗ 2.10

7 SUMMARY AND FUTURE WORK

In this paper we exploit information obtained by clustering sets of
examples to divide the classification problem into simpler subprob-
lems. Every cluster represents a subconcept that can be learned in-
dependently of the rest. Locality is achieved through a piece-wise
characterization of the class-conditional distribution. Since we retain

4 For space reasons we omit reports on standard deviations; these can be
obtained directly from the authors.

all examples for analysis, class probability estimations do not suffer
from biased local samples.

Our piece-wise model fitting approach is justified by the differ-
ence in the rate of complexity obtained by augmenting the number
of boundaries per class (our approach) to the increase in complexity
obtained by augmenting the capacity of a single global learning al-
gorithm (Section 3.2). The former enables us to increase the model
complexity in finer steps.

Experiments in real-world domains show consistent good perfor-
mance in predictive accuracy with our piece-wise model fitting strat-
egy; our approach exhibits a good balance between local and global
learning strategies. Our experiments also show some datasets decom-
pose into an excessive number of clusters (e.g., dataset Letter decom-
poses into 76 clusters); in this case learning to discriminate clusters
often results in a class imbalance conflict. Future work will explore
the use of different sampling techniques in an attempt to model each
cluster accurately.

Finally, we plan to explore how to couple the clustering and clas-
sification steps more tightly. For example, some parameters in the
clustering algorithm (e.g., number of clusters) can be estimated by
searching for an optimum in classification accuracy.

ACKNOWLEDGEMENTS

We thank the reviewers for their valuable comments. This work was
partially supported by a grant from the University of Houston.

REFERENCES
[1] C. G. Atkeson, A. W. Moore, and S. Schaal, ‘Locally Weighted Learn-

ing’, Artificial Intelligence Review, 11, 11–73, (1997).
[2] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. Warmuth, ‘Learnabil-

ity and the Vapnik-Chervonenkis Dimension’, Journal of Association
for Computing Machinery, 36(4), 929–965, (1989).

[3] L. Bottou and V. Vapnik, ‘Local Learning Algorithms’, Neural Compu-
tation, 4(6), 888–900, (1992).

[4] S. Geman, E. Bienenstock, and R. Doursat, ‘Neural Networks and the
Bias/Variance Dilemma’, Neural Computation, 1–58, (1992).

[5] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statisti-
cal Learning; Data Mining, Inference, and Prediction, Springer-Verlag,
2001.

[6] R. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton, ‘Adaptive
Mixtures of Local Experts’, Neural Computation, 3, 79–87, (1991).

[7] M. I. Jordan and R. Jacobs, ‘Hierarchical Mixturs of Experts and the
EM Algorithm’, Neural Computation, 6, 181–214, (1994).

[8] M. Kearns and U. Vazirani, An Introduction to Computational Learning
Theory, MIT Press, 1994.

[9] P. M. Lewis, ‘Approximating Probability Distributions to Reduce Stor-
age Requirements’, Information and Control, 2, 214–225, (1959).

[10] G. McLachlan and T. Krishnan, The EM Algorithm and Extensions,
John Wiley and Sons, 1997.

[11] T. Mitchell, Machine Learning, Springler-Verlag, 1997.
[12] V. Vapnik, The Nature of Statistical Learning Theory, Springler-Verlag,

1999.
[13] V. Vapnik and L. Bottou, ‘Local Algorithms for Pattern Recognition

and Dependencies Estimation’, Neural Computation, 5(6), 893–909,
(1993).

[14] R. Vilalta, M. Achari, and C. Eick, ‘Class Decomposition Via Clus-
tering: A New Framework For Low-Variance Classifiers’, IEEE Third
International Conference on Data Mining, 673–676, (2003).

[15] R. Vilalta and I. Rish, ‘A Decomposition Of Classes Via Clustering To
Explain And Improve Naive Bayes’, European Conference on Machine
Learning, 444–455, (2003).

[16] I. H. Witten and E. Frank, Data Mining: Practical Machine Learn-
ing Tools and Techniques with Java Implementations, Academic Press,
London U.K, 2000.

