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A B S T R A C T

We design a number of distance metrics with linear-complexity based on the geo-
metric and statistic properties of 3D curves, and apply them to classify streamlines and
the trajectories of particles for flow visualization. The results show that our geometric
metrics are more effective than existing metrics (especially spatial-based metrics), en-
abling the extraction of clusters and representative curves with more insightful and rich
information about the flow behaviors.
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1. Introduction1

Visualizing integral curves or particle trajectories derived2

from the high-dimensional flow data are important for under-3

standing the physical behaviors of the flows, as they provide an4

intuitive geometry proxy to depict flow behaviors. Various in-5

tegral curve generation and visualization techniques have been6

proposed [1]. Among these techniques, integral curve cluster-7

ing aims to classify densely placed integral curves into a small8

number of clusters, from each of which a representative curve9

is selected to generate a simplified representation of the flow.10

11

Problem Description Designing an appropriate distance metric12

for the measurement of the similarity between integral curves13

is not trivial, as it may not only affect the quality of the clus-14

tering results but also determine the scalability of the cluster-15

ing technique. For instance, one common strategy applied by16

many distance (or similarity) metrics for the comparison of in-17

tegral curves is to decompose the individual integral curves into18

segments based on their geometric characteristics (e.g., curva-19

ture). Then, the similarity of two integral curves is computed20

based on the pairs of closest points on the two curves and their21

corresponding segments. This strategy requires an expensive22

neighborhood search to determine the closest pairs for the simi-23

larity computation, whose complexity is at least O(NM2) (M is24

the number of curves and N is the average number of points of25

each curve), indicating that it does not scale well to large-scale26

data (e.g., particle trajectory data that consists of hundreds of 27

thousands of curves). In addition, current metrics are sensitive 28

to the parameter selection and user-specified thresholds (e.g., 29

threshold for curve decomposition), making the clustering re- 30

sults unreliable. 31

32

Our Contributions To address the above challenge, we pro- 33

pose a number of new distance metrics that can measure the 34

similarity among integral curves or particle trajectories (from 35

particle-based data) without requiring the complicated decom- 36

position. Based on their characteristics, our new metrics can be 37

classified into either spatial-based, geometric-based or statistic- 38

based metrics. Since the similarity computation is performed 39

directly on the entire curves, the complexity of the similarity 40

computation is in general linear. To our best knowledge, we 41

are the first to introduce and design the direct and scalable met- 42

rics for particle trajectory clustering and feature extraction for 43

particle-based flow data. We compare our new metrics with the 44

state-of-the-art metric proposed in [2] on both streamline and 45

particle trajectory clustering and find that our geometric-based 46

metrics can select streamlines that represent meaningful fea- 47

tures (e.g. vortices), while the metrics in the previous work may 48

not. We also apply the information theoretical framework [3] to 49

assess the generated clustering results and show that our metrics 50

are as good as the best metric from [2] in streamline clustering, 51

while they significantly outperform the other metrics in cluster- 52

ing particle trajectories. Furthermore, we provide an informal 53
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analysis on the properties of our new metrics, which we believe1

can be considered as a guideline (Table 1 in Supplemental Ma-2

terial for the selection and design of suitable distance metrics3

for the needs of various applications.4

2. Related Work5

Measuring distance (or similarity) between curves is a fun-6

damental and critical task in various data visualization and ex-7

ploration tasks, including integral curve clustering [4] and re-8

trieval [5, 6, 7], DTI fiber bundling and exploration [8, 9, 10,9

11, 12], and geographical movement study [13, 14]. A large10

number of distance (or similarity) metrics have been proposed11

to support the above wide variety of tasks.12

13

Spatial-based proximity Among these many metrics, the14

spatial-based similarity metrics are widely used for the pur-15

poses of curve clustering and bundling. These metrics usually16

take into account both the point-wise Euclidean distance and17

the similarity of local geometric characteristics around pairs of18

closest points. For instance, Chen et al. [15] proposed a dis-19

tance metric based on Euclidean distance of streamline seg-20

ments, and Zhang et al. [10] defined it as distance between21

closest point pairs. Note that the above proximity can also be22

defined as either the average distance between these pairs of23

closest points, the smallest distance among these pairs of points24

[8], the thresholded average distance [11] or the weighted and25

normalized sum of minimum distance [12]. However, one lim-26

itation of these spatial-based metrics is that curves that exhibit27

similar geometric characteristics but spatially far away will not28

be considered similar. In addition, searching closest points for29

the similarity computation often result in high overhead in prac-30

tice if the number of curves for clustering is large.31

32

Spatial-independent proximity To overcome the above is-33

sue of the spatial-based metrics, non-spatial based (or spatial-34

independent) metrics have been proposed lately. Lee et al. [13]35

proposed a metric that linearly combines the perpendicular dis-36

tance, parallel distance and angle distance of the line segments37

on two curves. McLoughlin et al. [16] introduced the stream-38

line signatures accounting for the curvature, torsion and tortuos-39

ity in streamline similarity measurement. However, two stream-40

lines that are not similar may still have similar signatures. To41

address that, Lu et al. [5] proposed a distribution-based metric42

that uses dynamic time warping (DTW) ([17]) of 2D histograms43

mapped from streamline segments and applied it to streamline44

pattern search. Li et al. [18, 6] defined distance between stream-45

lines as distance between bag-of-feature vectors. Recently,46

Wang et al. [19, 7] presented a transformation invariant simi-47

larity calculation from the symmetric Chamfer distance among48

closest points, which is effective for segment-based streamline49

pattern search but sensitive to over-segmentation and suffering50

from the fixed segmentation of streamlines that may not be able51

to represent all patterns. The metrics mentioned above often52

have complexity of O(N2) for the similarity computation of a53

single curve as shown in [20], making them not scalable to54

large-scale simulation data.55

In contrast to the above spatial-based and spatial-independent 56

metrics, our metrics do not require 1) the search of nearest 57

points, 2) the decomposition of the input curves, and 3) parame- 58

ter tuning, making them more efficient to compute with a linear 59

time-complexity. 60

3. Metric Designing 61

In this section, we describe our strategy of designing and per- 62

forming comparison on a number of new distance metrics for 63

flow curve clustering and extraction. 64

Pre-processing A curve or trajectory in flow data is repre- 65

sented by a series of line segments connecting a sequence of 3D 66

vertices. In order to make streamlines equal-size for point-wise 67

distance metrics described in Section 3.1, we fill streamlines of 68

short lengths (at least 2 points) with their last position so that 69

they all have N points (N is the length of the longest stream- 70

line in the data) as [2] did. However, this pre-processing is not 71

needed for particle-based flow trajectories. 72

Based on aspects a metric is measuring, we classify met- 73

rics into three groups, i.e., spatial-based, geometric-based and 74

statistic-base metrics. Among these, one spatial-based metric, 75

i.e., the fraction distance metric, LFrac, is adapted from the ma- 76

chine learning community [21] to our flow visualization prob- 77

lem, while all the geometric-based and statistic-based metrics 78

are new metrics proposed in this work. Due to the limita- 79

tion of the space, we focus on the proposed geometric-based 80

and statistic-based metrics and leave the detailed discussions of 81

other metrics to the supplemental document. 82

3.1. Geometric-based Metrics 83

The intuition for our geometric-based metrics is that, 3D 84

curves are composed of line segments, hence, we could incor- 85

porate line segment similarity into overall similarity measure- 86

ments between two curves, similar to the strategy employed 87

by Chen et al. [15]. These metrics on geometric similarity 88

are also translation-free (spatially independent), length-free, 89

scaling-free, and satisfy triangle-inequality. Based on our de- 90

signing objective (i.e. capturing the most geometrically inter- 91

esting behavior of a 3D curve), our geometric-based metrics 92

would favor those curves with higher tortuosity and curva- 93

ture. 94

1. Geometric piece-wise intersection metric LGPW*: Moti- 95

vated by the fact that two equal-size curves are morpho- 96

logically similar if their line segments are parallel to each 97

other, we propose a novel geometric piece-wise intersec- 98

tion metric LGPW as below 99

LGPW (x, y) =
1

N − 1

N−1∑
i=1

arccos
p(xi) · p(yi)

‖ p(xi) ‖ · ‖ p(yi) ‖
(1)

where p(xi) and p(y j) are the corresponding line segments 100

of x and y. LGPW measures the average parallelism be- 101

tween two curves (see Figure 1 in Supplemental Materials 102

for an illustration), and it is translation-free, spatially in- 103

dependent and scaling-free. 104
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2. Signed-angle piece-wise intersection metric LS APW :1

Different from LGPW defined above, LS APW measures2

signed angles based on a pre-defined orientation as3

LS APW (x, y) =

∣∣∣∣∣∣∣ 1
N − 1

N−1∑
i=1

Φ(p(xi),p(yi))

∣∣∣∣∣∣∣ (2)

Φ(p(xi),p(yi)) =

arccos p(xi)·p(yi)
‖p(xi)‖·‖p(yi)‖

ni · n > 0
− arccos p(xi)·p(yi)

‖p(xi)‖·‖p(yi)‖
ni · n < 0

(3)

ni = p(xi) × p(yi) (4)

where n is a fixed normal direction which in our imple-4

mentation is defined as the normal direction of first pair5

of the line segments on the two curves. Based on this6

normal direction, we can distinguish 3D relative counter-7

clockwise and clockwise rotation. Intuitively, LS APW is8

able to group those trivial and unimportant curves if they9

are similar in shape despite of symmetric rotation (Figure10

3 of Supplemental Materials), and conserve highly tortu-11

ous curves of great interesting features. This metric is both12

translation-invariant and symmetry-invariant.13

3. Geometric piece-wise metric with deviation LGPWD*:14

Similar to LGPW defined in Eq. (1), LGPWD only adds15

the deviation of piece-wise angles as a rotation-free factor,16

hence, preserves more rotation-free property than LGPW .17

LGPWD(x, y) = LGPW (x, y) · σ (5)

where σ is the standard deviation of sequences of18

{Φ(p(xi),p(yi))}N−1
i=1 as Φ(·, ·) is defined in Formula (3).19

3.2. Statistic-based Metrics20

Since each curve can be regarded as a single-variate or multi-21

variate Gaussian distribution by the law of large numbers in22

[22], Bhattacharyya metric [23] can be potentially used to mea-23

sure distance between two curves. Statistic-based metrics de-24

rived from Bhattacharyya metric does not need pair-wise com-25

parison, hence the two curves need not be exactly the same size.26

Despite performance improved by matrix computation, statistic27

metrics will work best with large enough N, though. Detailed28

information on statistics-based metric designing is provided in29

the supplemental document.30

4. Metric Analysis31

Three important properties are usually examined for a math-32

ematical metrics, including the 1) homogeneity – measures33

whether a metric is scaling-free or not, 2) triangle-inequality,34

and 3) definiteness. Besides these three properties, there are35

also symmetry and non-negativeness property for a mathemat-36

ical metric, which is satisfied naturally when designing all our37

metrics, thus, we leave them out from our discussion. Under-38

standing what properties a metric possesses helps select an ap-39

propriate metric to reveal the desired characteristics in the 3D40

curves of interest. We provide a brief description on the prop-41

erties of the metrics designed in Section 3 in Table 1 of the42

supplemental document as a reference.43

5. Experiments and Evaluation 44

In this section, we report our experiments and evaluation of 45

the proposed metrics via a number of 3D flow datasets. In ad- 46

dition to the visual comparison and inspection for the metric 47

efficacy evaluation, we also resort to the information theoretical 48

framework [3] to quantitatively assess the metric performance 49

based on the generated clustering results. We compare our re- 50

sults with the-state-of-art principal component analysis (PCA) 51

based streamline clustering result by Ferstl et al. [2], which 52

is the first direct metric for streamline clustering to our best 53

knowledge. 54

Flow Dataset The flow datasets used in our experiment include 55

the flow behind a square cylinder and two position-based-fluid 56

(PBF) simulation datasets, i.e. dam-breaking and two-half- 57

merging scenarios. The flow behind cylinder data contains 9226 58

streamlines with 16 symmetric vortex structures. The two PBF 59

simulations [24] were performed with 128K and 300K par- 60

ticles, respectively. We extracted their trajectories within 250 61

frames. Figure 6 in Supplemental Materials illustrates two sim- 62

ulations and particle-based trajectories in the simulation data. 63

Clustering Technique Considering time and memory overhead 64

given the size of the datasets we are working on, we chose 65

K-means clustering to test our new metrics on the above flow 66

datasets. 67

Evaluation of Results We would visually compare results and
check whether important features (e.g., vortices) or overall rep-
resentative structures of the flow, are extracted. Besides , we
also applied the information entropy [3] to quantitatively mea-
sure the effectiveness of these metrics.

H(X) =
∑

xi∈X p(xi) log2 p(xi)
p(xi) =

C(xi)∑n
i=1 C(xi)

(6)

where X is a random variable with a sequence of possible out- 68

comes x,x ∈ {x1, x2, · · · , xn}, and C(xi) is the number of curves 69

in the ith cluster. 70

5.1. Results on Streamline Datasets 71

To visualize the data, we select the closest and the furthest 72

streamlines to the centroid of each cluster, respectively. The 73

reason of not using the centroid streamline–an average curve of 74

all streamlines in the same cluster, is that the centroid stream- 75

lines may self-intersect, which does not convey the correct char- 76

acteristics of streamlines in the steady flows. 77

78

Flow behind cylinder data 79

Figure 1 shows the identified representative streamlines from 80

the clustering results computed using different metrics for the 81

flow behind cylinder data. From these results, we see that our 82

new geometric metrics clearly outperform the other metrics, as 83

they successfully preserve the vortex structures based on vi- 84

sual inspection. Among the three geometric metrics we pro- 85

posed (i.e., LGPW (row 5), LS APW (row 6) and LGPWD (row 7)), 86

LS APW provides the best representation with streamlines clos- 87

est to the cluster centroids (middle column), because it pre- 88

serves more vortex structures. However, when inspecting the 89

representative streamlines furthest away from their centroids, 90
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Fig. 1. Metric tested on the flow behind cylinder with the K-means clustering. Several metrics cannot extract more than 10 clusters, so we leave them out.
From top to bottom rows, the results corresponding to LEuc, LPCA, LFrac, LDot , LGPW , LS APW , LGPWD and LBMT A, respectively. From left to right of each
row, grouping streamlines, closest streamlines to centroid, and farthest streamlines to centroid are shown, respectively. Streamlines are color coded based
on which clusters they belong to. From these results, we see that three geometric metrics, i.e., LGPW (row 5), LS APW (row 6) and LGPWD (row 7) (highlighted
by red title) are able to extract more vortex structures, while spatial metrics, LPCA (row 2) and LFrac (row 3) result in streamlines that depict the overall
structure other than vortices of flow domain.

we see that LGPW and LGPWD generate better visual represen-1

tation than LS APW . This may be in part due to the fact that the2

standard deviation in LGPWD as a multiplication increases the3

distance of those highly-tortuous streamlines (i.e. having large4

standard deviation) to their centroids. Therefore, those inter-5

esting streamlines may be identified as the furthest streamlines6

from the centroids.7

In the meantime, LPCA is better in hierarchically presenting8

the overall structures of flow domain, while it fails to identify9

streamlines with high curvature and tortuosity. Also, our three10

geometric-based metrics have close ranking to the LPCA in the11

entropy analysis.12

To conclude, our geometric metrics, i.e., LGPW , LS APW and13

LGPWD, are robust and effective to extract vortex-like features14

with high curvature and torturosity. Their entropies are very15

close to the clustering result as in [2].16

5.2. Results on Particle-based Trajectories17

The trajectories of particle-based simulations represent spa-18

tial positions of particles over time. Due to very large number19

of particles involved in simulations, directly visualizing these 20

trajectories cannot provide any interpretable information. To 21

address this, we apply the clustering technique on various dis- 22

tance metrics to study some common characteristics in the trend 23

of those particles (i.e., either spatially, geometrically or statisti- 24

cally). 25

Unlike our experiments on streamline clustering, we also ex- 26

tracted centroid trajectories in addition to the closest and fur- 27

thest curves because the centroid trajectories may provide the 28

general flow information for particles with similar trajectories 29

without worrying about the self-intersecting, which is a nature 30

characteristic for particle trajectories. 31

32

PBF Dam Breaking 33

The first particle-based dataset for our metric evaluation is 34

dam-breaking simulation [24]. 128K trajectories with 250 35

points for each trajectory are used. The clustering results 36

and their corresponding representative trajectories are partially 37

shown in Figure 3 (see full results in Figure 8 of Supplemen- 38

tal Materials). Besides trivial trajectories either too short but 39
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Fig. 2. Entropy values for metrics on the flow-behind-cylinder dataset(left), pbf dam-breaking experiment(middle) and pbf two-half-merging(right). High-
est metric entropies are highlighted as red. For flow-behind cylinder, LPCA is ranked the highest. For pbf dam-breaking, LGPWD and LGPW are ranked the
first and second, respectively. For pbf two-half-merging, LGPWD and LGPW are ranked top two.

tortuous or winding along the wall, we focus more on regions1

with trajectories stretching highest on the front and back left2

corners for this simulation data. From the representative tra-3

jectories that are closest to the centroids (second column), we4

see that LPCA, LFrac, LGPW , and LGPWD, LBMT A and LBMNLD5

are able to preserve these two important trajectories. For cen-6

troids, LPCA, LFrac and LGPW work better. However, we notice7

that the leftmost centroid trajectory exits the flow domain using8

LPCA, which is not physically plausible. Overall, we see that9

LGPW performs the best in extracting features while preserv-10

ing the overall structures of the flow of this simulation. From11

this experiment, we can conclude that our geometric-based met-12

rics can encode richer details than the other metrics and are13

able to preserve features of importance. Our entropy analysis14

(Figure 2) also supports our conclusion, in which two geomet-15

ric metrics, LGPW , and LGPWD (highlighted in red) outperform16

other metrics with the highest entropy values.17

We also provide analysis on another particle trajectories of18

the two-half-merging simulation in Supplemental Material, and19

both visual inspection and entropy value favor our geometric20

metrics.21

Remark: Although results on statistics-based metrics do not22

extract features or patterns as accurately as the geometric-based23

metrics, we believe the statistic-based metrics can be useful in24

the clustering of integral curves derived from uncertain flow,25

which we plan to explore further in the future.26

6. Conclusion27

In this work, we proposed a number of geometric-based and28

statistic-based metrics with linear time-complexity for 3D curve29

comparison combined with standard clustering techniques for30

various curve-based exploration tasks. We analyze the proper-31

ties of these metrics and evaluate their effectiveness by combin-32

ing them with the conventional K-means clustering to a number33

of curve-based datasets derived from various fluid simulations34

and with varying sizes. Our analysis and experiments show35

that our geometric-based metrics are able to identify curves36

that convey interesting flow features (e.g. vortical behaviors)37

in most cases. In particular, our geometric-based metrics can38

help identify representative trajectories that possess richer de-39

tails than the other metrics. We also perform the quantitative40

measurement of the clustering results based on the information 41

theoretical framework and discover that when dealing with the 42

streamline-based data, our geometric metrics have comparable 43

performance to those spatial-based metrics, while our geomet- 44

ric metrics outperform the others in the processing of the parti- 45

cle trajectory data. 46

Our new geometric metrics are intuitive and simple, and they 47

do not require complex pre-processing, hence, can be applied 48

to large-scale data processing 49

50

Limitations and future work 51

Our geometric metrics for curves are based on piece- 52

wise parallelism, and hence requires equal-size of curves. 53

Currently, we fill in the missing positions of those short 54

streamlines using their end positions to satisfy the equal- 55

size requirement. However, it’s difficult to accurately 56

predict and measure visually similar curves with ex- 57

tremely different sizes (e.g., the two curves in the inset 58

The statistic-based metrics 59

have the potential to address 60

this. However, their current 61

clustering results are not as 62

good as the geometric-based 63

metrics, which requires to 64

further investigation. 65

Clustering strategy is also a critical problem that needs to be 66

improved in the future. In particular, we would like to employ 67

the hierarchical clustering to provide a level-of-detail represen- 68

tation of the flow. However, its computational overhead is quite 69

high. Also, particle trajectories from the particle-based simula- 70

tions usually convey more physical information than purely ge- 71

ometric information, e.g., vorticity, shearing and acceleration, 72

which may be incorporated into the future design of metrics in 73

hope of producing a more physically meaningful representation 74

of the flow data. 75

Finally, in this work we directly applied information en- 76

tropy [3] to quantitatively evaluate the clustering results, which 77

may not conceptually intuitive enough. We would like to ex- 78

ploit a more accurate and reasonable standard for quantitative 79

comparisons of clustering in the future work. 80
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Fig. 3. Metric evaluation on the dam-breaking data with the K-means clustering.From top to bottom, results with LPCA and LGPW are shown, respectively.
Left to right of each row, grouping trajectory, trajectories closest, furthest away from centroid and centroid of each cluster are shown, respectively. In
all three representative trajectory identification, LGPW works the best with the latter having more details. The other metrics have more or less omitted
trajectories of importance.
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