Computers & Graphics (2017)

Contents lists available at ScienceDirect

Computers & Graphics

journal homepage: www.elsevier.com/locate/results-in-physics

Enhanced Vector Field Visualization via Lagrangian Accumulation Supplemental Material: Discussion and Additional Results

Lei Zhang¹, Duong Nguyen¹, David Thompson², Robert Laramee³, Guoning Chen^{1*} ¹University of Houston, ²Mississippi State University, ³Swansea University

ARTICLE INFO

ABSTRACT

Article history:

This document provides additional description to certain content of the paper and additional results of the \mathscr{A} field-based flow visualization.

Detailed Derivation of Relation between FTLE and Pathline Orientation Vector

Recall that in Section 5.2 of the paper, the Lagrangian accumulation is applied to collect vector-valued properties. Specifically, we use it to accumulate the flow vectors scaled by the integration step size along the pathlines. The resulting \mathscr{A} field is a vector field. If we consider a forward accumulation with 10 a time window $[t_0, t_0 + T]$, the resulted vector at each sampling 11 point is an orientation vector that points from the starting point 12 to the end point of the integral curve [1] based on vector calculus. We denote this vector as $V_{SE}(\mathbf{x}) = \varphi_{t_0}^{t_0+T}(\mathbf{x}) - \varphi_{t_0}^{t_0}(\mathbf{x})$ based 13 14 on the notion of flow map [2]. After getting this vector-valued 15 A field, we compute its discrete gradient using finite differ-16 ence. For simplicity, we consider a 2D regular grid. The dis-17 crete gradient of the vector-valued A field at a sampling point 18 $\mathbf{x} = (x_i, y_i)$ is given as follows 19

with

$$A = \frac{(x_{i+1,j}(t_0+T)-x_{i-1,j}(t_0+T))-(x_{i+1,j}(t_0)-x_{i-1,j}(t_0))}{x_{i+1,j}(t_0)-x_{i-1,j}(t_0)}$$

$$B = \frac{(x_{i,j+1}(t_0+T)-x_{i,j-1}(t_0+T))-(x_{i,j+1}(t_0)-x_{i,j-1}(t_0))}{y_{i,j+1}(t_0)-y_{i,j-1}(t_0)}$$

$$C = \frac{(y_{i+1,j}(t_0+T)-y_{i-1,j}(t_0+T))-(y_{i+1,j}(t_0)-y_{i-1,j}(t_0))}{x_{i+1,j}(t_0)-x_{i-1,j}(t_0)}$$

$$D = \frac{(y_{i,j+1}(t_0+T)-y_{i,j-1}(t_0+T))-(y_{i,j+1}(t_0)-y_{i,j_1}(t_0))}{y_{i,j+1}(t_0)-y_{i,j-1}(t_0)}$$

Then,

$$F = \frac{d\varphi_{l_0}^{i_0+t}(\mathbf{x})}{d\mathbf{x}} - \begin{bmatrix} \frac{(x_{i+1,j}(t_0) - x_{i-1,j}(t_0))}{x_{i+1,j}(t_0) - x_{i-1,j}(t_0)} & \frac{(x_{i,j+1}(t_0) - x_{i,j-1}(t_0))}{y_{i,j+1}(t_0) - y_{i,j-1}(t_0)} \\ \frac{(y_{i+1,j}(t_0) - y_{i-1,j}(t_0))}{x_{i+1,j}(t_0) - x_{i-1,j}(t_0)} & \frac{(y_{i,j+1}(t_0) - y_{i,j-1}(t_0))}{y_{i,j+1}(t_0) - y_{i,j-1}(t_0)} \end{bmatrix} (3)$$
$$= \frac{d\varphi_{l_0}^{i_0+t}(\mathbf{x})}{d\mathbf{x}} - I_2$$

 $\left[(x_{i+1,j}(t_0+T) - x_{i-1,j}(t_0+T)) \quad (x_{i,j+1}(t_0+T) - x_{i,j-1}(t_0+T)) \right]$

This is because

$$\frac{d\varphi_{t_{0}}^{o}(\mathbf{x})}{d\mathbf{x}} = \begin{bmatrix} \frac{\psi_{x_{5E}}(\mathbf{x}_{i+1,j}) - Vx_{SE}(\mathbf{x}_{i-1,j})}{x_{i+1,j}(t_{0}) - x_{i-1,j}(t_{0})} & \frac{\overline{y_{i,j+1}(t_{0}) - y_{i,j-1}(t_{0})}}{y_{i,j+1}(t_{0}) - y_{i,j-1}(t_{0})} \end{bmatrix} \\
= \frac{dV_{SE}(\mathbf{x})}{d\mathbf{x}} = \begin{bmatrix} \frac{\Psi_{x_{SE}}(\mathbf{x}_{i+1,j}) - Vx_{SE}(\mathbf{x}_{i-1,j})}{x_{i+1,j}(t_{0}) - x_{i-1,j}(t_{0})} & \frac{\Psi_{x_{SE}}(\mathbf{x}_{i,j+1}) - Vx_{SE}(\mathbf{x}_{i,j-1})}{y_{i,j+1}(t_{0}) - y_{i,j-1}(t_{0})} \end{bmatrix} \\
= \frac{dV_{SE}(\mathbf{x})}{d\mathbf{x}} = \begin{bmatrix} \frac{\Psi_{x_{SE}}(\mathbf{x}_{i+1,j}) - Vx_{SE}(\mathbf{x}_{i-1,j})}{y_{i,j+1}(t_{0}) - x_{i-1,j}(t_{0})} & \frac{\Psi_{x_{SE}}(\mathbf{x}_{i,j+1}) - Vx_{SE}(\mathbf{x}_{i,j-1})}{y_{i,j+1}(t_{0}) - y_{i,j-1}(t_{0})} \end{bmatrix} \\
= \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

 $t = t_0 + t_{(-)}$

2. Additional Results

Figure 1 provides some additional results on the effects of $_{25}$ computing \mathscr{A} fields with different accumulation window sizes. $_{26}$

F =

20

21

24

(2)

^{*}Corresponding author

e-mail: gchen16@uh.edu (Guoning Chen¹)

Their corresponding $|\nabla \mathscr{A}|$ fields are also shown to illustrate the patterns of the discontinuity in the respective \mathscr{A} fields.

Figure 2 provides additional result to demonstrate the effect of 3 the anisotropic smoothing during the \mathscr{A} field computation (see 4 Section 5 of the paper). This smoothing is performed in a simi-5 lar fashion to the enhanced-LIC [3]. That is, for any give sam-6 pling point, we compute a short integral curve. If it is a steady flow, we compute a short stream let in both forward and back-R ward flow direction. If it is an unsteady flow, we only consider 9 the forward direction. After getting this short integral curve, 10 we then interpolate the \mathscr{A} values at the individual integration 11 points, and average the accumulated value. This average value 12 is then used to replace the original \mathscr{A} value at the above sam-13 pling point. In the example of Figure 2, an \mathscr{A} field is computed 14 on a triangular mesh of the cross section of a diesel engine sim-15 ulation. The discontinuity in the resulting field has zig-zagged 16 configuration. After performing the anisotropic smoothing, the 17 resulting field has much smoother patterns (right). The A field 18 computed using a dense uniform sampling strategy is shown in 19 the right image of the top row of (b) in Figure 1. 20

Figure 3 compares the \mathscr{A} fields obtained by accumulating curl, 21 λ_2 , Q and winding angle, respectively, for a synthetic 2D flow. 22 The corresponding detected edges and their $|\nabla \mathscr{A}|$ fields are 23 24 shown in the second and third rows, respectively. From the results, we can see that λ_2 and Q based \mathscr{A} fields typically draw 25 our attention to the regions near the center of vortices, while the 26 curl and winding angle based \mathscr{A} fields reveal both the vortices 27 and the prominent separation structure near them. In addition, 28 the λ_2 and Q based \mathscr{A} fields possess a large amount of noise, 29 which is captured by the $|\nabla \mathscr{A}|$. This may be explained by the 30 numerical instability in the computation of the λ_2 and Q values. 31

Fig. 4: Comparison of the A fields of the double gyre flow computed based on the arc-length (a) and the velocity magnitude (b), respectively.

Figure 4 shows a comparison of the \mathscr{A} fields of the double gyre 32 flow computed based on the arc-length (a) and the velocity mag-33 nitude (b), respectively. From the result, we see that they have 34 similar behavior. This is not surprising, because the arc-length 35 of each segment of an integral curve is determined by the length 36 of the vector value at the starting point of this segment scaled by 37 the integration step size, i.e., scaled velocity magnitude. There-38 fore, they are different by a scale factor. 39

2.1. Flow Pass a Cylinder

Figure 5 shows the projected \mathscr{A} and $|\nabla \mathscr{A}|$ fields computed by 41 accumulating the change of the flow direction at time t = 0 with 42

Fig. 5: The analysis results of the flow past a cylinder simulation. (a) shows the forward tracing results (T = 3) with FTLE in the top row followed by the \mathscr{A} and $|\nabla \mathscr{A}|$ fields. (b) shows the backward tracing results (T = -3), and (c) the combination of the forward (red) and backward (blue) ridges of $|\nabla \mathscr{A}|$ fields.

Fig. 6: This figure shows the comparison of the A field computed using absolute curvature (top) with the vorticity iso-lines from[5] (bottom).

T = 3 (a. forward) and T = -3 (b. backward), respectively, for the flow behind a cylinder [4]. We compare our results with the forward and backward FTLE fields, and observe that the ridges 45 of the $|\nabla \mathscr{A}|$ fields match closely with the ridges of the FTLE fields, while the \mathscr{A} field encodes additional rotational information that clearly highlights the regions of particles whose trajectories exhibit strong positive (red) or negative (blue) rotations in the spatio-temporal domain.

43

44

46

47

48

49

50

In addition to accumulating signed winding angle along the 51 integral curves, we accumulate the absolute angle difference. 52 This enables us to address the possible cancellation of the ac-53 cumulation of signed rotation. However, the information about 54 the orientation of the rotation is lost. Figure 6 shows the result 55 of the pathline based \mathscr{A} field (top) computed using time win-56 dow T = 3 for the flow behind a cylinder. As expected, instead 57 of showing the regions with different rotation orientations, it 58 simply highlights the regions with strong rotation. We compare 59 our result with the vorticity iso-line extraction [5] (bottom), and 60 see the new \mathscr{A} field highlights the regions of the vortices simi-61 lar to the vorticity iso-lines. However, the difference is we use 62 pathlines instead of streamlines to compute the A field. 63

Fig. 7: The volume renderings of two \mathscr{A} (left column) fields and their corresponding $|\nabla \mathscr{A}|$ (right column) fields for the HCCI simulation. Both \mathscr{A} fields are computed by accumulating the signed angle change of the flow direction. (a) shows the volume renderings of an \mathscr{A} and $|\nabla \mathscr{A}|$ fields by stacking the individual 2D fields computed at their respective time steps. This streamline based result clearly highlights the translation and interaction of individual vortices over time. (b) shows the volume renderings of the \mathscr{A} and $|\nabla \mathscr{A}|$ fields based on pathlines.

2.2. HCCI Combustion Simulation

Figure 7(a) shows the volume renderings of the \mathscr{A} and $|\nabla \mathscr{A}|$ 2 fields computed based on streamlines and pathlines, respectively, for a combustion simulation. This dataset is taken from the simulation of homogeneous charge compression ignition (HCCI) engine combustion [6]. The domain has periodic boundary and is represented as a 640×640 regular grid. The 2D time-varying vector field consists of 299 time-steps with a time interval of 10⁻⁵ seconds. For the streamline based result (Figure 7(b)), we compute the 2D \mathscr{A} fields at the individual time 10 steps, respectively, and then stack these 2D fields to constitute 11 a 3D volumetric A field. From this result, the translation of the 12 vortices and their interaction (e.g., merging and splitting) can be 13 easily discerned (see the accompanying video). For the pathline 14 based result shown in Figure 7(b), we compute the 3D \mathscr{A} field 15 using the framework described in the paper. The *A* field high-16 lights the regions in the flow where the trajectories (i.e., path-17 lines) of the particles exhibit strong rotation, while the $|\nabla \mathscr{A}|$ 18 field indicates the boundaries of these different regions. In both 19 streamline-based and pathline-based A field computations, the 20 change of the flow direction is used for the accumulation. 21

22 References

- [1] Shi, K, Theisel, H, Hauser, H, Weinkauf, T, Matkovic, K, Hege, HC,
 et al. Path line attributes an information visualization approach to analyzing the dynamic behavior of 3D time-dependent flow fields. In: Hege,
 HC, Polthier, K, Scheuermann, G, editors. Topology-Based Methods
 in Visualization II. Mathematics and Visualization; Grimma, Germany:
 Springer. ISBN 978-3-540-88605-1; 2009, p. 75–88. doi:10.1007/
 978-3-540-88606-8_6.
- [2] Haller, G. Lagrangian coherent structures and the rate of strain in twodimensional turbulence. Phys Fluids A 2001;13:3365–3385.
- [3] Okada, A, Kao, DL. Enhanced line integral convolution with flow feature
 detection. In: Electronic Imaging'97. International Society for Optics and
 Photonics; 1997, p. 206–217.

- [4] Weinkauf, T, Theisel, H. Streak lines as tangent curves of a derived vector field. IEEE Transactions on Visualization and Computer Graphics (Proceedings Visualization 2010) 2010;16(6):1225–1234.
- [5] Kasten, J, Reininghaus, J, Hotz, I, Hege, HC. Two-dimensional timedependent vortex regions based on the acceleration magnitude. Transactions on Visualization and Computer Graphics (Vis'11) 2011;17(12):2080– 2087.
- [6] Hawkes, E, Sankaran, R, Pébay, P, Chen, J. Direct numerical simulation of ignition front propagation in a constant volume with temperature inhomogeneities: II. Parametric study. Combustion and Flame 2006;145:145–445
 159.

35

36

37

38

39

40

41

Fig. 1: (a) \mathscr{A} (top) and $|\nabla \mathscr{A}|$ (bottom) fields of a synthetic flow with different window sizes for accumulation: (left) 10%, (middle) 40%, (right) 2,000% of the size of the bounding box of the data domain are used, respectively. (b) \mathscr{A} (top) and $|\nabla \mathscr{A}|$ (bottom) fields of a 2D cross section of a diesel engine simulation with different window sizes for accumulation: (left) 10%, (right) 2,000% of the size of the bounding box of the data domain are used, respectively. The inset shows the topology of this 2D flow. Both \mathscr{A} fields are obtained by accumulating the angle change of the flow direction.

Fig. 2: (Left) shows an \mathscr{A} field computed on a triangle mesh before smoothing. (right) shows the smoothing result.

Fig. 3: The comparison of the \mathscr{A} fields of a synthetic flow data based on (a) λ_2 , (b) Q, (c) curl, and (d) winding angle, respectively. The second row shows the detected edges using the Canny edge detector, and the third row shows the corresponding $|\nabla \mathscr{A}|$ fields.