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In this supplemental document, we provide additional results for our
correlation and dependency measurement and visualization of pairwise
attributes in unsteady flow.

1 CORRELATION GLYPHS

To show the local properties of the correlation field at a given position
p, we employ a disk glyph. The disk is divided into two hemi-circles.
Each hemi-circle visualizes the values of the specific attribute measured
at the points within the spatio-temporal kernel K (centered at p with
spatial size r and temporal length h). Specifically, we represent the
attribute values of the sampled points in K as a 1D sequence given
certain ordering of these points. As long as the ordering is consistent
for the two hemi-circle, their respective trends can provide an intuitive
description of the ST LCC correlation measured at p. A heat map
color coding is used for the glyph with calibrated ranges to make their
gradient discernible.

These correlation glyphs can either be placed at fixed locations
in space for the user to examine the temporal evolution of attributes
involved in an Eulerian sense (Figure 1a), or be associated with flow
particles and be advected over time to inspect their Lagrangian behavior
(Figure 1b). Specifically, in Figure 1b, two pathlines are seeded at the
center of a vortex (upper left pathline) and at the outer layer of a vortex
(lower right), respectively. The two pathlines are colored based on
the ST LCC values for the gradient-based similarity of vorticity (A1)
and Jacobian determinant (A6) over time as described earlier. The
pathline seeded at the vortex center region exhibits relatively constant
color mapping. At the same time, the correlation glyphs sampled
along this pathline show similar trends of the two attributes over time,
verifying the stable correlation. Similarly, for the pathline seeded at
the outer layer of a vortex, the correlation glyphs intuitively illustrate
the different trends of the two attributes, reflecting the varying colors
along this pathline. Similarly, a glyph can be designed to display the
distribution of the pairwise attributes to explain the MI results.

Figure 2 provides the aforementioned glyph and pathline visual-
ization on the HCCI data. From this visualization, we see that those
pathlines seeded from the boundary layer of vortices are in a helix
shape (Figure 2b) and changing the color over time, while those started
at the center area of vortices are almost straight and with little change
of color over time. Note that the color pattern of each glyph in (a)
represents the trend of the corresponding attributes along the pathline
where the glyph is placed.
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Fig. 1: Correlation glyphs on sampled spatial locations at the first time
step (a) and along the sampled pathlines over time (b) of the 2D flow
behind a cylinder simulation. Each glyph visualizes the attribute values
within a kernel (r=3 and h=250) centered at the glyph location. A heat
map color scheme is used to convey the attribute information.
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Fig. 2: Glyph and pathline visualization for ST LCC of acceleration
and Q for HCCI.

2 REMARKS ON CONDITIONAL ENTROPY

Consider two attributes A1 and A2. The entropy H(A1) within a kernel
K measures the variation of the values that A1 has within K (i.e., the
more different values, the larger the H(A1) is). On the other hand, the
entropy H(A2 | A1) measures the amount of uncertainty of attribute A2
given the known probability of the values of attribute A1. That is, if
the values (and their probability distribution) of A2 can be estimated
from A1, H(A2 | A1) will be low. This intuition may be applied to study
the casual relation between pairwise attributes. Note that H(A2 | A1) is
usually not equal to H(A1 | A2). Thus, if H(A2 | A1)< H(A1 | A2), one
may consider A1 as an indicator of A2, but not the other way around. For
example, consider two attributes λ2 and Norm in a flow. We compute
its H(Norm|λ2) (Figure 3a) and H(λ2|Norm) (Figure 3b), respectively.
We see that in most regions, Norm is dependent on λ2, while λ2 is
less dependent on Norm, since H(Norm|λ2) < H(λ2|Norm). This is
expected, as regions with strong vortical flow result in larger norm of
the Jacobian, while the inverse is not always true.

3 ADDITIONAL 2D RESULTS

In the following, we provide additional results on a number of 2D
unsteady flow.



(a) H(A7|A3) (b) H(A3|A7) (c) Comparison.

Fig. 3: The comparison of conditional entropy for the norm of the
Jacobian (A7) vs. λ2 (A3). Blue-white-red color coding is applied to
(a) and (b), while for (c), light green indicates H(A7|A3)< H(A3|A7)
while blue means H(A3|A7)< H(A7|A3).

2D flow past cylinder Figure 4 shows the results using various MI
and correlation measurements for the norm and λ2 on the 2D flow past
cylinder data. From these results, we see that H(Norm|λ2) highlights
the boundary of vortices which shows that norm is a good attribute for
highlighting the boundary layer of vortices, while H(λ2|Norm) focused
on the whole shape of vortex which indicates that λ2 better highlights
the center areas of vortices. Figure4c shows the ST MI for norm and λ2.
From the result, we see that these two attributes are highly dependent
on each other at the center areas of vortices, which matches with two
previous results for conditional probability and is expected based on
the MI formula. Figure 4d shows ST LCC between these two attributes.
As we can see, it only highlights region outside of the vortices and
cannot differentiate the boundary of the vortices anymore. This is a
good example of non-linear relation between two attributes, which can
only be revealed by MI.

(a) H(Norm|λ2)

(b) H(λ2|Norm)

(c) Lagrangian ST MI

(d) ST LCC

(e) Comparison between H(Norm|λ2) and H(λ2|Norm)

Fig. 4: Different MI and correlation measurements between norm (A7)
and λ2. Blue-white-red color coding is used for (a)-(d), while for (e),
green indicates that H(Norm|λ2)< H(λ2|Norm).

Figure 5 visualizes the ranking-based segmentation on the 2D flow
past cylinder. More specifically, Figure 5a shows the result of the rank-
ing based on all possible pairs of attributes. Different colors correspond
to different top-ranked pairs of attributes. From this segmentation result,
we see that the norm of the Jacobian, Norm, and shearing are dominant
in most of the non-vortex regions which is shown by yellow color. As
we already know that the dominant characteristic of this flow is the
karman vortex street, we concentrate on the three relevant attributes,

acceleration, Q and local shear rate for the ranking. Figure 5b shows
this ranking-based segmentation. From this result, we can see that
the acceleration and Q are highly correlated at the boundary layer of
vortices (colored by blue), while the shearing and accelerating (colored
in dark green) are dominating in the center of the vortex. The rest of
the domain is dominated by shearing and Q, as both attributes have
small values there. This ranking strategy provides an overview of the
dominant flow dynamics (e.g., rotational versus stretching or shearing)
in different flow regions.

(a) Ranking-based segmentation of all pairs of attributes.

(b) Ranking-based segmentation between acceleration and Q and
shearing.

Fig. 5: Ranking of ST LCC value of attributes for cylinder flow. As we
can see the pair of acceleration and Q is ranked top in vortex boundary,
while the pair of acceleration and shearing is ranked top at the center
of vortexes. Kernel size r = 3 and h = 250 is used. Different colors
indicate different pairs of attributes whose ranking is the highest at
specific locations.

HCCI data Figure 6 shows the ranking-based segmentation for the
HCCI data. In particular, Figure 8a shows the ranking results between
all pairs of attributes. Similar to the results of the 2D cylinder flow,
Norm and shearing (brown color) are dominant in non-vortex regions.
Figure 8c compares the Lagrangian ST LCC for three pairs of attributes,
i.e., norm and shearing, acceleration and Q, vorticity and Q, and Figure
6c compares the results between the first two pairs of attributes in the
previous image. It shows that the pair of acceleration and Q always
highlights the boundary of vortices, when compared to Norm and
shearing.

(a) (b) (c)

Fig. 6: The illustration of the ranking between (a) all pairs (21 pairs) of
attributes, (b) A2 and A4, A5 and A1, A3 and A5, (c) A2 and A4 and A5
and A7 with kernel size equals to 3×100.

2D axisymmetric vortex ring Figure 7 compares the ST LCC and
ST MI results using the acceleration and Q on the vortex ring data
considering the kernel size of r=3, h = 40, and τ = 0.05. From the
result, we see that ST LCC highlights the center of the primary vortex
before hitting the wall, while the ST MI field puts emphasis on the
secondary vortex arises on the right after the vortex ring hitting the
wall.

Figure 8 shows the pathline visualization of the axisymmetric vortex
ring impact simulation. The pathlines are seeded at different regions
where the primary vortex swept through before hitting the wall and
creating the secondary vortex. Those pathlines are colored based on
the ST LCC of the vorticity and Q measured along with the advected
particles. The two plots in (b) and (c) show the two attribute behaviors
within a kernel (or a local neighborhood) located at vortex region. From
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Fig. 7: ST LCC and ST MI results for acceleration and Q of the 2D
axisymmetric vortex ring data. The spatial kernel size is 3 and the
temporal one is 40.

this visualization, we can easily identify pathlines seeded in the outer
layer of the vortex, whose associated correlations of the two attributes
exhibit large fluctuation (i.e., unstable). Those pathlines seeded near
the vortex center have lower fluctuation. Also, due to the movement
of vortex, many parts of the pathlines doesn’t have value (i.e., white
color). The reason is that the size of the vortex is changing during its
movement and its impact with the wall, causing some pathlines seeded
in the outer layer of the vortex to exit the vortex region. As the attribute
values outside the vortex is negligible, our filtering mechanism used to
remove areas with small attribute values will assign no value for the
portion of those pathlines that is outside of the vortex region.

(a)

(b) (c)

Fig. 8: Sampled pathlines color coded by ST LCC of vorticity and Q
for the 2D axisymmetric vortex ring simulation. The two plots shown
in (b) and (c) illustrate the temporal behaviors of the two attributes
within two sampled kernels located at two pathlines, respectively.

Ocean current Figure 9 provides the ST LCC result between the tem-
perature and vorticity for the large-scale ocean current simulation.
The spatial kernel size is r = 5 and the temporal one is h = 50 (with

τ = 0.004). As we see, the relation between temperature field and vor-
ticity is very complex. There are other parameters and attributes which
are playing a role, such as, salinity concentration and Earth’s rotation.
What is visualized in this result are the main circulations/gyres, i.e.
the Gulf stream, the equatorial circulation, the Antarctic circulation,
etc.. It is hard to say if there is a direct relationship between these two
attributes since the relationship is quite complex.

4 ADDITIONAL 3D RESULTS

In the following, we provide more results using our framework on a
number of 3D data.

3D Isabel simulation Figure 10 provides the spatial LCC (S LCC) of
the attributes acceleration and shearing on the 3D Isabel simulation.
In this example, we compare the effect with or without normalizing
the attribute values during the computation of LCC. The normalization
helps to constrain the value ranges of the two attributes into [−1,1].
From this comparison, we see that normalization helps to reduce the
noise especially when some pathlines cover a large area of the domain in
reality, among which only a small portion corresponds to the hurricane
and has meaningful values. See a similiar example in Figure 8. Also,
the correlation patterns between acceleration and Q vs. acceleration and
shearing show opposite behaviors in vortex regions (i.e., the patterns of
these two correlation fields complement each other to some extend).

3D vortex tube simulations
Figure 11 shows the pressure, vorticity and the spatial correlation

between them for the vortex tube simulation with elliptical instability.
The results show that the pressure and vorticity are negatively correlated
almost everywhere in the tube region. This is because the minimum of
pressure and the maximum of vorticity are in the center of the vortex
(as shown in Figure 11a and b).

Figure 12 shows the effect of applying thresholding to the correlation
computation on the tube dataset. Since we use standard deviation
in denominator in our metrics, for those datasets such as tube data,
hurricane Isabel or vortex ring where vortices only exist in a small
region of the flow domain and move through the whole domain, the co-
variance values are very low for those regions without vortical flow (i.e.,
with only laminar flow). That causes the artifacts in our results shown
in Figure 12c. Setting a threshold to remove those areas will yield a
much cleaner and more meaningful visualization for those datasets (see
Figure 12d, compared to c).

In addition to thresholding and filtering the empty region, we also
consider the effect of normalization in our metrics. Normalization is
essential for MI computation, especially when we use uniform bins.
For LCC computation, normalization is not as useful as MI, but it could
still help suppress some artifacts as mentioned above in places with
small attribute values, leading to a cleaner visualization with the effect
similar to the above thresholding. Normalization also helps to filter
those regions where the attribute values appear to be constant (i.e., the
corresponding 1D plot of the attribute is flat). This flat (or constant)
configuration will result in very small (almost zero) standard deviation,
leading to abnormally large correlation values, thus, artifacts.

Figure 13 shows the result of S LCC and ST MI between acceler-
ation and Q using normalization. Figure 13a and b visualize the two
attributes. We can see that acceleration is almost zero in the center
of each vortex tube, while Q has the highest value there. The S LCC
results highlight the opposite relation of these two attributes in the
center of each vortex and a positive one at the outer layer of vortices.
Figure13d shows the MI results, which highlights the general path that
vortex center swept through. Also, we can see the effect of normal-
ization in both S LCC and ST MI results, and how the normalization
helps to highlight the main region of vortical flow.

Figure 14 shows a comparison between the Lagrangian and Eulerian
ST MI for acceleration and vorticity. The total number of time frames
for this dataset is 25, and we consider the temporal kernel, h = 20. In
the Lagrangian ST MI, the dye and vorticity are highly dependent on
each other at the vortex cores, because there is no additional vorticity
generated anywhere, and the dye tracks the vorticity well. The Eulerian
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Fig. 9: The ST LCC linear correlation (c) of the temperature (a) and vorticity (b) of the large ocean simulation data with a spatio-temporal kernel
size 5×50. The blue-white-red color scheme is used to highlight the different characteristics of attribute correlation and dependency.

result is similar to the Lagrangian one, except that it shows that the two
vortices move in the horizontal direction due to self-induction, and then
reconnect on the left side of the image.

(a) (b)

(c) (d)

Fig. 10: The effect of attribute normalization on spatial LCC for the
hurricane Isabel simulation. (a) and (b) are generated without normal-
ization. (c) and (d) are obtained using normalization. The left results
are spatial LCC for acceleration and Q, while the right results are spatial
LCC between acceleration and shearing.
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Fig. 11: The Spatial correlation (c) for pressure (a) and vorticity (b) for
the Tube data. The spatial kernel size is 3.

(a) (b)
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Fig. 12: The effect of thresholding in spatial LCC (c) of divergence(a)
and shearing(b) captured at the first frame of the elliptic tube simulation.
The divergence values are really small, which caused some artifacts
in the LCC computation. In order to remove those artifacts, we set a
threshold for the co-variance of each attribute(d). The threshold value
we used is e-12.

(a) (b)
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Fig. 13: Spatial LCC (S LCC) (c) and mutual information ST MI (d)
between acceleration (a) and Q (b) at the first frame of the elliptic tube
data. The S LCC result (c) shows that these two attributes are negatively
correlated in the center and positively correlated in the boundary of
each vortex tube. The ST MI result (d) highlights the path that the
center of each tube is sweeping through. The temporal kernel size for
ST MI is h = 20 and τ = 0.1. The spatial kernel size is 3 for both
results.

(a) (b)

Fig. 14: Comparing Eulerian (a) and Lagrangian (b) ST MI for dye and
vorticity of the elliptic tube simulation.
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