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Figure 1: The interface of EasyXplorer with the cubic symmetry field as an example. (a) The 3D view shows the classified result.
(b) The 2D view visualizes the projections of all data points and the classification corresponding to (a). The statistics of multiple
variates of each region are encoded with a set of glyphs. A color-filled 2D Voronoi graph is used to augment the navigation
and manipulation of the clusters. (c) The flow chart for recording the steps of exploration. (d) The parallel coordinates view for
comparing among different regions in the same category. (e) The controlling widgets for adjusting the visualization parameters.

Abstract
Exploring multivariate spatial data attracts much attention in the visualization community. The main challenge
lies in that automatic analysis techniques is insufficient in discovering complicated patterns with the perspective
of human beings, while visualization techniques are incapable of accurately identifying the features of interest.
This paper addresses this contradiction by enhancing automatic analysis techniques with human intelligence in
an iterative visual exploration process. The integrated system, called EasyXplorer, provides a suite of intuitive
clustering, dimension reduction, visual encoding and filtering widgets within 2D and 3D views, allowing an inex-
perienced user to visually explore and reason undiscovered features with several simple interactions. Case studies
show the quality and scalability of our approach in quite challenging examples.

Categories and Subject Descriptors (according to ACM CCS): I.3.8 [Computer Graphics]: Applications—
Multivariate 3D Data; Visual Analysis

† Corresponding Author:chenwei@cad.zju.edu.cn

c⃝ 2015 The Author(s)
Computer Graphics Forum c⃝ 2015 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.



F. Wu & G. Chen & J. Huang & Y. Tao & W. Chen / EasyXplorer: A Flexible Visual Exploration Approach for Multivariate Spatial Data

1. Introduction

Multivariate spatial data refers to the data that is defined in
3D space and contains multiple independent or dependen-
t variables at each data point. Analyzing multivariate spa-
tial data is of great importance in many science and engi-
neering applications like medical imaging, climate research
and Computational Fluid Dynamics. Yet, spatial classifica-
tion and feature identification of multivariate spatial data re-
mains an open problem in visualization community, mainly
due to the unknown feature patterns and the lack of prior
knowledge about the data distribution. The difficulty is ag-
gravated by the fact that there are multiple variables whose
relations are subtle, latent and complicated.

Conventional visualization techniques for 3D scalar field-
s can show the structures formed by the scalar values of
the field. However, they can only display one variable at a
time for multivariate spatial data. 3D vector fields can be
regarded as special multivariate spatial data that represents
the velocity and geometric information. Approaches for vi-
sualizing them either generate geometry structures or glyph-
s [PVH∗03] to characterize features of interest, or employ
dense texture to depict the patterns [LHD∗04]. These tech-
niques have proven to be very effective for depicting the ap-
pearance, but are hardly capable of handling general multi-
variate 3D data, e.g., symmetric tensor field data [KASH13].

Much attention has been paid to the visualization of mul-
tivariate non-spatial databy abstracting the physical impli-
cations of data attributes. Typical solutions include dimen-
sion reduction [KSC∗10], iconography, density-based dis-
play [ZBDS12], and scatterplot matrix.Recently, there is a
trend to integrate these approaches into the exploration of
the spatial data. Most of them seek to address the problem
of multi-dimensional transfer function design for visualiz-
ing 3D scalar fields [WZK12]. By combining dimension re-
duction and parallel coordinates techniques, the dimension
relations in multivariate spatial data can be progressively
disclosed [GXY12]. However, existing solutions largely re-
ly on the user to explore each dimension and investigate
their relations. For a novice user, the exploration process can
be counter-intuitive and laborious, and may require a long
learning process.

The gap between the flexibility of multivariate data visu-
alization and the fidelity requirement of spatial data explo-
ration makes the visual classification and feature identifica-
tion of multivariate spatial data quite troublesome. We have
identified three reasons. First, the feature search space is too
large that it costs the user much time on understanding the
underlying features and their spatial relationships. Second,
modulating the parameters of multi-dimensional visualiza-
tion and classification widgets to maximize the likelihood of
feature separation is a non-trivial task. Meanwhile, the map-
ping from multivariate spatial data to visual components is
much more difficult than for 3D scalar fields. Third, regions
of interest (ROIs) in multivariate spatial data are distributed

irregularly in the spatial domain. Distinguishing them from
other data parts requires a sequence of careful yet laborious
operations.

The main contribution of this paper is the systematic de-
scription of integrating different visualization and analysis
techniques and its application to the exploration of multi-
variate spatial data. We enhance conventional multivariate
spatial data visualization schemes by integrating a suite of
clustering, dimension reduction, interaction, filtering and vi-
sual encoding techniques within a 2D/3D dual visual inter-
face. By decomposing the analysis process into a clustering-
projection-classification iteration, the user is empowered
with a scalable explorer for the inspection of correlations
among different variables in the higher dimensional space
in a coarse-to-fine fashion. The integrated system, EasyX-
plorer, provides an intuitive visual exploration and a reason-
ing tool that assists the user in identifying, locating, distin-
guishing, categorizing, comparing, associating, or correlat-
ing the underlying data. The case studies on several chal-
lenging datasets demonstrate that our approach compares fa-
vorably with conventional methods in both the scalability
and the efficiency.

2. Related Work

2.1. Visual Exploration of Multivariate Spatial Data

Existing multivariate spatial visualization approaches gen-
erally employ the techniques developed for non-spatial da-
ta [KH13]. Multiple linked views, dimension reduction
and parallel coordinates are among the most popular tech-
niques. The first one visualizes the dataset from multi-
ple aspects within a connected visual interface [GRW∗00]
[Dol07]. Dimension reduction is a standard scheme for high-
dimensional data analysis by projecting a high-dimensional
point set into a low-dimensional space. Representative
techniques include the local linear embedding [ZK10],
multi-dimensional scaling [GXY12] and other method-
s [JBS08]. Parallel coordinates technique also attracts much
attention because it allows for showing and manipulat-
ing the individual variables or dimensions at the same
time [TPM05] [KERC09] [ZTM∗13]. Besides the specific
techniques, we also inspired by the idea that combining the
processing power of the computer with the capabilities of the
human user [FWG09].

2.2. Visualization of Multivariate Spatial Data

In general, glyph and texture are fundamental means for
encoding important information in multivariate data visu-
alization. The glyph representation is widely used in vec-
tor and tensor field visualization [RP08],and general mul-
tivariate spatial datasets.Typically, texture is used togeth-
er with the color [UIM∗03] for depicting multivariate
information.There are a large body of techniques for vi-
sualizing 3D vector and tensor fields. The cross-frame
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fields used in case study are certain rotational symmetry
fields. A 2D cross-frame field can be visualized with the
line integral convolution (LIC) technique or other well-
designed second-order tensor field visualization approach-
es [PZ11] [HTWB11] [HPC∗13].To our best knowledge,
until now there is not an effective method to visualize a
3D cross-frame field due to the inherent ambiguities of the
cross-frame field.

2.3. Visual Classification of Multivariate Spatial Data

The clustering of spatial data has received much attention
in the past decade. A common way is to convert multi-
variate spatial data into a statistical space, or compute a
set of statistical variables, and explore and analyze the un-
derlying data in the statistical space [HPB∗10]. In vol-
ume visualization, this problem is commonly known as vol-
ume classification. The representative scheme is the multi-
dimensional transfer function design which enables the us-
er to manipulate a multi-dimensional histogram of derived
attributes [RBS05] [LYL∗06], a dimension reduction repre-
sentation [KSC∗10], or an attribute space with an informa-
tion metric [MJW∗13] to explore the 3D regions. Interactive
feature extraction is the other way to classify the target from
the time-varying flow simulations data [MM09] and vector
field [DAN∗10]. etc. Wang et al. [WZK12] introduce a mod-
ified dendrogram to represent the feature space clusters. This
cluster-and-analyze scheme is also adopted and augmented
in EasyXplorer by providing a comprehensive and flexible
visual interface. Further, the difference between these meth-
ods and our approach is the iterative analysis process which
reuses the cluster-and-analyze scheme time after time to sat-
isfy the requirement of exploration. The detail will be illus-
trated in the next section.

3. Our approach

Let V = {vn,n = 1,2, ...,N} be a multivariate spatial dataset
with N data points, and P = {pn ∈ R3,n = 1,2, ...,N} be its
associated physical positions. An ROI is typically continu-
ous in the physical space, and the distribution of its variates
is concentrated in a region within the attribute space. A s-
traightforward way is to define a distance metric concerning
the variates of data points, and classify the entire dataset into
multiple regions by means of a 3D clustering process. How-
ever, we conclude four problems based on this scheme:

P1 ROI evaluation There is no sufficient and objective
standard to justify whether ROIs are accurately comput-
ed.
P2 ROI refinement The ROIs derived by an automatic
algorithm also contain redundancy or deficiency and need
to be refined. However, direct manipulation of the ROIs
in spatial space is troublesome.
P3 Parameter adaptation A special set of parameters
may create a pleasing result for a dataset. Nonetheless, it

is intractable to create desired results for various datasets
with a uniform set of parameters.
P4 Generality Besides some common data field, for
some datasets (e.g. 3D cross-frame fields), it is still trou-
blesome to explore the clustering results with convention-
al 3D visualization techniques.

In general, EasyXplorer addresses these challenges by in-
tegrating various techniques into an iterative analysis loop.
In this loop, the unconcerned parts of the underlying dataset
are iteratively culled by means of parameter modulation un-
til extracting the ROIs. In each iteration, a spatial clustering
operation is firstly performed to classify the entire dataset
into multiple regions as the candidates of ROIs, which is
equivalent to computing the optimal partition C = {Ci, i =
1,2, ..,M,M ≪ N}, of which Ci contains Ni data points in
V , and has a distinctive variate distribution from others in C.
Then the user refines and analyzes these regions by incorpo-
rating the user expertise and experience in an intuitive visual
interface. The user can decide which region could be aban-
doned while the user-concerned regions will be selected as
the input for the next iteration.

In particular, the solutions for the corresponding problems
mentioned above are:

S1 and S2 EasyXplorer addresses P1 and P2 with a 3D-
2D correlation interface. The data points are depicted in
spatial space(3D) and attribute space(2D), respectively.
The 2D/3D dual visual interface with the embedded vi-
sual encoding scheme will help the user evaluate the tar-
geted data points by multi-perspective. In the terms of re-
finement, because the operation on 2D is easier than 3D,
the 2D view may provide a flexible interface to refine the
targeted data points. Sections 3.2 to 3.5 describe how to
evaluate and refine by visual design and interaction.
S3 Some automatic clustering methods introduce sever-
al parameters to control the coarseness of the clustering
[NN04].Instead of setting parameters blindly, the analy-
sis iterative loop enables the user to make a coarse-to-fine
exploration. The details are presented in section 3.5.2.
S4 To explore different types of data, EasyXplorer firstly
pre-processes the data and converts them into a multiple-
scalar dataset.

Figure 2 demonstrates the system pipeline. Below we dis-
cuss each step in detail.

3.1. Data Preprocessing

The data preprocessing is the initial step of the exploration.
It varies for different types of datasets. In general, multiple
variables of each data point can be regarded as the local fea-
ture description of the underlying dataset. For vector fields,
tensor fields and some special fields, a specific local feature
description is needed to characterize the local distribution-
s of multiple variables and to remove the relevances among
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Figure 2: The pipeline of EasyXplorer.

variables. We will introduce the descriptions employed in
3D cross-frame fields as an example.

Computing the local feature description of a multivari-
ate dataset yields another multivariate spatial field, in which
each data point has multiple scalar attributes. The space s-
panned by these scalar attributes is denoted as the attribute
space. For the sake of clarity, we resample the data to a reg-
ular grid and assume that each data point of the underlying
multivariate dataset has a list of scalar attributes. Extending
our approach to other cases is trivial by regarding each com-
ponent of a vector or a tensor as a scalar.

3.2. Spatial Clustering

Here we employ the statistical region merging (SRM) algo-
rithm [NN04] which iteratively merges regions by consid-
ering the proximity of the statistical information of the local
feature descriptions. The coarseness of the clustering is mon-
itored by a parameter Q which determines the granularity of
the clustered regions. A large value of Q generates a fine
region clustering result, and vice versa. In each iteration of
the exploration process, Q is dynamically modulated under
the steering of the analyst. In section 3.5.2 we will introduce
how to adaptively set Q. We denote the clustered regions in
spatial space as C∗ = {C∗

i , i = 1,2, ..,M∗}.

3.3. 2D Projection

According to C∗, EasyXplorer performs a low-dimensional
(2D) embedding of all data points with respect to their prox-
imities in the attribute space. In EasyXplorer, the 2D pro-
jection method has two functions: 1) Providing an attribute
space view for millions or more data points; 2) Reflecting
the proximity among C∗

i . Due to the large capacity of V , it
would be intractable to use a conventional dimension reduc-
tion method (e.g., multidimensional scaling). Local affine
multidimensional projection (LAMP) technique [JCC∗11] is
a decent technique that is capable of handling large-scale da-
ta and meets the first requirement. It projects a set of selected
control points, and employs an affine transform to embed all
data points based on the 2D positions of the control points.

To meet the second requirement, the control points are
determined according to the clusters C∗. Let a sequence of
control points be CP = {cp1,cp2, ...,cpM∗} based on C∗:

cpi = {vi,wpi}, i = 1,2, ...,M∗ (1)

where M∗ is the size of the C∗, w is an adjustable weight-
ing parameter. pi is the centroid of the physical positions
of all data points in C∗

i , and vi denotes the mean value of
the multivariate of all points in C∗

i .Both the 3D position pi
and associated attributes vi of a control point cpi are used
to compute the proximity di j among all control points as
di j = ∥cpi − cpj∥2 .

Thereafter, all control points are embedded into the 2D
space by means of the standard multidimensional scaling
algorithm. Subsequently, all data points are projected by
means of the LAMP algorithm. Substantially, w controls the
influence of spatial position on the distribution of 2D projec-
tion. In practice, we set w = 0.1 to drive the 2D projection
led by the attribute space.

3.4. 2D Partition

To refine C∗, this step generates the counterparts of C∗ in the
attribute space and formats them as a user-adjustable struc-
ture. We denote them as C+ = {C+

i , i = 1,2, ..,M+,M+ =
M∗}, which is the partition in 2D space. Within the 2D pro-
jection, the Euclidean distance in the 2D space approximate-
ly describes the proximity among the control points and the
data points. Thus, the data points belonging to C∗

i may dis-
tribute around its control point in the 2D space.

EasyXplorer employs the Voronoi graph to preset the par-
tition of the entire 2D space, where the control points are
considered as the Voronoi sites. The edges of each Voronoi
cell partition the 2D projection and form the new region-
s C+. Because points of a Voronoi cell tend to be closer to
their Voronoi site (control point), the Voronoi graph can ob-
tain the reasonable partitions based on the 2D projection and
match the C+

i to each corresponding C∗
i . In Figure 8 (a), the

Voronoi graph divides the 2D projection into 3 partitions.
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The color indicates the point distribution of different clus-
ters. Note that the colored 2D projection highlights the dis-
tribution of the points belonging to each C∗

i . After that, the
user can interactively modify the boundary of C+ for further
exploration.

3.5. Interactive Visual Exploration

We design a series of views to integrate the decision of the
user into our analysis loop. First, we visualize the C∗ and
C+ in 3D view and 2D view, which substantially support to
depict the distribution pattern in the physical space and the
corresponding attribute space. Then, we encode the relevant
information by the glyph view and the parallel coordinates
view, which provide a user-friendly interface to support the
user to evaluate each C∗

i with its corresponding C+
i or com-

pare the subsets in C∗ or C+. Furthermore, a flow chart is
adopted to record and trace the whole analysis process. For
the convenience of illustration, we denote a C∗

i with its as-
sociated C+

i as an associated pair (C∗
i ,C

+
i ) below.

3.5.1. Interface

3D and 2D views To illustrate a selected associated pair
(C∗

i ,C
+
i ), by default, the 3D view visualizes the spatial dis-

tribution of C+
i by volume rendering (Figure 1 (a)) while

the 2D view shows the projection distribution of the corre-
sponding C∗

i by default (Figure 1 (b)). The user can flexibly
switch between C∗

i and C+
i in these two views to observe the

(C∗
i ,C

+
i ) in spatial space or attribute space.

In 3D view, an index volume for the switched C∗ or C+ is
built. Each voxel in the index volume has one corresponding
data point in the multivariate dataset. The value of each voxel
is defined as the scaled index:

si = i
S

M+1
, i = (1,2, ...,M) (2)

where i is the index number of voxel’s corresponding C∗
i or

C+
i , si is the scaled index, and S is the range of the voxel-

s in the index volume (255 in our implementation). A 1D
transfer function is adopted to assign colors to each parti-
tioned region. We simplify the transfer function and the user
can intuitively select the color and opacity of partitioned re-
gions to either highlight or hide them. It should be noted
that (C∗

i ,C
+
i ) share the same color assigned by color custom

panel in all the views.

The 2D view firstly shows the 2D distribution of da-
ta points after the 2D projection and the preset partition.
The projection density is simply accumulated, yielding a
heatmap visualization. The density from low to high is
mapped to grey with the decreased lightness, which is con-
trolled by a 1D transfer function in the option panel (Figure 1
(e)). The preset Voronoi partitioned regions are bounded by
polygons. The circles in different colors indicate the loca-
tions of the sites of Voronoi regions (also the control points
of the 2D projection). The vertices of these polygons serve

as the anchors. The user can drag these anchors to modify
the boundary of the corresponding regions.

****
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Figure 3: (a) The constitution of the glyph view. (b) The
statistic encoding scheme in the parallel set and the box-
plot. (c) The parallel coordinates plot in C+ mode. These
views are visually connected by the same assigned color.

Glyph View This view mainly shows the statistical infor-
mation within (C∗

i ,C
+
i ). Each glyph view embedded in 2D

view is located at the centroid of the corresponding partition
C+

i and consists of several components.

First, the spatial distribution information is encoded by a
snapshot as a preview for each partitioned region (Figure 3
(a)). For each C+

i , the number of data points belonging to a
C+

i along the Z direction in physical space is accumulated
for each pixel in the X-Y imaging plane. Then the density
distribution is visually encoded by gray scale color coding.

Second, the glyph view encodes the statistical information
of C∗

i and C+
i in pixel style or box-plot style. Within the pixel

style, two rows of pixels represent the mean of the variable in
C∗

i and the corresponding C+
i , respectively, which provides a

simple glance of statistic within (C∗
i ,C

+
i ). For each row, ev-

ery pixel from left to right represents a variable. Grey colors
from light to dark encode the value from low to high (Fig-
ure 3 (a)). When the mouse hovers on the glyph, the view
shows the name of the partition and the information in box-
plot style (the right of Figure 3 (a)). The box-plot style shares
the same order of the variables with the pixel style, and the
upper and the bottom box-plot respectively represent vari-
ables in C∗

i and C+
i . We demonstrate this detailed encoding

scheme of the box-plot at the right of Figure 3 (b). Specially,
we link each median of the box-plots by the orange polylines
to highlight them.

Parallel Coordinates View Different from the glyph view,
the parallel coordinates plot (PCP) offers the comparison a-
mong different subsets in the same category (e.g., C+

i s in
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C+ or C∗
i s in C∗). Each axis represents one attribute with

its name at the bottom. Instead of simply drawing the poly-
lines onto the axes, we integrate the box-plot to the tradition-
al PCP. When a C+

i or C∗
i is selected, the lower quartile, the

upper quartile, the median, the lowest datum (within 1.5 in-
terquartile range (IQR) of the lower quartile) and the highest
datum (within 1.5 IQR of the upper quartile) of each attribute
are encoded by the hybrid ribbon (Figure 3 (c)) in the color
assigned for the associated pair (C∗

i ,C
+
i ). Figure 3 (b) de-

picts the detail of the visual scheme on an axis and compare
it with the box-plot on the glyph view.

Flow Chart To support the iterative analyzing loop and
remind the user of the history of analysis, we design the
flow chart to record the whole process of iterative explo-
ration(Figure 4). The partitioned regions in each iteration oc-
cupy the chart cells with a vertical layout. The information,
such as the name, the preview, the points number of this re-
gion and the parameter setting in this iteration are listed in
this cell. The height of each chart cell encodes the number
of points that the corresponding region contains.When the
next iteration is turned on, the history iterations are aggre-
gated, showing only the preview image in the cell. The se-
lected history regions are encoded by dark grey color while
the selected regions in current iteration are shown in the as-
signed color. According to the colored cell, the user can fig-
ure out which partitioned regions join in each iteration step
and query them by selecting the corresponding cell.

(a) (b)

(c)

the preview

points number

the name of the region

the parameter in current iteration

Figure 4: The evolution of a flow chart within three itera-
tions. (a) The first iteration extracts three partitions. (b) The
user selects the third partition and executes the second itera-
tion based on the data points belonging to this partition. The
selected partition is highlighted by dark grey as the history
selection marker. (c) The third iteration and the information
introduction of the flow chart cell. The second partition has
been selected and highlighted by the assigned color.

Controlling Widgets The control panel contains a slide to
modulate the granularity parameter Q, a density mapping
curve as the 1D transfer function to adjust the display of the
2D projection, and a set of visual mode selectors for each
view (Figure 1 (e)). We also provide the interface to select
and modify the color and opacity of each associated pair.

3.5.2. The User Interaction

The initial interaction step of each iteration is modulating
the parameter to generate the reasonable preset of 3D clus-
ters. However, depicting too many clusters may cause visual
clutter and user interactions. Besides, to narrow the feature
search space accurately, we should ensure the points of ROIs
would not be lost.

As a result, the parameter modulating in our system fol-
lows the rule called “coarse-to-fine” to generate a few of
clusters in each iteration and abandon the non-interested
points gradually. In the initial several iterations, the coarse
clustering effectively reduce the number of clusters. The us-
er then executes the later interactions to conservatively pre-
serves the most valuable points. Because of the data pruning
in the previous iteration, the finer clustering in the later iter-
ation will not generate too many clusters. In our cases, this
rule is implemented by assigning the Q value from low to
high. Combining the practical experience with the parameter
setting tactics in [NN04], we double the Q value in each iter-
ation. Furthermore, The initial Q is also an empirical value,
which is depended on the number of the clusters generated
by this Q. In our cases, we set the initial clusters to be no
more than 5 to avoid the visual confusion and simplify the
analysis.

After that, the exploration in one iteration may follow the
steps as 1) glancing at the 2D projection and the snapshots
to decide which region to select, 2) labeling the interested
regions, 3) evaluating the regions in physical and attribute s-
pace by the views and 4) refining the target regions by drag-
ging the anchors of the 2D partition. The detailed operation
will be illustrated in the case study.

4. Implementation

The main frame of EasyXplorer is implemented with Qt.
To support the interaction in real-time, the computation-
intensive tasks are all written in C++. The 3D visualization
algorithm such as volume rendering is written with OpenGL.
Besides, we select D3.js to draw 2D visualization widget.
In practice, the automatic algorithm at the beginning of an
analysis iteration spends most of time (depending on the da-
ta size, approximately 4 ∼ 8s in our cases). After that, the
response of the interaction can be completed in real time.

5. Case Studies

5.1. 3D Nuclear Fusion Simulation Dataset

The 3D nuclear fusion simulation dataset records the frames
within the simulation of the intermixing process between d-
ifferent fluid substances to observe the instability of a fluid
interface. Five variables are incorporated in the dataset, in-
cluding two scalar variables: density (D), temperature (T);
a triple vector: velocity (the value of ρ, θ and φ in spheri-
cal coordinates are named as V0, V1 and V2 respectively).
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We choose the 60th, 216th, 314th and 398th frame to ana-
lyze the time-varying pattern. The resolution of each frame
is 128× 128× 128. Because of its simple structure and few
variables, we use this dataset as an instruction to illustrate
the system operation. According to the knowledge from our
domain experts, the boundary layer of the two fluid sub-
stances will be more and more active over time. The task is
to study each frame successively and explore the change of
fluid interface within the intermixing process. Below we de-
scribe the analysis process in detail by using the 314th frame
as an example.

In the initial iteration, the granularity parameter Q is set
to be 8, yielding 5 clusters and associated control points. All
data points are projected to the 2D space, as shown in Fig-
ure 5 (a). A 2D Voronoi graph partitions the 2D data points
into 5 regions. By seeing the 2D view, the user discovers
the outliers according to the 2D projection (marked by the
red circle in Figure 5 (a)). By selecting the preset region-
s, the user may compare the structure by 2D partition with
3D cluster. In the 3D view(Figure 5 (c)), the 3D clustering
generates the coarse structure, while the 2D partition gives
an incoherent (The region in pink is separated by the blue
region, because of the inaccurate preset) but more smooth
structure (Figure 5 (d)). The user then locates the fluid in-
terface and unrelated structures by the following two obser-
vations: First, these two schemes all extract the outliers as
the the core (the heat spot, one substance) and the outside of
the fluid interface (the other substance). By the PCP view,
the points in these regions are distinct in density and tem-
perature (Figure 5 (a)). Second, the glyph view and the PCP
view also show the value of the other regions is dispersed
in each attribute (Figure 5 (a)), which may suggest that the
instability exists at these regions. Because we know the flu-
id interface is active, the region in orange and blue is more
likely be the target. At last, we smooth the coarse structure in
the attribute space by adjusting the anchors (Figure 5 (b)(e)).

(f) (g)

(a) (b)

(c) (d) (e)

Figure 5: (a) The result after the initial clustering. (b) After
modifying the anchors, the user refines and preserves the re-
gions in orange and blue. (c) The structure extracted by the
spatial clustering in the first iteration. (d) The structure ex-
tracted by 2D partition based on the clusters in (c). (e) The
3D view of the selected regions in (b), which will be import-
ed into next iteration. (f) The clustered structure in the third
iteration. (g) The refined result of (f) by 2D partition.

To disclose more details at the refined regions, the user
removes the irrelevant points (the core and the outside of
the fluid interface) and increases the granularity parameter
Q. Subsequently, following the similar steps in the previous
iteration, in the third iteration, we obtain a better fluid inter-
face as the cyan structure depicted in Figure 5 (g). The user
may observe the difference between the 3D clustering (Fig-
ure 5 (f)) and the refined result by 2D partition (Figure 5 (g))
by switching to the 3D view display mode and visualizing
the selected regions. Obviously, the refined structure is more
smooth and distinct. Figure 6 characterizes this time-varying
perturbance structure in the selected time frames.

(a) (b) (c) (d)

Figure 6: The comparisons of the regions disclosed the 60th
(a), 216th (b), 314th (c) and 398th (d) frames, respectively.

5.2. Rotational Symmetry Vector Fields

The rotational symmetry vector field is one type of tensor
fields, and is of paramount importance in many applications,
such as 2D quadrilateral remeshing, 3D hexahedral remesh-
ing, texture synthesis, and non-photo realistic rendering. A
simple example is the N-rotational symmetry vector field (N-
RoSy field) [PZ07] on a 2D manifold, of which each point
has N unit vectors, and the angles between two neighboring
ones are identical. In 3D, despite many computational and
topological approaches,it still lacks of an effective means to
visually analyze them. For instance, a point of a 3D cross-
frame field contains six unit vectors that form a cubic sym-
metry [HTWB11], posing challenges for visualization.

Computing Feature Descriptions Singularities are the
most important features of 2D/3D N-RoSy fields, and they
are rotational invariant, namely, an arbitrary global rota-
tion of the field does not change the distribution of them
in the local frame. Accordingly, we construct a rotational
invariant local feature description based on Zernike decom-
position, which has been successfully applied to shape re-
trieval [KH90] [NK03].

Suppose that each point p in the underlying symmetry
vector field has N unit vectors r⃗i, i = 1, · · · ,N. In the spher-
ical neighborhood S(c) of a point c, a scalar field ρ(p),p ∈
S(c) is derived using Equation 3:

ρ(p) = max
i

{
p− c

∥p− c∥ · r⃗i

}
. (3)

The above equation is equivalent to finding the vector that
best matches the radial direction p− c, and using its projec-
tion as the scalar value.

c⃝ 2015 The Author(s)
Computer Graphics Forum c⃝ 2015 The Eurographics Association and John Wiley & Sons Ltd.



F. Wu & G. Chen & J. Huang & Y. Tao & W. Chen / EasyXplorer: A Flexible Visual Exploration Approach for Multivariate Spatial Data

Further, the Zernike decomposition is applied to ρ(p),
yielding a sequence of coefficients (Zernike moments)
{Ωm

nl , l ≤ n,n − l ≡ 0 (mod 2), where m = 0 in 2D and
m = −l, · · · , l in 3D }. The sum of the squares (energy) in
each band indexed by a pair of integers (n, l) is rotation in-

variant. Thus, Znl =
√

∑l
i=−l(Ω

i
nl)

2 serves as a rotational
invariant descriptor to the symmetry vector field in a local
neighborhood. Because high-frequency components of the
Zernike moments often contain noise, we only use the lead-
ing low frequency bands (n ≤ 8 in 2D and n ≤ 5 in 3D).
With Zernike decomposition, the input dataset is converted
into a multivariate volume, each voxel of which has a se-
quence of scalar values. For more details concerning 2D and
3D Zernike descriptor, please refer to [KH90] [NK03].

Although this feature descriptor is simple and indepen-
dent of the mathematical model of symmetry vector field,
our method identifies the features that are consistent with
the analytic ones as shown in the following examples.

Visual Analysis of A 2D N-RoSy Field We first validate our
method on 2D N-RoSy fields at the resolution of 128×128.
The neighborhood size for computing the Zernike moments
is set to 4. The leading 25 bands are used for analysis.

Figure 7 (a)(b)(c) show the LIC images of three different
N-RoSy field fields [PZ11]. The glyphs in yellow indicate
positive singularities, and the blue glyphs denote negative
ones. These singularities can be the considered as ground
truth for comparison. Note that the LIC images of the 3-
ROSY and 6-ROSY fields are visually very similar and hard
to distinguish. The results with EasyXplorer are shown in
Figure 7 (d)(e)(f), in which the extracted singularities match
the cases shown in Figure 7 (a)(b)(c).

(a) (b) (c) (d) (e) (f)

Figure 7: Results for three 2D N-RoSy fields. (a)-(c): LIC vi-
sualization of a 3-ROSY field, a 4-ROSY field, and a 6-ROSY
field, respectively; (d)-(f): The singularities discovered by
using EasyXplorer.

Visual Analysis of A Cubic Symmetry Field In our sec-
ond experiment, a 3D cubic symmetry field constructed on
a tetrahedral mesh is used. The field is uniformly sampled
into a 100× 100× 100 3D grid. The neighborhood size for
computing the Zernike moments is set as 4. The leading 12
bands are used for analysis. The task is to explore the pat-
terns the cubic symmetry field may contain. Because of the
feature descriptions we select, the most possible pattern is
the singularity line.

At the beginning, the granularity parameter Q is set to be

16, yielding a 2D projection shown in Figure 8 (a). By slight-
ly modulating the 2D partition, it is apparent that most data
points locate in the region reg_0_2, and the regions corre-
sponding to reg_0_0 and reg_0_1 are distributed outside of
boundary in the physical space. The glyph views in reg_0_0
and reg_0_1 show that the statistical value of each variate
in reg_0_0 and reg_0_1 is instable and different from those
of the corresponding spatial clusters. By checking the 3D
positions of reg_0_0 and reg_0_1 in the 3D view, the user
regards them unimportant and thus removes them.

Before the next iteration, the user discovers that some da-
ta points locate near the boundary of two partitioned regions
and are hard to classify. The user selects these data points
(the grey circle in Figure 8 (a)). The 3D view implies that
these points are also outside of the physical space. Accord-
ingly, the user adjusts the boundary of reg_0_2 to exclude
them, regardless of reg_0_0 and reg_0_1, and increases Q
to 32 to take another iteration in reg_0_2. The result depicts
that interesting patterns appear in reg_0_0 and reg_0_1 (Fig-
ure 8 (b)). The glyph view indicates that these two regions
contain salient information that is verified by the 3D view.
The user selects both regions and increases Q to 64 to further
explore reg_0_0 and reg_0_1 (Figure 8 (c)). This exploration
is iterated until a satisfying result is achieved (Figure 1).

The glyph layout widget can be used to adjust the lay-
out of the glyph view, which offers great flexibility for high-
lighting and comparing characteristic attributes. As shown in
Figure 1, the Z00, Z20, Z40 and Z44 in the Zernike descrip-
tor are relatively large, while Z33 and Z53 have large vari-
ations. The visualization is consistent with the ground truth
that for 3D Zernike descriptors, Z44 can be used to identify
the cubic symmetry field, and Z00, Z20 and Z40 are capa-
ble of identifying the field with the radial shape. Moreover,
the difference on Z33 and Z53 reveals that these regions ex-
hibit some unusual rotation, and may indicate the singularity
lines. Observing that Z33 in reg_3_3(pink) is larger than Z33
in reg_3_2(blue), and Z44 in reg_3_3 is smaller than Z44 in
reg_3_2, the user states that reg_3_3 has the largest rotation.
This can be confirmed by the regions in pink in the 3D view
(Figure 1).

6. Evaluation

6.1. Comparisons

To some extent, our method is analogous to transfer function
design schemes for volume rendering. Although we have the
similar purpose and we do integrate the transfer function
to highlight the clustered region, our work is very different
from a transfer function designing. Take [KSC∗10] as an ex-
ample, the 2D/3D correlation design is quite similar to ours.
However, it applies various dimension reduction approaches
to highlight the ROIs by applying volume rendering, while
we focus on the iterative clustering to prune the ROI grad-
ually. [KSC∗10] also adopts the interaction of selecting on
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reg_0_0

reg_0_1

reg_0_2

reg_1_1 reg_1_0

reg_2_0

reg_2_1

reg_2_2

(a)

(b)

(c)

Figure 8: The analysis process for a cubic symmetry dataset.

2D projection to define the shown regions. We improve this
scheme by integrating more visualization techniques to de-
liver sufficient information for decision-making.

Previous visualization systems focus on visual explo-
ration of hidden structure, but do not incorporate the ca-
pability of heuristic data exploration. For instance, Par-
aView [AGL05] makes the VTK-based volume visualiza-
tion scalable to large datasets, but emphasizes on the per-
formance issues. VisIt [Vis] is an analysis tool kit for sci-
entific visualization with professional pipeline management
and parameter controlling. It is more likely a common scien-
tific visualization framework, yet is weak in addressing the
progressive exploration problem with the customized data.
Our method emphasizes on the exploration with the itera-
tive clustering mechanism, which is the main advantage over
previous approaches.

6.2. Feedback from Domain Experts

We interviewed two data providers who have a deeper under-
standing of the data, and obtained the feedbacks to evaluate
the real experience of our system. We explained to the ex-
perts our analysis pipeline, interface and analysis steps of
our system, and presented the case studies. The feedbacks
can be summarized as follows.

Interactive Visualization Both users agree that the method
can be a useful tool for exploring multivariate spatial data.
They are curious about the visual design and the interaction
process. They comment that “this tool provides an interest-
ing way to combine our knowledge with the exploring pro-
cess.” They like the way to interactively adjust the result and
obtain the feedback in real time.

Improvements The experts comment that although the ex-
plore process is heuristic, it still needs time to try if they lack
the prior knowledge. Meanwhile, it is possible that one iter-
ation only gives locally optimal result. Thus it is necessary
to keep trying and save the process of trying. Current solu-
tion only records the history of exploration by the flow chart.
A better way is to design a decision tree to describe, record
each branch of exploration and enable the user rollback to a
step if the latest exploration attempt failed.

Besides, they are not familiar with the parallel coordinates
and the glyph. Therefore it needs time for them to learn the
meaning of these components. Moreover, they consider the
parallel coordinates could be improved because sometimes
the clusters occlude others. In fact, they would like to see the
difference of two clusters on each axis. It would be better if
we can highlight these differences.

7. Conclusion and Future Work

Multivariate spatial data visualization is largely motivated
by the requirements of the understanding of the data dis-
tributions and investigating the inter-relationships between
different data attributes. Rather than focusing on a specific
technique, the presented system provides an integrated visu-
al interface for depicting, comparing, and clustering a large
amount of multivariate spatial points. As the future work is
concerned, we plan to extend EasyXplorer to more types of
multivariate spatial data, and parallelize the system to ad-
dress even larger scale datasets. We also expect to combine
well-established topological approaches into the visual ex-
ploration process for verification. Further, parameter choices
and their impacts also need to be improved in the future. For
example, the weight w which controls the influence of spa-
tial position on the distribution of 2D projection. We plan to
design a widget to set w as a flexible parameter on the in-
terface. The spatial distribution encoded by a snapshot and
the viewpoint is fixed along the z-axis at present. It works
well in our cases, yet it may obscure information in some s-
cenarios. Thus, a viewpoint-free snapshot will be considered
in the next version.
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