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Abstract

Hex-meshes have wide and important applica-
tions in scientific computing. Various methods
have been proposed to tessellate a shape into a
hex-mesh according to certain geometrical qual-
ity criteria (e.g. scaled Jacobian), which is usu-
ally not directly related to the downstream com-
puting problem. This paper discusses such crite-
ria on the elastic finite element analysis problem
via analyzing the result of Modal Analysis per-
formed on different hex-meshes. With the iso-
metric uniform material configuration, the larger
the scaled Jacobian (minimal/average) and the
number of elements, the smaller are the eigen-
values, which usually indicates better accuracy
and stability (condition number). Besides the
element quality, singularity placement also af-
fects the accuracy of the solution and is difficult
to alter by simple subdivision. Results of this
work may serve as a guide in evaluating hex-
remeshing approaches and choosing appropriate
hex-meshes for finite element analysis.
Keywords: Finite element analysis, hexahedral
meshes, evaluation, singularity structure

1 Introduction

For many physically-based simulations involved
in a wide range of scientific and engineering ap-
plications, volumetric representations, e.g., 3D
volume tessellations, are required. Compare
to the easily accessible tetrahedral meshes [1],
hexahedral meshes are usually more attractive
in their numerical property. But, generating
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a suitable hexahedral mesh conforming to the
given boundary is typically more challenging
than generating a tetrahedral one. In the past
decades, various techniques for generating hexa-
hedral meshes from the input boundary surfaces
have been proposed [2, 3, 4]. Up to date, the
meshing community still largely relies on Jaco-
bians of the elements to evaluate the quality of
the obtained meshes. That is, the meshes with
larger average and minimum Jacobians are con-
sidered better. Indeed, the local Jacobian has
been shown related to the local accuracy of the
simulation [5]. There exist a number of stud-
ies on the benefits of conducting scientific sim-
ulations on hexahedral meshes versus tetrahe-
dron meshes [6, 7, 8]. However, there still lacks
of a comprehensive evaluation and comparison
of the hex-meshes generated by recent methods
from the application perspective. Further, there
is little study on how different characteristics,
such as the number of elements and different
singularity structures of hex-meshes that are de-
fined by non-valence-6 extraordinary nodes of
the mesh (Figure 5), affect the simulations.

In this paper, we conduct a first systematic
study on how various characteristics of the hex-
meshes generated by a number of representa-
tive techniques affect the accuracy and stabil-
ity of elastic object simulation. Particularly,
the mesh characteristics that are considered in
our study include the Jacobians of elements
(i.e., average/minimum Jacobians), numbers of
elements, and the structure of the hex-meshes
(i.e., the numbers of singularities and the num-
ber of the hexahedral components in the struc-
ture). The hex-meshing methods that we are



considering include Volumetric PolyCubes [9],
SRF [3], and L1-based PolyCubes [4]. By se-
lecting the models that are used in all these
methods, we specifically focus on the rocker
arm model-representing a CAD object and the
bunny model-an example of organic objects. To
evaluate the accuracy and stability of simula-
tion run on different hex-meshes, Modal Analy-
sis is employed. Especially, the eigenvalues and
condition numbers of the stiffness matrices gen-
erated from the hex-meshes are measured and
compared. It is worth emphasizing that this
work aims to study what influence of the char-
acteristics of different hex-meshes can have to
the FEM simulations rather than identifying the
best hex-meshing technique. However, results
reported in this work can in turn be used to help
practitioners select the proper mesh generation
method given the metric that is sought by a spe-
cific computation.

2 Related Work

Over the past decades, several studies have been
performed to compare the convergence behav-
ior between the FEM based simulations run on
tetrahedral, hexahedral, and hybrid meshes. Ci-
fuentes et al. [10] concluded that the results
obtained with quadratic tetrahedral elements,
compared to bilinear hexahedral elements, were
equivalent in terms of both accuracy of the simu-
lated result and the computation time. The accu-
racy of elastic and elasto-plastic FEA based sim-
ulations of hexahedral and tetrahedral meshes
was compared by Benzley et. al [6]. It showed
a preference for linear hexahedral mesh com-
pared to linear tetrahedral mesh. By evalu-
ating the FEA simulations on Femur meshes,
Ramos et al. [7] observed that the accuracy of
the simulation conducted on a linear tetrahe-
dral mesh of the simplified bone is closer to the
theoretical ones, while the simulations on the
quadratic hexahedral meshes are more stable to
hex-meshes with higher resolution.

Up to date, there exists little study on compar-
ing the accuracy properties of simulations com-
puted on the hex-meshes generated with recent
techniques. Earlier, Muller et al.[11] investi-
gated the effect of quality and the number of el-
ements of hex-meshes on the simulation results,
respectively. They concluded that the number
of elements of hex-meshes is important for the
simulation quality. However, their experimental
results suggest that with the minimum element

quality above 0.1, average mesh quality does
not has notable impact on the solution accuracy.
Since they only used a very simple cylinder-like
model throughout the whole experiments, it is
difficult to judge the completeness of their study.
In this work, we propose to employ a few rela-
tively complex models to verify their statements.
Our study is also the first one that attempts to an-
alyze the impact of the singularity structures of
hex-meshes on the simulation solutions.

3 Comparison Experiment Setup

The focus of this paper is to investigate the ac-
curacy and convergence rate of simulations per-
formed on the selected hex-meshes that have (1)
varying local qualities (measured by Jacobians),
(2) different numbers of elements, and (3) dif-
ferent singularity structures (measured by differ-
ent numbers). In order to conduct such a com-
parison, several issues have to be addressed, in-
cluding “which finite element method to use?”,
“how to measure the dissimilarity between two
simulations?”, and “which 3D models to use?”.
These topics are discussed in the following.

3.1 Modal Analysis of Elastic Problem

To understand the impact of different properties
of the hex-meshes on the FEA based simula-
tions, we make use of a well studied technique
known as Modal Analysis (MA). This section
presents a brief overview of modal analysis. For
more details, please refer to [12].

Giving an 3-dimensional linear elastic object
discretized by a mesh with n nodes, equation
of motion is often formulated as M + Ku =
f, where K, M € R337 4 f € R are
the stiffness matrix mass matrix, node displace-
ment and external force respectively. Modal
Analysis computes the general eigen problem
WTKW = A, WI'MW = I, and then which
diagonalizes the above equation into 24+ Az = g
via substitution u = Wz,g = WTf. Such
a transform does not only boost the efficiency
of computation, but reveal an important prop-
erty of the dynamics: the motion can be de-
composed into a set of independent vibration
modes (columns of W = (W, Wa,--- | W,,))
at their stiffness (square of natural frequency)
Ai = Ny \i < A

Eigenvalue is a widely used indication for
the quality of discretization in terms of accu-
racy and stability in computation. As explained



(a)0.916,/0.209
Figure 1: Original rocker arm hex-mesh from [3] and the generated hex-meshes with varying quality.

(b)0.897/0.118

in [6], the discretization introduces additional
numerical stiffness because of the extra force
to restrict the deformation in a small subspace.
The worse discretization is, the eigenvalue is
more overestimated, and the object is “stiffer”.
Thus, smaller eigenvalue usually indicates bet-
ter accuracy in discretization. In many cases,
the condition number of the linear system in-
volved in the simulation is nearly determined
by max{\;}. For example, an equation simi-
lar to (M + h2K)Av = hf should be solved
in each step of backward Euler method [13]
for the change of velocity Awv in time step h.
The minimum and maximum eigenvalues of the
system (M + h’K ) (respect to W) are 1 and
1 + h?max{);} respectively, because the lead-
ing 6 eigenvalues associated with rigid motion
are all zero. Thus, the smaller the eigenvalue is
and the smaller the condition number is, the bet-
ter stability the simulation will have.

The discretization is characterized by the
mesh tessellating the object and the type of ba-
sis applied to the elements in the mesh. In this
paper, we adopt 8-node trilinear basis function
for all the hexahedral elements, and thus leave
the properties (e.g. Jacobian, density) of mesh
as the only factor related to the eigenvalues.

3.2 3D Model Data

Table 1 provides an overview the hex-meshes
used for different comparison studies. Among
them, different versions of Bunny' from
method [9] and Bunny? from [3] are used to
examine the Modal Analysis properties of hex-
meshes with various element numbers, while
the first three versions of Rockerarm' [4] and
Rockerarm? [4] are employed for the analysis
on meshes with different scaled Jacobians (i.e.,
Ave./ Min. Jacobians). Three hex-meshes, de-
noted by Rockerarm% [4], Rockerarm§ [4],

(¢)0.860/0.100  (d)0.828/0.100

Table 1: Meshes used in the three Comparisons

Hex-Mesh V/H Ave./Min J.
Bunny} | 59887/54568 | 0.943/0.136
Bunnyl | 49524/44909 | 0.941/0.128
Bunnyj | 41593/37511 | 0.937/0.127
Bunny} | 35428/31759 | 0.940/0.125
Bunny3 | 51175/47797 | 0.947/0.316
Bunny} | 32410/30119 | 0.948/0.322
Bunny3 | 18654/17226 | 0.944/0.279
Rockerarm{, | 28397/24346 | 0.930/0.123
Rockerarm} | 28397/24346 | 0.894/0.102
Rockerarm} | 28397/24346 | 0.862/0.100
Rockerarm3 | 28814/24780 | 0.916/0.110
Rockerarm? | 28814/24780 | 0.881/0.102
Rockerarm3 | 28814/24780 | 0.849/0.100
Rockerarm} | 12919/10776 | 0.938/0.413
Rockerarm3 | 13014/10942 | 0.926/0.457
Rockerarm? | 12751/10600 | 0.916/0.209

and Rockerarm? [3], with distinct singularity
structures are also selected to investigate the in-
fluence of the structure on the FEA. Note, that
the sup-index of a mesh, e.g., Rockerarm?3,
represent one of the three methods [9, 4, 3] that
is used to generate the mesh, while sub-indices,
e.g., Bunny(]j and Bunny%, indicate different
versions of the meshes. These hex-meshes are
either directly from the three work or generated
from the original hex-meshes using the follow
methods.

To produce hex-meshes that have the same
number of elements and singularity structures,
but varying local quality, we follow the proce-
dure in [11]. The difference of our approach
is that for the vertex v; that is to be jittered, a
bounding surface is also constructed to constrain
the active space of v;. The bounding surface is



comprised of the quads of the one-ring hexahe-
dra of v; that are not adjacent to v;. By adding
this constraint, the possibility of generating in-
verted elements is excluded. Figure 1 shows the
generated rocker arm meshes with different Ja-
cobians.

Simplification technique of [14] is adapted to
generate meshes with different numbers of ele-
ments . All simplified meshes are optimized by
Mesquite to achieve similar Jacobian quality. To
consider the effect of different singularity struc-
tures of the meshes to the Model Analysis, the
rocker arm meshes from two methods [4, 3] are
employed, which already have different struc-
tures (Figure 5). We use the same approach
above to ensure they have similar numbers of el-
ements and similar Jacobians.

4 Results

To evaluate the quality of hex-meshes gener-
ated by different approaches, three types of com-
parisons have been performed, including the
comparisons of hex-meshes with 1) different
Ave./Min. Jacobians, 2) various numbers of
elements, and 3) distinct singularity-structures.
The quality of the mesh is measured by the ith
eigenvalue A" for mesh m.

In Figure 2, we investigate the meshes with
the same number of elements. To better vi-
sualize the differences among the eigenvalues
derived from different meshes, we normalize
AT into AT = (M) 3200 X, where M is
the total number of meshes in the comparison.
The smaller normalized value A} is, the smaller
the eigenvalue A" will be. Figure 2 demon-
strates that as the average scaled Jacobians of
Rockerarm! (Figure 2(a)) and Rockerarm?
(Figure 2(b)) increase, the eigenvalues of the
hex-meshes decrease. This observation con-
firms that better Jacobians result in better accu-
racy and condition number.

In Figure 3(a) and (b) we compare the meshes
with similar scaled Jacobians. As shown in Fig-
ure 3(a), when the number of elements has no
big difference (in the range of 35k to 60k), the
improvement of accuracy by using more ele-
ments is not significant. But when the density
increases a lot (from 19k to 51k), the improve-
ment becomes obvious.

As shown in Figures 4 and 5, the hex-
meshes have very distinct singularity struc-
tures. The distribution of the deformation dis-
placements and the eigenvalues for different

modes are also different. From Figure 4, al-
though Rockerarm} and Rockerarm? have
better Ave./Min. Jacobians and larger number
of elements, Rockerarm? gives the best eigen-
values for all modes. This may indicate that not
only the scaled jacobian and the element number
of a hex-mesh can affect its finite element anal-
ysis, the singularity-structure of a hex-mesh can
also make an influence. Figures 4 shows that the
numbers of singularity nodes and hex-patches of
Rockerarm? are ranked in between of those of
Rockerarm} and Rockerarm3. By compar-
ing with their corresponding eigenvalues in Fig-
ure 4, it implies that besides the numbers of sin-
gularity nodes and hex-patches, there could be
other properties of the singularity-structure that
affect its FEA behavior.
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Figure 4: Comparisons among the eigenvalues
corresponding to various modes for
three rocker arm meshes.

5 Conclusion and Future Work

In this paper, we investigate how different char-
acteristics of hex-meshes affect simulations con-
ducted on these meshes. In particular, Model
Analysis is performed on the stiffness matrices
computed on these meshes. Hex-meshes for a
rocker arm and a bunny with different character-
istics (e.g., different numbers of elements, dif-
ferent Jacobians, and different singularity struc-
tures) are utilized for this study. Our initial re-
sults indicate that when hex-meshes have the
same singularity-structure, the better behavior
of Modal Analysis is typically observed on hex-
meshes with larger scaled Jacobians and more
hex-elements. When the hex-meshes have dis-
tinct structures but similar scaled Jacobians and
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Figure 2: Comparisons among hex-meshes with various Jacobians denoted in the legends.
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Figure 3: Comparisons among hex-meshes with

element numbers, the performances of Modal
analysis can still vary. In particular, good
singularity-structures (e.g., with smaller number
of singularity nodes and hexahedral component)
could compensate the shortness of smaller Jaco-
bians or fewer elements.

Limitations and Future Work There are
some limitations in the current study. First, only
two objects are used in the experiments, which
may not be convincing. Second, some proper-
ties like the distribution of elements quality, and
the distribution of different scales of elements
are not covered in the current study. Third, how
the difference of singularity structures should be
defined? This is still an open problem. Also, the
formal relation of the singularity structure with
the accuracy and performance of the simulations
needs to be studied rigorously. Fourth, more
hex-meshing approaches should be included. Fi-

various numbers of elements denoted in the legends.

nally, other simulations than elastic deforma-
tion, such as Isogeometric Analysis (IGA) [15],
should be examined in order to fully evaluate the
benefits of structured hex-meshes.
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