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Abstract— Haze is a hazardous atmospheric phenomenon that threatens human health and leads to severe economic problems.
A number of weather factors are relevant to the emergence and evolvement of haze. In this paper we present a visual analytics
system for haze study, including its evolution and correlations to a number of weather factors. Specifically, we introduce a haze event
detection algorithm based on common haze identification rules in meteorology using the PM2.5 concentration data. We develop a
comparative visualization to consistently overview trends of scalar variables and wind directions, in which wind patterns are extracted
via clustering streamlines at user-given sampling time. To study the correlation between wind and PM2.5, we decompose time steps
into time intervals according to the temporal similarity of streamlines. Additionally, we develop a 1D function dissimilarity measurement
to study the temporal correlation between PM2.5 concentrations and relevant weather factors, such as wind strength, relatively humidity
and planetary boundary layer. Furthermore, we employ particle advection using pathline computation within the wind field to locate
the origins and destinations of particles seeded in user-interested areas. We applied our system to study of a number of hazes
occurring in January 2013 in Beijing, (China). Interpretations and evaluations from domain experts demonstrate the effectiveness of
our system in facilitating haze study.

Index Terms—Haze, PM2.5, spatial and temporal correlation

1 INTRODUCTION

Haze is an atmospheric phenomenon in which small dust, smoke as
well as salt and sand particles are mixed with water vapor. This re-
duces visibility to below 10km [14] (see Figure 1). Haze typically
occurs near the ground, i.e., at the bottom of the atmosphere. Two
main negative effects are reported: First, haze is mainly comprised
of dust and other aerosol particles that containing sulfuric acid, nitric
acid, and hydrocarbons [42]. When haze occurs, these aerosol parti-
cles are aggregating close to the ground, while significantly increasing
air pollution to a level that is harmful to human health. Secondly,
the obscuration resulted by haze heavily influences people’s activities
and thus might harm national economy. As an example, on Febru-
ary 17th, 1994, a severe haze struck Beijing and reduced visibility to
below 50m, which enforced closing the international airport for more
than 30 hours. More than 250 flights were canceled or delayed, and
more than 16,000 passengers were stranded.

Particles contained in the haze have varying sizes. Among them,
PM2.5 particles with diameters less than or equal to 2.5 microns, are
the most noteworthy group. Such particles can be suspended in the air
for a long time. Therefore, PM2.5 is a typical factor to represent haze
in meteorology. In general, a higher PM2.5 concentration indicates a
more severe air pollution level in the haze. Additionally, PM2.5 parti-
cles are extremely chemically active, and thus are more easily adhere
to toxic and hazardous substances [37]. Therefore, PM2.5 particles and
their concentration in the air have direct impact on human health and
environmental quality. Understanding the evolution of PM2.5 and its
correlations with other weather conditions (such as temperature, hu-
midity, and wind), will provide valuable insights for the analysis of
haze event and prediction of future haze events. This will enable local
governments and residents to plan accordingly and to potentially re-
duce negative effects. However, there is no existing visual system for
haze analytics.

In this work, we develop a visual analytics system that enables ex-
perts to identify haze events and to study how its evolution is influ-
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Fig. 1. Haze is an atomospheric phenomenon, which reduces visibility
and influences human activities. Here shows an example of severe haze
in Beijing on January 11, 2013 [1]

enced by different weather conditions. In our visual system, we lever-
age the evolution of PM2.5 particles to trace haze event, as the same
as haze analytics in meteorology. More specifically, we first develop
an effective technique to identify the key times when a haze event s-
tarts (upward, stabilizing, downward stages) based on the variation of
the PM2.5 concentration. Our method can be used to detect multiple
PM2.5 events in a given time period. Next, we inspect other weather
conditions around the identified key times of PM2.5 event and try to
understand how they contribute to the event by analyzing a number
of temporal and spatial correlations. Rather than simply calculating
the correlation coefficients between variables over time, we explore
how these variables contribute to different stages of haze. Specifically,
we analyze how wind and relative humidity influence the evolution of
PM2.5. In order to provide a visual summary of these variables, we de-
sign a comparative visualization system that allows to show trends of
multiple scalar and vector variables (such as wind) together. To help
domain experts to analyze where a high PM2.5 concentration comes
from, we also analyze the spatial correlation between haze in Beijing
and its nearest provinces by using pathline advection.

The main contributions in this work include:

• A novel visual system for haze event detection and its correla-
tions to various weather variables, by integrating scalar and vec-
tor field analysis.

• A haze detection algorithm, a phase correlation computation



scheme and a vector correlation method have been proposed.
• Case studies to demonstrate its usefulness using haze data in Bei-

jing City based on the feedback from domain experts.

Data: In January 2013, eastern China experienced a strong and long-
lasting haze event. The number of consecutive days with haze in Bei-
jing and nearby areas broke the record since 1961. As the capital of
China, Beijing and its air quality have received substantial attention
around the world. Therefore, this study will concentrate on haze events
occurring in Beijing and its neighboring areas. In particular, we select
haze simulation data generated by the WRF model [26], for January
2013 and October 2014, which includes 23 vertical layers, each lay-
er having 29 variables, the ground layer having additional 9 variables.
The PM2.5 concentration exhibits large variations during these two pe-
riods. The data is sampled every hour during these two periods where
the size of each sample is around 0.5GB. Under the guidance of our
domain collaborators, we focus on five variables that they are most-
ly interested in. The five variables are the fundamental meteorologi-
cal attributes, including PM2.5 concentration, wind, relative humidity,
temperature and Planetary Boundary Layer in our study. The first four
variables come from the second layer and the last one comes from the
ground layer.

The rest of the paper is organized as follows. After briefly intro-
ducing the related work in Section 2, we give an overview of our sys-
tem in Section 3. We then describe haze event detection algorithm
in Section 4 and discuss the temporal correlation between PM2.5 con-
centration with scalar variables and wind in Section 5 and Section 6,
respectively. Finally, we present case studies with domain experts and
finish with conclusion and future directions.

2 RELATED WORK

Weather data visualization In the past decades, the visualization
of meteorological (and climate) data has become an important top-
ic [13, 39, 20]. Many practical visualization tools have been develope-
d, such as Vis5D [12], Ferret [11] and GRADS [2]. However, there is
still a gap between the capabilities of advanced visualization systems
and the domain work in climate research [27, 38]. To support hypothe-
sis generation from large-scale climate data, Kehrer et al. [17, 19] pro-
pose a novel visualization pipeline. Janicke et al. [15] take advantage
of wavelet analysis in visualizing climate variability changes. Kehrer
et al. [18] propose an interface for heterogeneous scientific data analy-
sis, which is also applicable for meteorological data analysis. Since
simulated weather data often is generated by ensemble simulation,
many ensemble data visualization and analysis techniques [29, 32, 9]
have been applied to evaluate climate models or study their uncer-
tainty. All these works support domain experts in understanding the
atmospheric state to a certain extent and contribute to many practical
applications.

There exist several visual analytic systems for air pollution prob-
lems [30, 21, 45]. Qu et al. [30] present an integrated system to vi-
sualize air pollution attributes with polar system, parallel coordinates,
and the weighted complete graph. They mainly focus on attribute cor-
relations, regional comparisons and pattern estimation. Li et al. [21]
propose a visualization system with four interrelated views to analyze
smogs at different spatial and sequential scales, aiming to help domain
experts qualitatively discover correlations of meteorological attributes
and intrinsic patterns. However, to our best knowledge, a compre-
hensive visual analytics system that supports understanding of causes
and evolution of hazes with the combination of scalar and vector fields
does not yet exist.

Vector field visualization Within climate studies, a wind system is
typically modeled as an unsteady (or time-dependent) vector field
V (x, t) defined in a spatio-temporal domain as a function of time.
The trajectory of a massless particle starting at x and at time t0 un-

der V (x, t), i.e., its pathline, are computed by:

px,t0(t) = x+
∫ t

0
V (px,t0(τ), t0 + τ)dτ. (1)

The instantaneous vector field at any given time is a steady vector field,
V (x). The patterns of this vector field are typically revealed by its
streamlines that can be defined and computed as follows:

px(t) = x+
∫ t

0
V (px(τ))dτ. (2)

Streamline placement is a popular technique for visualizing steady
vector fields [25]. To reduce cluttering of densely placed streamlines
and to reveal salient patterns of vector fields, streamline clustering
techniques are used [44, 22, 5, 40]. They are also employed to classify
streamlines into different clusters based on certain distance metric-
s [24]. Pathlines and their computation have also been widely used for
the interpretation of various unsteady vector fields [34, 28, 8]. In this
work, we adapt and modify the previously proposed spatial streamline
clustering technique by Yu et al. [44] for studying the correlation be-
tween wind fields and haze events, and introduce a temporal streamline
clustering technique. We also utilize pathline computation to study the
advection of haze particles before, during and after a haze event.

Haze study Investigation of sources, formation, and transport of haze
is an important topic in meteorologic research [23, 33]. By study-
ing patterns and trends of haze over the United States for the period
of 1980-1995, Schichtel et al. [33] found that the reduction of haze
was consistent with the reduction in PM2.5. Chen et al. [3] investi-
gate summertime haze formation in the mid-Atlantic region by ana-
lyzing changes of the components in PM2.5. Kang et al. [16] evaluate
the chemical characteristics of acidic gas pollutants and PM2.5 during
hazy episodes and investigate where high PM2.5 concentrations come
from. With the rapid urbanization and motorization, haze episodes fre-
quently occurred in Beijing in recent years. Among them, the severe
haze episode occurred in January 2013 last around a whole month.
Many studies [43, 36, 31] have been carried out to investigate the
pattern of this haze episode. Almost all of these methods analyze
the formation mechanisms by using automatic statistical methods to
characterize the related conditions of air pollution. In this paper, we
propose a visual analysis method to analyze the correlation between
PM2.5 concentrations and other related meteorologic variables such as
wind, relatively humidity and planetary boundary layer. Moreover, our
pathline advection enables meteorologists to interactively explore the
origin and development of PM2.5 particles involved in haze events.

3 SYSTEM OVERVIEW

Studying haze events consists of two steps: 1) detection of haze events
and 2) correlation analysis of PM2.5 concentration with other weather
factors.

Since haze can be characterized by PM2.5 concentration [33], our
haze identification is achieved by analyzing the spatial distribution of
PM2.5 concentration over time [33]. For haze event detection, we aim
at identifying a complete event including its starting time, breaking
out, and ending time. We first represent the PM2.5 concentration in
Beijing as 1D curve (with respect to time, cf. Figure 3). We then devise
an effective algorithm based on the knowledge of domain experts and a
corresponding 1D function analysis to identify individual haze events.
(Section 4).

Next, we study the correlation between PM2.5 concentration and a
number of other weather factors that are of interest for domain expert-
s. They are particularly interested in how Planetary Boundary Layer
(PBL) [10], wind fields and relative humidity (RH) influence the evo-
lution of hazes. These weather factors can be classified into two types,
i.e., scalar quantities, such as PBL, wind strength, and RH as well as
vector-valued quantities, such as wind direction. For processing the
scalar quantities, we conduct a phase correlation analysis to estimate
the delay between different weather processes. We then apply both the
conventional correlation analysis using the Pearson Product-Moment



Fig. 2. Interface of our system, which consists of three major views (1-3) and a control panel (4). The time range covered by a yellow box in view
(1) indicates a haze event and the pink dash line selects a time point where the corresponding variables of haze concentration and wind are shown
in view (2), relative humidity is shown in view (3).

Correlation Coefficient (PPMCC) [35] and the proposed phase correla-
tion to estimate the influence of different weather factors to the process
of haze formation during a haze event (Section 4).

For the vector-valued quantities, we perform a spatial clustering of
streamlines to summarize the overall wind pattern at any given time.
This enables us to create a comparative visual analytics tool with the
above mentioned scalar quantities (Section 6.1). We then study the
temporal influence of a wind field to the PM2.5 concentration via a
temporal streamline clustering process (Section 6.2). Finally, we per-
form a spatial correlation using particle advection based on the wind
fields to understand the origins and destinations of PM2.5 particles
within a specific haze event (Section 6.3).

Figure 2 provides a snapshot of our visual analytics system. It con-
sists of three major views (1-3) and a control panel (4). View (1)
shows the comparative visualization of a variety of scalar variables
over time (bottom) as well as the summarized wind patterns (top).
View (2) shows a wind field visualization at a user-specified time using
streamlines. The background color shows the spatial distribution of
the PM2.5 concentration. In particular, we normalize this distribution
to the range [0,1], and visualize it on top of the geographical map of
the area using alpha color blending. We use a white to yellowish-gray
(RGB = (220,189,97)) color coding with zero mapped to white and
the largest PM2.5 value mapped to yellowish-gray. View (3) provides
a color plot of the selected scalar quantity at the same user-specified
time. Here, the relative humidity is shown with a rainbow color coding
(blue indicating low and red for high). The three major views integrate
our analysis on the five variables and shown them in a single interface.
Domain experts can explore the system further by tuning parameters
in the control panel.

4 HAZE EVENT DETECTION

In a pre-processing step, we create the PM2.5 concentration curve from
the simulated values obtained from the discrete spatial sampling of
the Beijing area. Figure 3(a) shows the corresponding plot for Jan-
uary, 2013 in Beijing. Each value is obtained by averaging all PM2.5
concentration values for the sampling positions in Beijing area. Fig-
ure 3(b) provides a similar PM2.5 plot, but is computed by remov-
ing the samples that are from the mountain (i.e., non-urban) regions
around Beijing. Such locations are indicated by the green areas in

Fig. 3. PM2.5 summarization for Beijing with all sampling points (a) and
samples falling solely in the urban area (b), where the non-urban area
is shown in green in (c).

Figure 3(c). As can be seen, after removing non-urban regions from
the PM2.5 summarization, the actual PM2.5 level in Beijing City is re-
vealed, which is much more severe than when looking at the entire
area.

4.1 Haze Identification Criteria
After this pre-processing step, we perform a haze event detection
based on the PM2.5 concentration plot. Looking at the air quality
forecast of China [6], one important threshold that is used to deter-
mine “Good” air quality or “Slightly Polluted” is a value of 75 for the
PM2.5 concentration. If the PM2.5 value is below 75, the air quality is
generally considered to be good in China, otherwise, the air is pollut-
ed. We will use this threshold to locate certain key points within the
PM2.5 plot that may indicate the beginning or ending of a haze period.
Another criterion for identification haze using PM2.5 concentration is



Fig. 4. Detected haze events (highlighted by yellow boxes) using the
PM2.5 plot. Green and blue dots highlight local maxima and minima of
the PM2.5 value within a haze event, while orange dots correspond to
the times when the PM2.5 concentration first (ascending curve) and last
(descending curve) reached a value of 75 during the individual hazes.

that a complete haze event should cover a time period for at least 24
hours, and within this time period the PM2.5 concentration should be
larger than 75; furthermore, the peak value should be at least 115.

However, during a haze event, the PM2.5 concentration may exhib-
it some large fluctuations and its value could temporarily be smaller
than 75. A detailed explanation for this fluctuation will be provided
in Section 7.2. If the dropping for this value lasts for less than 24
hours, it is still considered to be part of the same haze event. Figure 4
shows an example for detected haze events based on the PM2.5 con-
centration plot. Five haze events were detected based on the above
criteria (highlighted by the boxes in yellow). Within each detected
haze, the fluctuation of the PM2.5 value is obvious. For many times
during these periods, the value has dropped below the 75 threshold.
However, since each of these droppings occurred during a very short
period, e.g., dt < 12 hours, the corresponding curves are still part of
the haze events. Similarly, the ending time of a haze is the time when
the value finally drops below 75. On the other hand, even though a
number of PM2.5 concentrations during Days 14 – 17 were larger than
75, they are not deemed to be part of a haze event since none of these
peaks reached 115.

4.2 Detection Algorithm

Based on the above criteria, we now describe our algorithm for haze
event detection within the PM2.5 plot, (called f (qi)) where the qi are
the sampled data points.

Step 1: We perform Gaussian smoothing to remove small-scale
noise from the raw PM2.5 data, since such noise might lead to an in-
correct detection of haze events. In our implementation, we employ a
1D discrete kernel with weights [0.1,0.2,0.4,0.2,0.1].

Step 2: After smoothing the data, we detect the local maxima of the
smoothed PM2.5 curve. We use a threshold of t = 115 that corresponds
to the “lightly polluted” air quality, and locate all the local maxima,
P , whose PM2.5 values are larger than t. To determine candidates for
starting and ending times of hazes, we also detect valleys, i.e., local
minima, in the PM2.5 curve. In particular, we consider only those
local minima, V , that are directly connected with a peak whose PM2.5
value is larger than t.

Step 3: We identify a haze event as follows.

1. For the first peak P0 ∈P , we locate the immediately preceding
local minimum V0 ∈ V , which is the starting time of the first
haze.

2. We now inspect the second peak P1 ∈P . If the time difference
between these two peaks is less than 24 hours they belong to the
same haze event. If there exists a time period that is larger than
24 hours between two peaks, but within this period the lasting
time where PM2.5 is lower than 75 is less than 24 hours, we still
consider the two peaks belonging to the same haze event.

3. The ending time of this haze period corresponds to the immediate
succeeding local minimum of the last peak of the period of haze
determined by the method described in (2).

We repeat this process for the remaining peaks in P and the remaining
valleys in V to identify the rest of the haze periods.

5 CORRELATION AMONG SCALAR QUANTITIES

Similarly to the PM2.5 concentration, we summarize all other scalar
weather factors, including PBL, RH, temperature and wind strength,
into a number of 1D plots with respect to time. We now study their
temporal correlations by measuring their corresponding 1D plots. The
most challenge problem is that the correlations among PM2.5 concen-
tration and other weather factors, may experience delayed effects in
time, i.e., one weather condition is triggered after some time when a
correlated condition is satisfied. This usually can be reflected by phase
shifting in their corresponding 1D plots.

For example, in Figure 5(a), we can observe that the PM2.5 (red)
and PBL (blue) curves have approximately a negative correlation, i.e.,
when PBL increases, PM2.5 decreases, and vice versa. This can be eas-
ily revealed by computing their Pearson Product-Moment Correlation
Coefficient (PPMCC) [35] using their respective data values during the
same period.

However, we observe that the peaks and valleys of these 1D curves
do not always coincide, which indicates that their correlation may have
some temporal delays. A detailed and formal explanation of the cor-
relation between PBL and PM2.5 values will be provided in Section 7.
In order to capture this delay effect among different 1D curves, we
perform a correlation study of the phases between pairs of 1D plots.
We refer to this computation as a phase correlation computation. We
will take the PBL and PM2.5 correlation analysis as an example in the
following section.

Fig. 5. (a) The sampled plots of PM2.5 (red), RH (green) and PBL (blue).
(b) Illustration of phase shifting

Computation of Phase Shifting We start with computing phase d-
ifferences between each peak of the PBL plot and the closest valley
of the PM2.5 curve during a given time period (Figure 5(b)). Next,
we compute the average of all these phase differences, then shift the
PM2.5 curve along the X axis based on the average phase difference.
This average phase difference is the delay between these two factors.

Correlation during hazes As described earlier, hazes in general are
associated with multiple weather factors. During a haze event, it is
not easy to isolate these factors and solely look at the influence of one
factor, say PBL, to the PM2.5 concentration. To address this problem,
we propose the following solution: first, we estimate the phase shift,
sp, between the PM2.5 and PBL curves within a haze-free period, de-
termined by the haze event detection algorithm (Section 4). Second,
we compute the PPMCC coefficient, c, between these two curves with
appropriate phase shifting.

6 CORRELATION WITH VECTOR-VALUED QUANTITIES

Different to previously described weather factors, a wind system is
often modeled as an unsteady vector field because of its variational
directions. Therefore, the correlation between PM2.5 and wind cannot
be directly obtained using the above approaches for analyzing scalar
variables. In this section, we describe how we study the correlation be-
tween wind fields and PM2.5 concentration using spatial and temporal
streamline clustering techniques and particle advection.

We first visualize patterns of the wind field at any given time us-
ing streamlines. In our system, we randomly sample seeds with-
in Beijing area and trace out a streamline from each seed using an



adaptive Runge-Kutta fourth order (RK45) integrator in both forward
and backward direction. The streamline integration is terminated:

Fig. 6. Iso-lines for
2D parameterization.

1) if the velocity value is smaller than some
thresholds, i.e., for places with almost no
wind; 2) when forming a closed loop [4];
3) when reaching the boundary of the data
domain; or 4) when reaching the maximum
number of integration steps set by the user.
Note that we do not terminate the stream-
line computation even when it is getting re-
ally close to another streamline. This is to
avoid the generation of many short line seg-
ments (see Figure 6) which may introduce
some challenges to the subsequent streamline
clustering, e.g., short streamlines may not be
classified into the same group with nearby
long streamlines.

Based on the preprocessed wind streamlines, we summarize wind
patterns by leveraging spatial and temporal streamline clusterings and
integrate them into our comparative visual system. We also perform a
particle advection scheme to explore origins and destinations of PM2.5.
Details are shown as below.

6.1 Spatial Streamline Clustering
We now describe our streamline clustering algorithm inspired
from [44].

Distance measurements: We firstly define two fundamental distance
measurements: the distance between two streamlines and the distance
between two clusters. Consider two streamlines S1 consisting of N
points, pi, and S2 that consists of M points, q j. The distance between
them is measured as follows:

dS1S2 = min(d1,d2) (3)

d1 = 1
N ∑

N−1
i=0 argmin j |pi−q j|

d2 = 1
M ∑

M−1
j=0 argmini |q j− pi|.

For each integration point pi on S1 we compute its shortest distance
to S2 by finding the closest point from q j to S2. We then compute the
average distance d1 by summing up this shortest distances for all pi
and dividing it by N. Similarly, we compute d2 for S2. The distance
between S1 and S2 is then the minimum value of d1 and d2. The dis-
tance between two clusters C1 and C2 is defined as the largest distance
between any pair of streamlines Si and S j using Eq.(3) where Si ∈C1
and S j ∈C2.

Spatial clustering algorithm: With the above distance measurement,
a hierarchical streamline clustering can be performed in an iterative
process. Initially, each streamline is a cluster. We then procedurally
group the closest two clusters into one for each step until only one
cluster is left. This gives rise to a hierarchy of streamlines represent-
ed by a tree data structure, in which each node is corresponding to a
cluster and each leave is an individual streamline.

Please note that in this process, the streamline in a cluster is iden-
tified as a representative boundary streamline, when its total distance
to the other streamlines in the same cluster is the largest. For the next
iteration, another streamline that has the largest distance to the pre-
viously identified boundary streamline is found from the rest of the
streamlines. The identification of the central streamline is similar, i.e.,
the total distance of the central streamline to all other streamlines in
the cluster is smallest. This simple scheme can greatly facilitate the
clustering process. Additionally, we provide an interactive cluster dis-
play interface, in which users can control the display of streamline
cluster hierarchy. More specifically, Clusters with a pairwise distance
that is smaller than this threshold will be shown, while clusters in the
upper level of the hierarchy will not be displayed, since their distance
is larger than the threshold based on the above-given iterative cluster-
ing algorithm. When we visualize the selected clusters that satisfy the

user-specified threshold, a representative streamline, e.g., the central
streamline, for each cluster is shown accordingly.

Figure 7 represents the summarized wind patterns for three sampled
times using the above streamline clustering algorithm. In this example
41 streamlines are computed. The summarized wind patterns (high-
lighted by the thick red curves) did match the expert’s expectation.
One summarized wind pattern that deserves some attention appeared
at 3AM of Jan. 10th. Here, the wind direction tends to converge to Bei-
jing area. This coincides with a peak of the PM2.5 plot (Figure 9(a)) at
the same time. A more detailed discussion will be given in Section 7.3.

In our experiments, we perform streamline clustering for each sam-
pling time and then generate a comparative visualization to integrate
the summarized wind patterns with the plots of PM2.5 and the other
weather factors. Figure 8 provides an example. The top of this vi-
sualization shows a sequence of glyphs that provide the summarized
view of the wind patterns at some evenly separated times. The user
can inspect the detailed wind system by selecting one of these glyphs.

6.2 Temporal Streamline Clustering
As discussed earlier, during a haze event the influence of PBL to PM2.5
concentration is not as obvious as the one that can be observed during
a haze-free period (Section 7.2). This difference may be caused by the
change of the wind field. To study how this change of the wind field
influences the PM2.5 concentration, we cluster the wind field in time.
That is, if during a period of time the wind patterns remain almost
the same, we classify them as one group. Through such a temporal
clustering, we hope to investigate how changes in the direction and
strength of the wind influences PM2.5. Specifically, we achieve tem-
poral clustering of the wind field by performing a temporal streamline
clustering and group the consecutive instantaneous wind fields into a
cluster if they exhibit similar behavior based on their sampled stream-
lines.

Distance measurements: Similar to spatial streamline clustering,
there are two distance measures for temporal clustering: 1) the dis-
tance between two consecutive instantaneous wind fields, and 2) the
distance between two temporal clusters. Consider two consecutive
instantaneous wind fields, Va and Vb. Assume N streamlines Si are
computed from Va, and N streamlines S j are computed from Vb. The
distance between Va and Vb can then be defined as

d(Va,Vb) =
dVa→Vb +dVb→Va

2
(4)

where dVa→Vb represents the distance from Va to Va, which needs not
be identical to dVb→Va . The distance Va to Vb can now be defined as

dVa→Vb = argmax
i
{argmin

j
dSiS j} with Si ∈Va,S j ∈Vb. (5)

That is, for each streamline Si, we identify the streamline from Vb that
has the shortest distance to Si using Eq.(3). The distance from Va to
Vb is then defined as the largest distance from any Si to Vb. The reason
of using the largest distance is that we want to take into account some
large local variations. Figure 9 provides an example, where two groups
of streamlines (shown in red and blue color) have different starting
locations (i.e., the portions of the streamlines drawn in light colors).

After defining the distance between neighboring wind fields at con-
secutive times, the distance between two temporal clusters Ca and Cb
can be simply defined as the distance between the last instantaneous
wind field in Ca and the first instantaneous wind field in Cb. This is be-
cause Ca and Cb are temporal neighbors and we assume Ca is located
ahead of time to Cb.

Temporal clustering algorithm: Having these two temporal dis-
tances, we can perform temporal clustering in an iterative fashion. Ini-
tially, each instantaneous wind field is a cluster. We then procedurally
group the closest two clusters into one at a time until only one cluster
is left. Figure 9 provides an example of such a temporal clustering
during a haze event that occurred from Jan. 9 to Jan. 13, 2013 (Sec-
tion 7.3).



Fig. 7. Examples of summarized wind patterns around Beijing (red curves) for three sampled times in January, 2013 using the proposed spatial
streamline clustering technique.

Fig. 8. A comparative visualization of haze related variables within Jan. 2013, where the scalar variables and vector-valued variable are consistently
integrated together. On the top we show a sequence of glyphs with the summarized wind patterns in Beijing at the sampled times.

Fig. 9. Exploration of the haze event from January 9, 2013 to January 13, 2013. (a) Temporal streamline clustering where four clusters are
obtained. The opacity of the streamlines represents the direction of the wind with darker color corresponding to the downstream and lighter color to
the upstream. (b,c) The corresponding PM2.5 and wind (above) and relative humidity (bottom) of two time points selected by pink dash lines in (a).

6.3 Spatial Correlation Study Via Particle Advection
In this section, we describe how we perform a spatial correlation to
help domain experts explore origins and destinations of PM2.5 par-
ticles during a haze event. In particular, we study particle advection
caused by wind fields before and during the specific haze events. In our
implementation, we employ a conventional mass-less particle advec-
tion via pathline computation (Eq.(1)), instead of recently introduced
mass-dependent pathlines [7]. This is because the PM2.5 particles are
much smaller than those discussed in [7]; thus, their mass can be safe-
ly neglected.

In our spatial correlation study, we consider two types of particle
advection:

• backward advection to locate the origin of particles when a haze
event is starting.

• forward advection (i.e., in positive time direction) to study the
destination of particles when the haze event is ending.

For the backward advection, we proceed as follows: Given the peak

time, tb, and the starting time ts of the haze event, we advect parti-
cles sampled in Beijing area backwards starting at tb and ending at
ts. The density of the particles is determined by the PM2.5 concen-
tration distribution in Beijing at tb. We then inspect which positions
those particles can reach, which may indicate the original locations of
these particles without worrying about the influence of other weather
conditions. Figure 10 provides a number of results of the backward
advection for two haze events that occurred in Jan. 9, 2013 (left) and
Jan. 13, 2013 (right). Particles with differing colors are sampled at
different districts of Beijing. For the haze occurring at Jan. 9, 2013,
the visualization indicates that particles were from the west and south-
west of Heibei province, while for the haze of Jan. 13 of the same
year, the particles were mostly from other regions around Beijing and
its neighboring city, Tianjin.

At the same time, we can study where haze particles in Beijing may
go during the dissolution of the PM2.5 concentration. To achieve that,
we advect particles seeded in Beijing forward from tb to the ending
time of the haze at te. In combination with backward advection, they
render a complete image of where the particles are coming from and



where they may go before, in-between and after the haze event.

Fig. 10. Two examples of particle backward advection: (a) PM2.5 par-
ticles moving from Shanxi and Hebei provinces and non-urban regions
of Beijing to Beijing; (b) PM2.5 particles moving from Tianjin city and the
northeast of Hebei province to Beijing.

7 CASE STUDY

In a number of case studies we evaluated our system. we firstly sum-
marize the main findings based on our system. Then we describe the
influence of certain parameters and analyze three haze episodes in de-
tail.

7.1 Key Findings
Below we list the key conclusions that we found when experts use our
tools.

• When PBL remains in its minimum, the flat portions of the plot
PM2.5 concentration remains in a high level with some smal-
l fluctuation.

• During a haze event, PM2.5 concentration increases according-
ly with increasing RH; while a decrease of RH may reduce the
PM2.5 concentration, but not much.

• The VSN may carry pollutant from industrial zone to the urban
area of Beijing and increase PM2.5 concentration .

7.2 Correlation Analysis of Climate Factors

PBL: The Planetary Boundary Layer (PBL) is the lowest layer of the
troposphere where wind is influenced by friction. The PBL value, i.e.,
its thickness, is not constant. It tends to be lower at night and in the
cool season, while higher during the day and in the warm season [10].
Figure 8 provides a comparative visualization of the 1D plots of PM2.5
concentration (red) and PBL values (blue). We see that on a typical
day, PM2.5 concentration starts dropping from 8AM in the morning
and reaches its minimum around 2PM of the day. It then gradual-
ly increases until reaching a maximum around 3AM of the next day.
By overlapping the PM2.5 plot and the PBL plot, we see that when
PBL values increase, PM2.5 values decrease; and when PBL values
decrease, PM2.5 values increase accordingly. In particular, when P-
BL remains in its minimum, i.e., the flat portions of the plot PM2.5
concentration remains in a high level with some small fluctuation.

This observation can be explained by meteorology [41]. Due to the
continuous growth of the solar radiation during day time, the ground
surface absorbs more heat which leads to an increase of thermal differ-
ence between the air and the surface. This difference in turn results in

stronger turbulence behavior in troposphere–the lowest layer of the at-
mosphere, increasing the transportation of the particles from the lower
level to higher levels of the atmosphere. Such transportation conse-
quently reduces the concentration of the PM2.5 particles. At the same
time, the PBL value increases during this process. After 12PM each
day, the heat absorbed by the ground surface decreases, so does the
thermal difference between the air and the surface. The turbulence be-
havior within the troposphere is remitted accordingly. The transporta-
tion of PM2.5 particles is therefor constrained, leading to the gradual
increase of the PM2.5 concentration due to the aggregation of PM2.5
particles. During this process, the PBL value is decreasing.

Common knowledge in meteorology says that on a haze-free day
PM2.5 concentration is mainly influenced by the PBL value. Howev-
er, during a haze event, the high concentration of pollutants reduces
the throughput of the solar radiation. The amount of heat absorbed
by the ground surface reduces accordingly, leading to small thermal
differences between the air and surface. This in turn suppresses the
level of turbulence in the troposphere and the corresponding particle
transportation.

Wind strength: Wind is an important factor that may contribute to
the formation of hazes. However, a wind field is a vector field, there-
fore, in this section we only focus on its scalar component, i.e., the
wind strength–the magnitude of the wind field, and leave the direc-
tional component for subsequent processing (Section 6). Specifically,
we decompose the wind field into its south-north and west-east compo-
nents, respectively, and study their correlation with hazes. Sections 7.3
provide a more detailed insight to this correlation.

Relative humidity: Compared to the wind field and the PBL, relative
humidity does not play a key role in the variation of the PM2.5 con-
centration. Nonetheless, it is a necessary weather factor when studying
haze events. Variations of the humidity may influence a trend of the
PM2.5 concentration. In general, during a haze event, with increasing
humidity PM2.5 concentration increases accordingly, while a decrease
of humidity may reduce the PM2.5 concentration, but not much. A
more specific use case on the correlation between RH and PM2.5 is
provided in the following.

7.3 Comprehensive Analysis of Hazes in January 2013
Based on our haze event detection results (Figure 4), there existed five
noticeable haze events in Jan. 2013. In this section, we focus only on
the two main events, i.e., the one occurred between January 9th and
13th (denoted by EVENT#1), and the one from January 26th to 30th
(denoted by EVENT#2). According to the above discussion, both the
PBL levels and the wind fields play an important role in the evolu-
tion of PM2.5 concentration. Thus, we mainly concentrate on how
these two variables influence the variation of PM2.5 during these two
periods. As wind field is a vector-valued variable, based on the in-
struction of an expert we needed to decompose the wind vector, V into
two components to facilitate the subsequent analysis. Particularly, we
consider two orthogonal directions, i.e., the direction pointing from
South to North, U↑, and the direction pointing from West to East, U→.
The wind vector V can then be decomposed into south-north, VSN , and
west-east, VWE , components using <V,U↑ > and <V,U→ >, respec-
tively. <,> is the inner product of two vectors. The sign of these two
components indicates the main wind direction. For example, a nega-
tive south-north component indicates that the wind blows from north
to south.

Overview of January 2013
Figure 11(a) shows the plots of PM2.5 concentration (red), PBL

(blue) and the south-north wind component VSN (light green) of Jan-
uary 2013. Again, we observe a generally negative correlation be-
tween PBL and PM2.5 values, as shown in Figure 11(b,c) where the top
image shows the PM2.5 concentration and the bottom one shows the
PBL. For the relation between VSN and PM2.5 we observe that when
VSN increases, i.e., the wind mainly blows from south to north, PM2.5
tends to increase accordingly. This is because there is an industrial
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Fig. 11. (a) Plots of PM2.5 concentration (red), PBL (blue), the south-north wind component VSN (dark cyan) and the west-east wind component
VWE (orange) on January 2013; (b,c) The corresponding PM2.5 (above) and PBL (bottom) of two time points indicated by the pink dash lines in (a);
(d)The magnified view of the haze event highlighted by a yellow box in (a); (e,f) The corresponding PM2.5 and wind field of two time points selected
by the pink dash lines in (d).

zone south of Beijing. The south-north wind may carry the pollutant
with it from this industrial zone to the urban area of Beijing. At the
same time, if the VSN is negative, i.e., the wind blowing from north to
south, the PM2.5 level tends to decrease.

However, we also observe that during some time period the PM2.5
concentration was influenced by both PBL and VSN . For instance, from
12AM to 6AM of January 10th, VSN was negative, while PM2.5 con-
centration reached its peak value. This was caused by the PBL, as at
the same time the PBL value was at its minimum. In addition, in an
earlier time, i.e., 2PM−−11PM of January 9th, VSN was positive, in-
dicating that the wind blew from south to north, which could carry a
large amount of pollutant from the industrial zone to the urban area of
Beijing. Combined with the previously described PBL effect, they led
to the breakout of the PM2.5 particles.

We investigate the correlation between PM2.5 concentration and RH
which are shown in Figure 8. Through phase analysis, we found the
phase shift between the peaks of RH and the valleys of PM2.5 is 0.27,
which means the valleys of PM2.5 arrive 0.27 hours ahead of the peaks
of RH in average. After shifting the curve, the correlation coefficient
between them is 0.40, which shows a weak positive correlation be-
tween RH and PM2.5. By separately studying the correlation on haze-
free days and hazy episodes, we observe an interesting pattern that the
former indicates a negative correlation while the latter shows a strong
positive correlation. With an in-depth analysis of the RH curves during
hazy episodes, we find the value of RH is in the range of 60%−90%
which can help the maintaining of particles. This finding is confirmed
by domain experts.

Analysis of EVENT#1
We now analyze the haze occurring from January 9th to 13th. Fig-

ure 9(a) shows the plots of PM2.5 concentration (red), PBL (blue), VSN
(light green) and VWE (orange) within this period. We are focused on
the two main peaks during this haze events. The corresponding PBL
values at the times of these two peaks were both very low, which did
not provide a condition for a dissolution of the PM2.5 concentration.
Next, we inspected the wind field behavior. During the breakout of
the PM2.5 at January 10th, i.e., during the ascending of the PM2.5 plot
before reaching the first main peak, both VSN and VWE increased, in-
dicating that the wind blew from southwest to northeast. The PM2.5
particles were transported accordingly. At 12AM of January 10th, the

wind direction changed from south→north to north→south, indicat-
ing the particle aggregation reached its maximum due to the previous
transportation process. Coincidentally, the PM2.5 concentrations also
reached their peak value. After that, the north→south wind started to
dominate, the PM2.5 value started to decrease as expected. Near 12PM
of January 10th, the south→north wind started to dominate. Accord-
ingly, PM2.5 saw a small increase. But right after 12PM of the same
day, the PBL value gradually increased, which led to a decrease of the
PM2.5 till dawn of the next day. This can be explained by the influence
of PBL to PM2.5 as noted in Section 7.2. From 12PM of January 10th
to around 4PM of January 12th, the general wind direction is from
north to south. Hence, the PM2.5 concentration remains in a relatively
lower level, although it is still above 75.

Similarly, during the second major breakout which occurred from
January 12th to 13th, the VSN value played a major role in the variation
of the PM2.5 concentration.

To learn where the PM2.5 particles are coming from during this haze
event, we select the first peak point, 12AM of January 10th to perform
a particle backward advection until the starting point of this event,
i.e., 2PM of January 9th. Figure 10(a) shows three snapshots in this
process, where we find 28% PM2.5 particles came from Shanxi and
south of Hebei provinces, 65% PM2.5 particles came from the west of
Hebei province, and only 7% were from Beijing itself. Meanwhile, we
perform the forward particle advection from 2PM of January 12th to
1AM of January 13th and find 68% PM2.5 particles moved to Tianjin
and 23% of them still stayed in Beijing, as illustrated in Figure 10(b).
From these numbers, we can see that a large portion of PM2.5 particles
in Beijing was from Hebei and moved to Tianjin.

Analysis of EVENT#2 The haze event occurring from January 26th
to 30th has one obvious difference from the EVENT#1. In EVENT#1,
the times when PM2.5 reached its peak values typically corresponded
to the times when VSN transited from south→north to north→south,
as discussed above. From the plots corresponding to EVENT#2 (Fig-
ure 11(d)), we see that the times when PM2.5 reached peaks were in
general ahead of the transitioning time of VSN (light green). This is
mainly due to the west-east wind, VWE (orange). For instance, let us
look at a PM2.5 peak occurred from 6PM of January 27th to 12PM of
January 28th. The time when the wind direction switched was about
eight hours later than the PM2.5 peak. In the meantime, the PBL val-



ue was low, creating an ideal environment for the aggregation of haze
particles.

Now, let us take the west-east wind into consider for this case. S-
tarting from 4PM of January 27th, the wind direction was mainly from
southwest (i.e., both VSN and VWE are positive). At the same time, the
PM2.5 concentration in the southwest part of Beijing was also high (see
Figure 11(e)). Therefore, it can be concluded that the southwest wind
carried the haze particles to the urban area of Beijing during this peri-
od. This resulted in a peak PM2.5 concentration value at around 2AM
of January 28th (see Figure 11(f)). After that, the wind direction was
dominated by the west→east direction, i.e., VSN dropped to near zero,
while VWE maintained in a high level. In the meantime, the PM2.5
concentration is near zero at the west of Beijing. Consequently, the
west→east wind gradually transported the PM2.5 particles from Bei-
jing to the outside areas. This explains the delay between the transition
time of the south-north wind and the peak time of the PM2.5 concen-
tration. All the other PM2.5 peaks in EVENT#2 were influenced by
the west-east wind in a similar fashion to the above example.

8 CONCLUSION

In this paper, we propose a visual system to study haze events, includ-
ing its evolution and correlations with different weather conditions.
Our analysis is based on PM2.5 concentration, which is employed to
measure air quality identify hazes in meteorology. To understand how
a haze event is influenced by different weather conditions, we study
the correlation between PM2.5 concentration and typical weather vari-
ables. In particular, we compute the correlation coefficient of PM2.5
and other scalar variables, taking into account the delay effect between
these variables via a phase correlation computation. We study the cor-
relation of PM2.5 with wind fields (unsteady vector fields over time)
through a modified spatial streamline clustering method and a novel
temporal streamline clustering technique. Additionally, we perform
pathline computation to help investigate particle transportation in dif-
ferent temporal phases of haze events. Furthermore, our visual system
is evaluated by domain experts on a number of haze events simulated
in Beijing area during January 2013.

Future Work The current study focuses on a single layer of the at-
mosphere and considers only a small subset of the available weather
factors. In the future, we plan to extend our system to support study-
ing hazes in multiple layers. The 1D curve representation in our sys-
tem may become chaotic when weather variables increase. This issue
can be improved by introducing hierarchically interactive encodings.
Secondly, we will explore other chemical elements in the air, such as
PM10, SO2 and NO2 concentrations. Existing studies indicate that
PM10 particles stay mainly local, while PM2.5 particles can be trans-
ported. It will be interesting to apply our system for analyzing the
correlation of PM10 concentrations with other weather factors, espe-
cially PBL and wind fields. In addition, it is important to combine
our method with observation data to verify our haze forecast quality,
which we plan to carry out in future works. Finally, we will conduct
meteorological experts’ reviews in a larger scale to prove its effective-
ness and usage for the whole domain area in the future.
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