
Volume xx (200y), Number z, pp. 1–13

Hexahedral Meshing with Varying Element Sizes

Kaoji Xu1 Xifeng Gao2 Zhigang Deng1 and Guoning Chen1

1Department of Computer Science, University of Houston, USA
2Department of Computer Science, New York University, USA

Abstract
Hexahedral (or Hex-) meshes are preferred in a number of scientific and engineering simulations and analyses due to their
desired numerical properties. Recent state-of-the-art techniques can generate high quality hex-meshes. However, they typically
produce hex-meshes with uniform element sizes and thus may fail to preserve small scale features on the boundary surface.
In this work, we present a new framework that enables users to generate hex-meshes with varying element sizes so that small
features will be filled with smaller and denser elements, while the transition from smaller elements to larger ones is smooth,
compared to the octree-based approach. This is achieved by first detecting regions of interest (ROI) of small scale features.
These ROIs are then magnified using the as-rigid-as-possible (ARAP) deformation with either an automatically determined or
a user-specified scale factor. A hex-mesh is then generated from the deformed mesh using existing approaches that produce
hex-meshes with uniform-sized elements. This initial hex-mesh is then mapped back to the original volume before magnification
to adjust the element sizes in those ROIs. We have applied this framework to a variety of man-made and natural models to
demonstrate its effectiveness.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Modeling—Mesh Generation

1. Introduction

Hexahedral meshes are preferred by a number of scientific and en-
gineering applications due to their desired numerical properties.
For instance, hexahedra offer better alignment with solution fea-
tures than tetrahedra [YMD11]. However, given any input mod-
els, generating hex-meshes with good quality elements and simple
structure while conforming to the surface configuration remains an
open challenge. Recently, a number of effective techniques have
been introduced to help generate high quality hex-meshes from
various input objects. However, they typically aim to generate hex-
meshes with uniform sizes and may not preserve small features. If
small features need to be preserved, a very dense hex-mesh will be
resulted.

Recent research in high-order discretizations of partial differen-
tial equations also suggests the need for mesh adaptivity to reduce
solution error at a reasonable computational cost [YMD11]. This is
because using smaller elements in regions of interest (e.g., small
scale surface features) helps reduce the discretization error, and
thus, improves the simulation accuracy and convergence rate. Us-
ing relatively large elements in regions of less interest helps keep
the total number of elements small, leading to a faster computa-
tion. See Section 4 for an example of the linear elasticity prob-
lem. To address this need of mesh adaptivity, a few methods (e.g.,
octree-based approaches [ZB06, Mar09, ZLX13]) are proposed to
preserve small surface features using element subdivision strate-
gies, which often requires a few levels of subdivision in order to

preserve small surface features, resulting in hex-meshes with a
large number of elements and non-structurally consistent transition
at the interface of two levels of the adaptive mesh (i.e., the intro-
duction of a large number of irregular elements). See Figure 1a for
an example. These excessive irregular elements result in a complex
mesh structure (Figure 1d), complicating subsequent computations
that prefer a simpler mesh structure, such as Isogeometric Analysis
(IGA) [HT05]. Here, the mesh structure is the base complex of the
mesh, which is a partitioning of the volume produced by the separa-
tion surfaces traced out from the singularities of the mesh (i.e., the
sets of connected irregular edges). See the bottom row of Figure 1
for some examples. That said, there is a need of a technique that
enables the control of hex-element sizes in order to preserve small
surface features while maintaining a reasonable element number
and a simple mesh structure (i.e., with fewer hexahedral compo-
nents). All the above reasons motivate our work.

Overview: Our goal is to fill with smaller elements in the vol-
umetric regions adjacent to the small surface features, while the
transition between elements with different sizes largely preserves
the consistency of mesh structure (i.e., fewer irregular elements are
introduced).

Since the aforementioned adaptive strategy via element subdi-
vision as a post-processing will increase the number of elements
exponentially (i.e., one hex splits to eight) and introduce numer-
ous irregular elements, we seek for a pre-processing solution. Our
approach is inspired by an anisotropic quadrangulation technique

submitted to COMPUTER GRAPHICS Forum (3/2017).



2 Kaoji Xu & Xifeng Gao & Zhigang Deng & Guoning Chen /

Figure 1: The hex-meshes of a pipe model generated using an octree-based method [Mes15] (a), our proposed method (b), `1-polycube
approach [HJS∗14] (c), respectively. (d-f) show their respective base-complexes. These base-complexes partition their respective hex-meshes
into a hexahedral structure, consisting of large hexahedral (or cuboid-like) components. The red dots are the corners of the components and
the cyan curves are their edges.

recently introduced by Panozzo et al. [PPTSH14], in which the sur-
face is deformed based on the surface characteristics to induce a
uniform cross field that is later mapped back to the original surface
to obtain a general frame field for the generation of an anisotropic
quad-mesh. Similarly, if we extract a hex-mesh with uniform size
elements from a volume whose sub-regions adjacent to small sur-
face features, referred to as the regions of interest (ROIs), are mag-
nified, the hex-mesh projected back to the original volume will have
smaller elements in those ROIs.

To achieve the above goal, we propose a novel and general adap-
tive hex-meshing framework. First, we detect regions of interest
(ROIs) of small scale features (Section 3.1). Second, these ROIs
are enlarged with either an automatically determined or a user-
specified scale factor to obtain a deformed volume (Section 3.2).
Third, a valid all-hex mesh is constructed from this deformed vol-
ume, which is mapped back to the volume space enclosed by the
original surface (Section 3.3). Finally, to ensure the outcome of a
high-quality hex-mesh while preserving the desired element sizes,
an effective optimization is performed (Section 3.5). Our frame-
work is simple and intuitive to use. In addition, the user is able
to semi-automatically choose ROIs for magnification to address
different needs of specific applications, such as the generation of
anistropic meshes. Our framework is also flexible so that different
techniques can be adapted to accomplish the above individual steps.
Figure 2 illustrates the pipeline that is implemented in this work.
We have applied our framework to a number of man-made and
natural-shape models to demonstrate its effectiveness (Section 4).
Figure 1 provides a comparison of our approach with the state-of-
the-art `1-polycube approach and an adaptive octree-based method.
From this comparison, we see that our method can generate hex-
meshes with element sizes better adapting to the feature size than
existing methods that tend to generate hex-meshes with uniform el-

ement size, while having a comparable base complex structure that
is much simpler than the adaptive octree-based method.

2. Related Work

A wide variety of methods exist to generate a hexahedral mesh from
an input triangle mesh [SJ08]. However, since the goal of this work
is to produce hex-meshes with elements adaptive to the surface fea-
ture sizes while having as simple as possible structures, we only
focus on methods that may have the potential to achieve this goal.

Octree-based: Octree-based or grid-based methods typically first
fill the interior volume of the input model with a Cartesian grid,
then connect the grid to the surface using a variety of meth-
ods [Sch96, Mar09]. For instance, Ito et al. [ISS09] introduced
an octree-based hex-mesh generation based on a set of refine-
ment templates to perform local refinement. However, these octree-
based methods often need excessively fine local element sizes on
small scale or concave features and may form low quality ele-
ments with irregular connectivities (i.e., introducing a large amount
of irregular elements) in those areas [ZB06, ZLX13]. These irreg-
ular elements correspond to the singularities of a 3D volumetric
parameterization that the hex-grids correspond to. These singu-
larities help define the base complex of the hex-mesh. A large
number of singularities may result in a base complex with many
hexahedral components, posing challenges for the fitting of basis
functions with higher-order smoothness for the subsequent simu-
lations [GDC15, GMD∗16]. The recently proposed adaptive hex-
meshing techniques [ZZ07,SZ16] based on a similar framework to
the octree-based approach still do not address the issue of introduc-
ing an excessive number of singularities.

Polycubes: Polycube map, originally proposed in [THCM04], cre-
ates a parametric domain by assembling cubes which are further

submitted to COMPUTER GRAPHICS Forum (3/2017).



Kaoji Xu & Xifeng Gao & Zhigang Deng & Guoning Chen / 3

Figure 2: Pipeline of our framework. Given an input of tetrahedral or triangular mesh (a), we first compute a sizing scalar function(b) to
identify the locations with small features. The technique in [TAOZ12] is a good candidate for this task. The feature size of each segment (c) is
measured by the medial ball size as visualized in (b). Here blue indicates places with small features, while red corresponds to large segments.
The small segments, identified as the ROIs based on their medial ball sizes, are magnified (d). Then, any existing hex-meshing method (e.g.,
polycube based, frame field based or skeleton-based) can be applied to extract an initial hex-mesh with elements of uniform size (e) in the
domain of (d). In this paper we use the `1-polycube-based method [HJS∗14]. By mapping (e) back to the original volume before deformation,
we obtain the output hex-mesh (f) with varying element sizes.

mapped bijectively onto the object. Polycubes allow the decompo-
sition of an object into a set of larger hexahedral pieces. However,
the quality of the resulting hexahedral representation strongly de-
pends on the placement of polycube corners on the input triangle
mesh to achieve a low-distortion mapping between the polycube
representation and the input. This challenging process has received
a lot of attention recently [GSZ11, WLL∗12]. Automatic methods
are usually difficult to control. Livesu et al. [LVS∗13] and Huang et
al. [HJS∗14] introduced Polycuts and `1−polycubes, respectively,
to improve the corner configuration of the conventional polycube to
remove unnecessary small cubes. Li et al. [LLWQ13] extended the
conventional polycube to a generalized polycube (or GPC), which
enables the curved cuboid representation of the elementary sub-
volumes decomposed via shape analysis. Cherchi et al. [CLS16]
simplified the layouts of polycube to get a simpler structure. Re-
cently, Fang et al. [FXBH16] further introduced the closed-Form
induced polycubes, which can be applied to more types of models
and can generate hex-meshes with layout better aligned with the
surface features.

Different from the octree-based method, Kremer et
al. [KBLK14] introduced an automatic technique that gener-
ate hex-meshes from valid surface quad meshes based on the
concept of dual loops. Additional singularities may still be
introduced during the construction of a valid hexahedral topology.

Frame field guided approaches: Frame fields, especially cross
fields, have been proven useful to assist the placement of quadrilat-
eral elements when quadrangulating a triangular mesh [BZK09],
as it provides consistent local frame information everywhere in
the domain to guide the orientation of parameterization. Huang et
al. [HTZ∗11] proposed a first solution to creating a boundary con-
formal 3D cross field via an expensive optimization. Due to in-
sufficient control on the types of the singularities in the cross field,
their approach cannot guarantee to generate an all-hex mesh. Nieser
et al. [NRP11] pointed out that only 10 types of singularities can
lead to a valid all-hex mesh. Recently, Li et al. [LLX∗12] intro-
duced the Singularity Restricted Field (SRF) that converts a gen-
eral 3D cross field to the one that contains only these 10 types of

singularities. After regularizing the SRF and fixing degeneracies,
high quality hex-meshes can then be generated using the Cube-
Cover technique [NRP11]. A similar work by Jiang et al. [JHW∗14]
also aims to derive a restricted cross field from some initial cross
field, which is then used to generate hex-meshes by solving a
mixed-integer problem. Despite generating hex-meshes with supe-
rior quality, frame field based methods are typically less robust,
compared to the polycubes approach, and can easily lead to degen-
eracy in the parameterization [LLX∗12, GMD∗16].

On the other hand, a metric-driven frame field generation tech-
nique was introduced by Jiang et al. [JFH∗15] recently, which may
be used to achieve the generation of anisotropy quad-meshes. Sim-
ilarly, Nieser et al. [NPPZ12] introduced a hexagonal global pa-
rameterization guided by the shape-aware 6-RoSy field, which can
be used to achieve adaptive triangle meshes. Nonetheless, there is
no evidence showing that either method can be directly applied to
generate adaptive volumetric meshes.

Skeleton and sweeping based approaches: Gao et al. [GMD∗16]
proposed a structure volume decomposition technique based on a
generalized sweeping strategy, which can be used to generate multi-
resolution hex-meshes with much simpler structure. In a similar
spirit, Livesu et al. [LMPS16] proposed a skeleton-driven adaptive
hex-meshing strategy, which is similar to a previous work by Lin et
al. [LLD12]. Liu et al. [LZLW15] proposed a T-mesh construction
technique using a skeleton-based polycubes. However, all these
skeleton-based approaches are highly constrained by the types of
models that can be handled.

While the existing polycubes based, frame field based and skele-
ton based approaches can generate hex-meshes with much sim-
pler structure compared to the octree-based methods, their gener-
ated hex-meshes typically possess elements of uniform size. That
said, in order to capture small scale surface features, sufficiently
dense hex-meshes (i.e., with much more elements) may be needed,
which will significantly increase the cost of subsequent compu-
tation. Our work effectively addresses this challenge by adding a
pre-processing step that magnifies the small surface features before

submitted to COMPUTER GRAPHICS Forum (3/2017).



4 Kaoji Xu & Xifeng Gao & Zhigang Deng & Guoning Chen /

computing an initial hex-mesh with uniform element size. This en-
ables the generation of hex-meshes with denser hex-grids in the
volume regions near the small surface features while still having a
simple structure.

3. Our Method

Our proposed framework consists of the following major steps (il-
lustrated in Figure 2).

1. We first segment the surface of the input model and compute
the size information for each segment. The regions of interest
(ROIs) are identified as the segments that have small feature
sizes.

2. Given the above segmentation and the identified ROIs with their
size information, we magnify them using an as-rigid-as-possible
deformation (Figure 2d).

3. Next, we apply any of the existing methods to produce an ini-
tial hex-mesh with uniform-sized elements (Figure 2e) from the
deformed mesh obtained in the preceding step. In this work, we
mostly apply the `1−polycube method. The obtained hex-mesh
is then mapped back to the original volume before deformation
to adjust the element sizes in those ROIs (Figure 2f).

Note that users might select the polycube
hex-meshing method and perform the magni-
fication on the obtained polycubes instead of
the input mesh. However, given the selection
of the parameters, the polycubes map deforma-
tion may classify the small features with their
nearby portion of the surface (e.g., the tail of
the bunny is lost in the polycube of the bunny
model shown in the inset) or produce polycubes
with artifacts (e.g., degenerate elements in Fig-
ure 11c) due to the small sizes. To overcome this difficulty, we opt
for magnifying the input surface before computing its polycubes
map. In fact, this strategy can in turn help handle certain models
that the polycubes approach alone may not be able to handle. See
the horse model shown in Figure 11 for an example.

In the following, we provide more details on the individual steps.

3.1. Mesh Segmentation

Our goal is to fill with denser hexahedral elements in the regions
adjacent to small surface features (e.g., legs of a chair, ears of a
bunny, and the tail of a kitten). There are a number of approaches to
identify small surface features (please refer to [CGF09] for a com-
prehensive survey). Considering the need of the size or scale infor-
mation of each segment, in this work, we opt for a skeleton guided
segmentation approach proposed by Tagliasacchi et al. [TAOZ12].
This approach is simple yet robust. In the following, we briefly de-
scribe this approach for the sake of readability.

Skeleton-based segmentation: Given an input surface triangle
mesh, its skeleton is first extracted using a mean curvature flow
method. This method constructs an energy function which contains
a term to contract the mesh, a term to attract it to the geometry
position of structure and a term to adjust the skeleton to the medial
axis position. Iteratively smoothing and updating the weight of each

term makes the 3D graph (initially the triangle mesh) converge to a
zero-volume degenerate geometry (i.e., 1D skeleton). The obtained
skeleton is represented as a 1D graph of curvilinear structure. Via
edge collapsing, the surface vertices are associated with the vertices
of the skeleton (also called the skeletal points). In the meantime,
the distance of each vertex on the 1D skeleton to the input mesh
(i.e., the medial ball size) is also obtained during the contraction.
With the association of surface vertices and skeletal points, the in-
put surface triangle mesh can be segmented by first computing a
shape diameter function for each face of the input mesh, followed
by solving a graph cut problem. The shape diameter function for
each face is computed as the average distance of its three vertices
to their corresponding skeletal points [SSCO08]. The output of the
segmentation is a map in which each triangle face of the input mesh
is associated to a segmentation label and a medial ball size. This in-
formation will be used for the subsequent mesh deformation, since
small surface features correspond to small medial ball sizes.

In practice, in order to obtain more desired segmentation and
accurate skeleton geometry and medial ball sizes using the above
approach, we need to increase the resolution of the input trian-
gle mesh (see Figure 3(b)). However, increasing the resolution of
the input mesh will significantly increase the computation cost of
the subsequent processes (e.g., `1−polycube deformation and hex-
mesh extraction). To balance the accuracy of the segmentation and
the computation cost, we experimentally choose to use meshes with
triangle elements ranging from 2K to 25K for different test models
given their characteristics.

(a) 5k triangles (b) 13k triangles

Figure 3: Compared to the coarse mesh (a), a denser input triangle
mesh will produce more desired segmentation and skeleton (b).

Identify ROIs: With the segmentation and the size information
of each segment, the ROIs can be selected either manually by the
users (see Figure 13) or automatically. After the above segmenta-
tion, each triangle ti of the input mesh is associated with a unique
medial ball size si and a segmentation label j (i.e., it belongs to the
jth segment). For each segment, we estimate its feature size s̄ j as
the average of the medial ball sizes of all the triangles of this seg-
ment. In the meantime, an average feature size of the entire mesh
s̄ can be computed by averaging all the medial ball sizes. We then
choose all the segments that satisfy s̄ j < s̄ as the regions of interest
(ROIs) automatically.

submitted to COMPUTER GRAPHICS Forum (3/2017).



Kaoji Xu & Xifeng Gao & Zhigang Deng & Guoning Chen / 5

3.2. Mesh Magnification

After identifying the ROIs with the help of segmentation, the next
step is to magnify them. Our goal is to enlarge the selected ROIs
in proportion to their feature sizes, while maintaining the non-ROI
regions unchanged. This is required in order to fill the hex-elements
with the sizes proportional to the feature sizes. Direct magnification
of ROIs may produce large distortions and abrupt changes between
the magnified regions and the other parts of the mesh. To achieve
smooth transition, many surface deformation approaches have been
proposed [WLT08, ZZG∗12]. [WLT08] achieves the magnification
of a user-specified region (i.e., within a magic lens) via the enlarg-
ing of the grid cells enclosing this region. To adapt this approach for
our problem, we need to generate a dense enough (or even adaptive)
grid for the accurate enclosure of ROIs. This dense grid could lead
to slow computation. The approach in [ZZG∗12] is global and may
also deform the other regions that are not ROIs, which is different
from our goal.

In this work, we adopt the as-rigid-as-possible (ARAP) defor-
mation approach [ACOL00, SA07, CPSS10]. ARAP deformation
has been widely applied in many surface deformation and editing
applications. A general pipeline of ARAP deformation is that the
user first select a set of vertices for deformation. Then, the user
modifies (or moves) one or more of these vertices. Based on the
new vertex positions, the ARAP deformation computes the new
positions of the entire mesh with regions far away from the edited
vertices largely unchanged. However, our goal is to automatically
magnify the ROIs, including both their surface portions and the en-
closed volumes. To utilize ARAP deformation to achieve our goal,
we need to develop an approach to estimate the new positions of
the vertices within each ROI. In addition, this estimation of the
new vertex positions should take into account the information of
the feature size of a given ROI. In the following, we describe our
solution to this estimation.

Determine bounding boxes and scaling factors for ROIs: First,
we compute the bounding box B for each ROI whose principle di-
rection indicates the deformation direction. For each ROI, R, there
could have two possible different configurations: 1) R is connected
with only one other segment (e.g., the gray and yellow segments
shown in Figure 3b); and 2) R is connected with two or more other
segments (e.g., the tail of the kitten). In the rest of the paper, we
denote the former by S1 and the latter by S2, respectively. For S1,
we first extract the boundary of R, which is a simple 1D curve. We
then fit a plane P to the vertices of this boundary curve using a least
square fitting (Figure 4a). Next, we project all vertices V of R onto
P, and compute a bounding rectangle BS on P as well as its cen-
ter C based on the projected vertices VP. BS is then the base of the
bounding box B, whose height is the distance of a vertex in V that
is the farthest away from P (Figure 4b). The principal direction of B
is then the direction that is perpendicular to the base plane BS. For
S2, since there are two or more segment boundaries, for simplicity
we choose the boundary that connects R with the segment whose
medial ball size is the largest among all the neighboring segments
of R to fit the plane P. After obtaining P, the bounding box of R
can be estimated similarly to S1. Again, the principal direction of
the obtained bounding box B is the direction that is perpendicular
to the base plane BS computed on P.

Second, we determine the scaling factor for the magnification.
Since each ROI R has an estimated feature size s̄ j, it is natural to
compute a scaling factor s f j = s̄/s̄ j for R. In some situations, while
s f j may not provide a sufficiently large value for the magnification,
our framework enables the user to specify the desired scaling fac-
tor to compensate that. In addition, different scaling factors may be
assigned to different ROIs to address the needs of specific applica-
tions. Figures 7 and 13 provide such examples.

(a) (b) (c)

Figure 4: (a) Fitting a plane P to the boundary vertices (cyan) of
an ROI (gray). (b) Projecting the vertices V of the ROI to the plane
P to fit a bounding rectangle BS. (c) Mapping the cyan vertices V
of ROI to a magnified cube to obtain their new positions V ′ (red).

Magnify ROIs: With the estimated bounding box and its scaling
factor of an ROI, R, we now can compute the magnified positions of
the vertices in R. Specifically, we first subdivide the bounding box
into five tetrahedra [HT89]. Each vertex in R is located in one of
these five tetrahedra. We then compute the barycentric coordinates
of each vertex with respect to the tetrahedron where it is located.
The new position of each vertex is then obtained from the magni-
fied bounding box based on its corresponding tetrahedron and its
barycentric coordinates (Figure 4c). The bounding box B is scaled
uniformly based on the scaling factor in our experiments. That is,
the bounding box is enlarged along the principal direction of B.
These new positions are then fed to the ARAP deformation to up-
date the entire mesh. Note that while this simple uniform scaling
may result in the new positions of the vertices intersecting with the
other parts of the surfaces, it can be effectively resolved by ARAP
deformation with proper self-intersection prevention.

To facilitate the subsequent hex-mesh extraction, a tetrahedral
mesh is first computed for the input triangle mesh and is then de-
formed after the ARAP deformation which updates only the sur-
face vertex positions. In particular, we compute the mean value
coordinates [JSW05] for each interior vertex with respect to the
corresponding surface vertices. Therefore, the update of the sur-
face vertices will result in the update of the positions of the in-
terior vertices. Alternatively, we can apply a volumetric ARAP
deformation to update the interior vertices together with the sur-
face vertices [CPSS10]. However, due to the volume preservation
in the volumetric ARAP, we find that the transition between ROIs
and non-ROIs in the resultant mesh obtained with a surface ARAP
is generally smoother than the one obtained from the volumetric
ARAP. See Figure 5 for a comparison.

We wish to point out that, a large scaling factor (i.e., s̄ j is much
smaller than s̄) may cause large distortion at the boundary of the
corresponding ROI (see Figure 6c). To avoid this, we recommend
that s̄ j after magnification be smaller than s̄. Nonetheless, even with

submitted to COMPUTER GRAPHICS Forum (3/2017).



6 Kaoji Xu & Xifeng Gao & Zhigang Deng & Guoning Chen /

Figure 5: Volumetric ARAP (left) vs Surface ARAP (right). Red ar-
eas show that the transition on the mesh obtained from the surface
ARAP is smoother than the one from the volumetric ARAP.

(a) (b) (c)

(d) (e) (f)

Figure 6: (a) shows the teddy bear model before deformation. (b)
shows the magnification of the left ear of the teddy bear model with
a scaling factor of 2.0, while (c) shows the result with a scaling
factor 4.0. (d) (e) and(f) are the corresponding hex-meshes of (a)
(b) and (c), respectively.

such a large distortion at the boundary of the ROIs, our pipeline can
still generate a valid all-hex mesh with a structure much simpler
than the one produced by the octree-based approach. See Figure 6f
for an example.

Note that other deformation techniques, such as the frame field
driven deformation [PPTSH14], can be potentially applied here to
properly magnify the regions containing small scale features. We
will provide more discussions on this in the later section.

Anisotropic meshing: With the above deformation framework,
anisotropic hex-meshes can be generated. Specifically, instead of
performing a deformation with a uniform scaling factor in the three
principal directions of the bounding box of an ROI, we can choose
different scaling factors for different directions. Figure 7 shows an
example, in which the two ears of the bear are magnified with dif-
ferent scaling factors in the three principal directions, i.e., the left

ear with 9× 4× 1 and the right one with 6× 3× 2, respectively.
This non-uniform deformation results in hex-elements with differ-
ent anisotropy orientations in the regions of the two ears. Although
this example demonstrates the possibility of generating anisotropy
hex-meshes with our framework, in general, the scaling factors of
the three principal directions can be automatically computed so that
the original bounding box will be deformed into a regular cube after
scaling. We plan to explore this further in the future work.

(a) (b)

(c)

Figure 7: (a) shows the deformed teddy bear model with two differ-
ent sets of anisotropy scaling factors for its two ears (i.e., 9×4×1
for the left ear and 6× 3× 2 for the right ear). (b) shows the
polycube maps of (a), while (c) shows different anisotropic hex-
elements in the two ears.

3.3. Hex-mesh Extraction

After computing the deformed mesh with the magnified ROIs,
we now extract a hex-mesh within its volume. Any efficient hex-
meshing techniques can be applied here. However, considering the
structure simplicity of the resulting hex-meshes and the robustness
of the computation, we opt for the current state-of-the-art poly-
cubes technique, i.e., the `1−polycube method [HJS∗14] for this
task.

The `1-polycube construction introduces a formulation of an `1-
based energy that serves as the core component to deform an ar-
bitrary tetrahedral mesh into a polycube-shaped mesh (See Eq. 1).
The input mesh is a tetrahedral mesh {T, X̄} where T = {ti} is its
set of tetrhedra, and X̄ = {x̄i} is its set of node coordinates.

argmin
X

αE`1(X)+Eδ(X)+βEη(X)+Ee(X) (1)

where E`1 denotes how far the shape is from being a polycube, Eδ

measures the amount of distortion, Eη controls the shape complex-
ity of the resulting polycubes, Ee describes the edge-feature penal-
ties. Iteratively solving the energy gradually transforms the input
tet-mesh to a polycube. We use the deformed volume mesh as the
input to the `1-polycube construction. The values of parameters α

and β for all our models are provided in Table 1.

submitted to COMPUTER GRAPHICS Forum (3/2017).



Kaoji Xu & Xifeng Gao & Zhigang Deng & Guoning Chen / 7

After deforming the input mesh into its polycube domain, in
which each interior vertex can be represented as a parameteriza-
tion of vertices on the surface of the polycube tet-mesh [JSW05],
uniform hex-grids can be extracted from this polycube domain. By
mapping these hex grids to the deformed volume, a hex-mesh with
elements of uniform size is generated (Figure 2e)As the connectiv-
ity of the volume mesh is preserved during the previous magnifi-
cation process, it is trivial to map this initial hex-mesh back to the
original volume space. The resulting hex-mesh consequently has
denser hex-grids in the magnified ROIs (Figure 2f).

(a) knot (b) knot polycube tet (c) knot polycube hex

(d) relation (e) result hex-mesh

Figure 8: (a)(b) show the original mesh and its polycubes, (c)
shows the hex-mesh generated in the polycube domain that has an
overlap region (highlighted by the cyan cube). This overlapping
area corresponds to different regions of the origin tetrahedral ele-
ments (i.e., cyan, red, and purple regions in (d)). By mapping the
hex-elements in the overlapping polycube region back to different
regions in the original space, the final hex-mesh is resulted (e).

Figure 9: (a)(b) show the original mesh and its polycubes, (c)
shows the hex-mesh generated in the polycube-cube domain. By
removing elements in the intersection region (colored in cyan in
(c)), we get a clean hex-mesh (d). (e) shows the final hex-mesh in
the original space.

3.4. Untangling self-intersection in polycube

After the preceding deformation, the polycubes of the resultant
mesh may have intersections; that is, the two neighboring poly-
cubes that correspond to different regions in the original volume
may overlap. See Figure 8c for an example, in which the polycubes
of the bumpy knot model overlap in the cyan region. To address
this, we classify those regions that are involved in the overlapping
into several clusters in the original space, as shown in Figure 8d.
This is achieved by first identifying the vertices in the overlapping
region in the polycube domain, and then grouping them based on
their geodesic distances [CWW13] on the original volume using the
K-means clustering [Ste57, Mac67]. In our current experiments, K
is selected based on the heuristics of the surface configuration (e.g.,
3 for the bumpy knot). Then, different parameterizations are com-
puted in the overlapping polycube, each of which corresponds to a
cluster. Each parameterization will then induce a hex-mesh that will
be mapped back to its corresponding region in the original space
(Figure 8). Figure 9 shows another example of the hand model,
in which the resultant polycubes corresponding to different fingers
overlap. Using the clustering strategy, we successfully construct a
valid hex-mesh from this overlapping polycubes. Nonetheless, we
wish to point out that fully addressing the issue of the hex-mesh ex-
traction from volume with overlapping is challenging and beyond
the scope of this work, which we plan to investigate further in the
future work.

3.5. Hex-mesh Optimization

Similar to other polycube-based hex-mesh generation tech-
niques [GSZ11, LVS∗13, HJS∗14], we insert a padding
layer [She07] to each of the hex-meshes shown in our result
section (except the robot hex-mesh). To improve the geometric
quality of these hex-meshes, we first improve the regularity of
the distribution of their elements using the parametric-domain
based optimization [GDC15], and then untangle the flipped
hexahedral elements through the edge-cone based optimiza-
tion [LSVT15], followed by the quality improvement scheme
proposed in [BDK∗03].

4. Results and Discussion

We have applied our adaptive hex-meshing framework to a num-
ber of man-made and natural shape objects. Figure 10 shows a set
of resulting hex-meshes with element sizes adaptive to the surface
feature scales. Table 1 provides the statistics of the generated hex-
meshes and the timing information of our framework. All timing in-
formation is obtained in a workstation with Intel(R) Xeon(R) CPU
E5-1620 v2 @3.70GHz and 48GB Memory @1866MHz.

Comparison with the octree-based results: Figure 1 com-
pares the hex-mesh generated using our method with the one
obtained by an octree-based method [Mes15] for a pipe model.
To preserve the small scale features, the base complex of the
hex-mesh obtained by the octree-based method has 2656 com-
ponents, while the base complex of the mesh produced by our
method possesses only 86 components. Figure 1d and Figure 1e
show the visual comparison of their base complexes [GDC15].

submitted to COMPUTER GRAPHICS Forum (3/2017).



8 Kaoji Xu & Xifeng Gao & Zhigang Deng & Guoning Chen /

Figure 10: Some other models in our experiments

The inset shows another
comparison of the base
complexes of the hex-
meshes generated by
our method (left) and
the octree-based method
(right), respectively, for
a chair model. While our
mesh has only 266 compo-
nents, the octree-based mesh consists of 35223 components. More
comparisons with the octree-based method can be found in the
supplemental document.

(a) (b) (c) (d)

Figure 11: Magnification may help the construction of
`1−polycube. (a) shows the origin mesh. (b) shows the magnifi-
cation on the two ears. (c) shows the failure to turn the left ear of
(a) into a valid polycube, while the magnification of the two ears
(b) helps construct a valid polycube (d).

Comparison with the `1-polycubes results: Figure 1b and
Figure 1c compare our approach with the original `1-polycube
method [HJS∗14]. With a similar number of elements, our ap-
proach adaptively fills the volume regions adjacent to the small

surface features with smaller (and denser) elements. Also, the com-
plexity of the base complex of the hex-mesh obtained from our
approach is comparable to the mesh with the original `1-polycube
(e.g., 48 components in our mesh versus 32 in the one obtained us-
ing the original `1-polycube for the rod model). In fact, the result of
`1−polycube is a tradeoff between the number of singularities (cor-
ners) and the smoothness of cubes. For some models with small re-
gions (e.g., ears and tails of those animal models), the `1−polycube
method is likely to smooth out these regions to be planes in the
polycube; otherwise, there will be many more singularities in or-
der to preserve these regions. In addition, with the magnification
step as a pre-processing before the `1-polycube construction, some
challenging situation for `1-polycube may be mitigated. Figure 11
provides such an example. The original horse model has thin sur-
face feature at the tips of its ears. Directly using the original mesh
to construct the `1-polycube will lead to an invalid polycube struc-
ture (see the highlighted region in Figure 11c). After magnifying
the ears of the horse, the `1-polycube can be constructed correctly
(Figure 11b, 11d).

Results with other hex-meshing methods: As described earlier,
the initial hex-mesh with uniform element size can be generated
with any existing methods from the deformed mesh. Figure 12 pro-
vide the results of initial hex-meshes generated with the closed-
form polycube and polycut, respectively. Their corresponding final
hex-meshes with adaptive element sizes are shown in the highlight
rectangle. These results demonstrate the flexibility of our frame-
work.

User interaction on ROIs: As mentioned earlier, in addition for
our system to automatically determine a scaling factor for an ROI,
we also offer the users the ability to manually deform the ROI or
specify a desired scaling factor. Figure 13 shows an example where
different scale factors are assigned to the two ears and four legs of
the teddy bear model. The resultant hex-mesh is shown in Figure

submitted to COMPUTER GRAPHICS Forum (3/2017).



Kaoji Xu & Xifeng Gao & Zhigang Deng & Guoning Chen / 9

(a) hex-meshes generated by [LVS∗13]

(b) hex-meshes generated by [FXBH16]

(c) base complex of (a) (d) base complex of (b)

Figure 12: Results with other hex-meshing methods. We first gener-
ate the initial hex-mesh with uniform element size in the magnified
space. Final hex-mesh with adaptive element sizes is shown in the
highlight rectangle. (c) and (d) are base complexes of (a) and (b),
respectively.

(a) (b)

Figure 13: (a) the magnification result of the teddy bear with dif-
ferent scale factors (i.e., 1.5 and 2.0 for two ears, 1.2, 1.5, 1.8, 2.2
for legs, respectively). (b) the obtained hex-mesh.

13b, in which the hex-elements have varying sizes in those ROIs
given their different scale factors. Figure 14 shows an example
where a user-selected ROI is manually deformed.

Figure 14: With user interaction, we can easily modify segment
that may not reflect the desired segmentation due to the coarse tri-
angulation in (a) and magnify it individually ((b)→ (c)).

Meshing quality in the linear elasticity problem Linear elastic-
ity models an elastically deformable body under infinitesimal dis-
placement or traction. According to Bathe [Bat95], isotropic linear
elastic energy is a quadratic energy of the displacement field v, tak-
ing the following form:

E =
∫

Ω

µε : ε+
λ

2
tr2(ε)dx,

where ε = (∇v+∇vT )/2− I is the infinitesimal strain tensor and
µ,λ are Lamé’s coefficients. We discretize the above continuous
energy using the FEM method with trilinear shape function and
10 point (degree 19) Gauss quadrature (103 points for each hex
element) to approximate the per-hex integral with high accuracy.
The induced Euler-Lagrangian equation is an elliptic PDE. Conse-
quently, we have a linear system Ax = b in the discrete case whose
left hand side is the stiffness matrix. The eigenvalues of this stiff-
ness matrix indicate the quality of the PDE system. Specifically, the
minimal non-trivial eigenvalue (i.e., > 0) indicates the accuracy of

submitted to COMPUTER GRAPHICS Forum (3/2017).



10 Kaoji Xu & Xifeng Gao & Zhigang Deng & Guoning Chen /

the solving of this PDE system [BPM∗95, She02]. Note that this
minimal non-zero eigenvalue indicates the L2 error of the discrete
approximation of the continuous energy system, which is the most
common error measurement used by many PDE problems [She02].

We use two hex-meshes
of the pipe model to
perform the above eigen
analysis, also known
as the Modal Analy-
sis [GHL∗14]. One is the
traditional uniform-size
hex-mesh with 9,045
elements, and the other
is a hex-mesh generated using our method with 9,044 elements
with denser hex-grids near small features. The minimal eigenvalue
obtained on the former mesh is 0.0025, while it is 0.0006 for
the later. To assess which value is more accurate, a ground truth
minimal eigenvalue is needed, which is not known in our case.
In the meantime, it has been established that the simulations
performed on the meshes with a finer resolution have a higher
accuracy than those performed on the coarser meshes [She02]. This
is also supported by the plot in the inset, showing that the minimal
eigenvalue obtained on the meshes with increasing resolutions
for the pipe model decreases accordingly and converges toward
0.0001. This indicates that the minimal eigenvalue obtained from
our mesh is closer to the ground truth.

Other magnification approach: The idea of our method is to de-
form the original mesh before the hex-mesh extraction. Therefore,
the sizes of the hex-elements can be implicitly adjusted via the in-
verse deformation. That said, any other appropriate mesh deforma-
tion technique can be combined with our method. Figure 15 shows
an example that the input mesh is first deformed based on a surface
frame field [PPTSH14], and then the deformed (volume) mesh is
used to extract a hex-mesh before mapping it back to the original
volume. Nonetheless, this frame field driven surface deformation
may result in self-intersecting surfaces, which cannot guarantee to
form a valid polycube structure.

Limitations: There are a
number of limitations of
our current approach. First,
our method has difficulties
in handling certain mesh
regions with inner surface
close to outer surface for
some CAD models (e.g., the
inner structure of the model
highlighted in the inset). The resultant hex-meshes in those area
may exhibit large distortion. Furthermore, the skeletonization-
based segmentation technique may not be able to handle models
that do not have tubular shape, such as cars, airplanes and me-
chanical components. Though, this may be addressed by applying
a more general mesh segmentation technique. Second, although a
solution to the hex-mesh extraction from the self-intersecting vol-
ume caused by the deformation is described, there is no guarantee
that it can solve all possible cases. We intend to explore a more
generic solution to this issue in a future work. Third, as mentioned

earlier, in order to obtain more desired segmentation results for
complex models (e.g., with high genus and many small features
close to each other), denser triangle meshes will be required, which
will significantly increase the computation time. Take the elephant
model as an example (Figure 10). We need 10K or more triangles
at the nose and teeth of the model in order to successfully sepa-
rate them. Combing with the other portion of the model, the total
number of triangles needed could be more than 25K, resulting in an
even denser tetrahedral mesh as the input for the `1-polycube con-
struction. A more efficient hex-meshing technique, like the recently
introduced fast volumetric polycube construction method [FBL16],
can be applied to address this issue. Fourth, our current magnifica-
tion is limited by a relatively small scaling factor due to the simple
bounding box guided ARAP deformation. Using a larger scaling
factor may not only cause distortion, as already seen in Figure 6c,
but also lead to the change of the characteristics of the feature (Fig-
ure 17), which may in turn affect the quality of the extracted hex-
mesh when mapping back to the original space. Fifth, the deformed
mesh may result in a different polycube and singularity structure
from the one obtained from the original mesh, as demonstrated
by the example shown in Figure 16. To fully understand how our
magnification process affects the polycube and singularity struc-
ture requires a thorough sensitivity experiment on different config-
urations of ROIs and the magnification process, which is beyond
the scope of this work. Nonetheless, we believe this small discrep-
ancy in the polycube structure is acceptable when compared to the
excessive number of singularities introduced by the octree-based
method. Though, a future study is needed to better control the ad-
ditional singularities caused by the deformation. Nonetheless, we
wish to point out that many of the above limitations are the inher-
ent issues of the selected techniques for the individual steps of the
proposed framework, which should not be considered as the limi-
tations of our general framework. In the future, improved methods
can be applied for these steps without modifying our general frame-
work.

Figure 16: The singularities (in dark gray) of a uniform-sized hex-
mesh and the singularities (in cyan) of a mesh with varying element
sizes of the bear. The latter was generated with a scale value of 4.0
on the left ear of the bear. The red rectangle highlights a place
where the two singularity structures are different.

5. Conclusion

In this work, we present a new framework to enable the generation
of hex-meshes with elements of varying sizes. This is achieved by

submitted to COMPUTER GRAPHICS Forum (3/2017).



Kaoji Xu & Xifeng Gao & Zhigang Deng & Guoning Chen / 11

Figure 15: This example shows that an input model (a) is deformed based on a user-customized frame field (b). The deformed surface is then
used to construct the `1-polycube (c) and to extract a hex-mesh filling the deformed volume (d), which is mapped back to the original space
to obtain the output hex-mesh (e).

Table 1: Statistics of the resultant hex-meshes. * denote the meshes obtained using the original `1-polycube [HJS∗14]. o indicate meshes
generated by the octree-base method [Mes15]. #Tet and #Tri show the numbers of tetrahedra and triangles in the input meshes, respectively.
#Seg is number of the segments of each model. #Scal is the maximum scaling factor for the magnification. #Sin is the number of singularities.
#Com is the number of components in the base complex. MSJ/ASJ represents the minimum and average scaled Jacobians, respectively. H
Dis denotes the Hausdorff distance from the boundary of the hex-mesh to the input surface (h of the diameter of the bounding box of each
model). S Time, P time and H time show the timing for segmentation, `1-polycube construction, and hex-mesh extraction. More complete
statistics is provided in the supplemental document.

Model #Tet #Tri #Seg #Scal #Sin #Com #Hex MSJ / ASJ H Dis S Time P Time H Time
bumpycube – 39936 – – 60 121 16937 0.266/0.905 2.65 – 18m27s 16s
bear 98548 14626 8 2.2 188 467 7697 0.443/0.918 3.13 1.3s 209m31s 55s
bear* 10912 4588 – – 140 104 10700 0.470/0.935 2.43 – 1m53s 10s
bunny 24169 7098 3 2.0 60 77 14571 0.275/0.900 2.92 0.5s 6m27s 19s
chair 14163 7490 8 2.0 160 266 9659 0.274/0.918 1.81 0.6s 2m43s 50s
chairo 14163 7490 – – 12005 35223 41664 0.076/0.864 1.08 – – 1.2s
elephant 119321 24806 9 1.8 526 5827 23002 0.242/0.887 1.51 1.9s 193m10s 110s
horse 41831 7506 4 2.0 78 124 7523 0.259/0.876 6.14 0.5s 14m19s 21s
kitty 4521 1946 2 2.0 80 129 7124 0.291/0.887 2.56 0.2s 36s 6s
pipe 16285 4442 3 2.0 80 86 9045 0.419/0.933 1.59 0.2s 2m37s 12s
pipeo 16285 4442 – – 1847 2656 5571 0.092/0.790 3.92 – – 1.1s
pipe* 16285 4442 – – 80 69 7168 0.258/0.925 1.45 – 2m32s 14s
robot 27606 9032 10 1.9 196 598 8013 0.254/0.941 1.80 0.6s 6m30s 25s
rod 70178 13818 4 1.5 48 66 11448 0.063/0.932 1.14 1.2s 53m53s 48s

Figure 17: This example shows that the magnification may alter
the surface characteristics. Before magnification (a), the surface
exhibits multiple cylindrical structure, while only one cylindrical
structure is retained after magnification. This is reflected in their
subsequent polycubes shown in (c) and (d), respectively.

first detecting the regions of interest (ROIs) of the surface that con-
tain small scale features, followed by an automatic magnification
process of the ROIs using the as-rigid-as-possible (ARAP) defor-
mation. A hex-mesh with uniform element size is then extracted
from the deformed volume mesh using any existing hex-meshing
technique, before being mapped back to the original space. Our
framework is simple and intuitive to use, and has been applied to
a variety of 3D models to demonstrate its effectiveness. The hex-
meshes generated with our approach have simpler structure, when
compared to those obtained by the octree-based method, while bet-
ter adapting the element size to the small scale features, when com-
pared to the results with uniform element size.

There are a number of limitations of the current approach that we
plan to address as the future work. In addition, the current frame-
work can be further extended to magnified specific local (volume)

submitted to COMPUTER GRAPHICS Forum (3/2017).



12 Kaoji Xu & Xifeng Gao & Zhigang Deng & Guoning Chen /

regions based on other sizing information, such as an error sizing
function from the finite element analysis [POB11]. We plan to ex-
plore these directions in the future.

Acknowledgements

We would like to thank Xianzhong Fang, Jin Huang, Marco Livesu,
and Yang Liu for helping generate hex-meshes with their respective
methods for comparison. This work was partially supported by NSF
IIS-1553329.

References

[ACOL00] ALEXA M., COHEN-OR D., LEVIN D.: As-rigid-as-possible
shape interpolation. In Siggraph 2000 Proceedings of the 27th annual
conference on Computer graphics and interactive techniques (2000),
pp. 157–164. 5

[Bat95] BATHE K. J.: Finite Element Procedures in Engineering Analy-
sis. Prentice Hall, 1995. 8

[BDK∗03] BREWER M., DIACHIN L. F., KNUPP P., LEURENT T., ME-
LANDER D.: The mesquite mesh quality improvement toolkit. In Pro-
ceedings of International Meshing Roundtable (2003). 7

[BPM∗95] BENZLEY S. E., PERRY E., MERKLEY K., CLARK B.,
SJAARDEMA G.: A comparison of all hexagonal and all tetrahedral finite
element meshes for elastic and elasto-plastic analysis. In In Proceedings,
4th International Meshing Roundtable (1995), pp. 179–191. 9

[BZK09] BOMMES D., ZIMMER H., KOBBELT L.: Mixed-integer quad-
rangulation. ACM Trans. Graph. 28, 3 (July 2009), 77:1–77:10. 3

[CGF09] CHEN X., GOLOVINSKIY A., FUNKHOUSER T.: A benchmark
for 3D mesh segmentation. ACM Transactions on Graphics (Proceed-
ings of SIGGRAPH 2009) 28, 3 (Aug 2009). 4

[CLS16] CHERCHI G., LIVESU M., SCATENI R.: Polycube simplifica-
tion for coarse layouts of surfaces and volumes. Computer Graphics
Forum (2016). 3

[CPSS10] CHAO I., PINKALL U., SANAN P., SCHRODER P.: A simple
geometric model for elastic deformations. ACM Transactions on Graph-
ics (TOG) 29, 3 (July 2010). 5

[CWW13] CRANE K., WEISCHEDEL C., WARDETZKY M.: Geodesics
in heat: A new approach to computing distance based on heat flow. ACM
Trans. Graph. 32 (2013). 7

[FBL16] FU X., BAI C., LIU Y.: Efficient volumetric polycube-map
construction. Computer Graphics Forum (Pacific Graphics) 35, 7 (2016).
10

[FXBH16] FANG X., XU W., BAO H., HUANG J.: All-hex meshing
using closed-form induced polycube. Acm Transactions on Graphics
(Proceedings of SIGGRAPH 2016) 35, 4 (2016). 3, 9

[GDC15] GAO X., DENG Z., CHEN G.: Hexahedral mesh re-
parameterization from aligned base-complex. Acm Transactions on
Graphics (Proceedings of SIGGRAPH 2015) 35, 4 (2015). 2, 7

[GHL∗14] GAO X., HUANG J., LI S., DENG Z., CHEN G.: An eval-
uation of the quality of hexahedral meshes via modal analysis. In 1st
Workshop on Structured Meshing: Theory, Applications, and Evaluation
(2014). 10

[GMD∗16] GAO X., MARTIN T., DENG S., COHEN E., DENG Z.,
CHEN G.: Structured volume decomposition via generalized sweeping.
IEEE ransactions on Visualization and Computer Graphics 22, 7 (2016),
1899–1911. 2, 3

[GSZ11] GREGSON J., SHEFFER A., ZHANG E. G.: All-hex mesh gen-
eration via volumetric polycube deformation. Computer Graphics Forum
30, 5 (2011), 1407–1416. 3, 7

[HJS∗14] HUANG J., JIANG T. F., SHI Z. Y., TONG Y. Y., BAO H. J.,
DESBRUN M.: l1-based construction of polycube maps from complex
shapes. Acm Transactions on Graphics 33, 3 (2014). 2, 3, 6, 7, 8, 11

[HT89] HACON D., TOMEI C.: Tetrahedral decompositions of hexa-
hedral meshes. Eur. J. Comb. 10, 5 (1989), 435–443. 5

[HT05] HUGHES T.J. COTTRELL J.A. B. Y.: Isogeometric analysis:
Cad, finite elements, nurbs, exact geometry, and mesh refinement. Com-
puter Methods in Applied Mechanics and Engineering 194 (2005), 4135–
4195. 1

[HTZ∗11] HUANG J., TONG Y., ZHOU K., BAO H., DESBRUN M.:
Boundary aligned smooth 3d cross-frame field. Acm Transactions on
Graphics 30, 6 (2011), 143:1–143:8. 3

[ISS09] ITO Y., SHIH A. M., SONI B. K.: Octree-based reasonable-
quality hexahedral mesh generation using a new set of refinement tem-
plates. Int. J. Numer. Meth. Engng, 77 (2009), 1809–1833. 2

[JFH∗15] JIANG T., FANG X., HUANG J., BAO H., TONG Y., DESBRUN
M.: Frame field generation through metric customization. Acm Trans-
actions on Graphics (Proceedings of SIGGRAPH 2015) 34, 4 (2015),
40:1–40:11. 3

[JHW∗14] JIANG T., HUANG J., WANG Y., TONG Y., BAO H.: Frame
field singularity correction for automatic hexahedralization. IEEE Trans
Vis Comput Graphics 20, 8 (2014), 1189–1199. 3

[JSW05] JU T., SCHAEFER S., WARREN J.: Mean value coordinates for
closed triangular meshes. Acm Transactions on Graphics (Proceedings
of SIGGRAPH 2005) 24, 3 (July 2005), 561–566. 5, 6

[KBLK14] KREMER M., BOMMES D., LIM I., KOBBELT L.: Advanced
automatic hexahedral mesh generation from surface quad meshes. In
Proceedings of the 22nd International Meshing Roundtable (2014),
Springer, pp. 147–164. 3

[LLD12] LIN H., LIAO H., DENG C.: Filling triangular mesh model
with all-hex mesh by volume subdivision fitting, 2012. 3

[LLWQ13] LI B., LI X., WANG K., QIN H.: Surface mesh to volu-
metric spline conversion with generalized poly-cubes. IEEE TVCG 19,
9 (2013), 1539–1551. 3

[LLX∗12] LI Y. F., LIU Y., XU W. W., WANG W. P., GUO B. N.:
All-hex meshing using singularity-restricted field. Acm Transactions on
Graphics (Proceedings of SIGGRAPH 2012) 31, 6 (2012). 3

[LMPS16] LIVESU M., MUNTONI A., PUPPO E., SCATENI R.:
Skeleton-driven adaptive hexahedral meshing of tubular shapes. In Com-
puter Graphics Forum (2016), vol. 35, Wiley Online Library, pp. 237–
246. 3

[LSVT15] LIVESU M., SHEFFER A., VINING N., TARINI M.: Practi-
cal hex-mesh optimization via edge-cone rectification. Transactions on
Graphics (Proc. SIGGRAPH 2015) 34, 4 (2015). 7

[LVS∗13] LIVESU M., VINING N., SHEFFER A., GREGSON J.,
SCATENI R.: Polycut: Monotone graph-cuts for polycube base-complex
construction. Acm Transactions on Graphics 32, 6 (2013). 3, 7, 9

[LZLW15] LIU L., ZHANG Y., LIU Y., WANG W.: Feature-preserving
t-mesh construction using skeleton-based polycubes. Computer-Aided
Design 58 (2015), 162–172. 3

[Mac67] MACQUEEN J. B.: Some methods for classification and anal-
ysis of multivariate observations. In Proceedings of 5th Berkeley Sym-
posium on Mathematical Statistics and Probability (1967), University of
California Press, pp. 281–297. 7

[Mar09] MARÉCHAL L.: Advances in octree-based all-hexahedral mesh
generation: handling sharp features. In proceedings of the 18th Interna-
tional Meshing Roundtable. Springer, 2009, pp. 65–84. 1, 2

[Mes15] MESHGEMS: Volume meshing: Meshgems-hexa, 2015. 2, 7, 11

[NPPZ12] NIESER M., PALACIOS J., POLTHIER K., ZHANG E.: Hexag-
onal global parameterization of arbitrary surfaces. IEEE Transactions on
Visualization and Computer Graphics 18, 6 (June 2012), 865–878. 3

submitted to COMPUTER GRAPHICS Forum (3/2017).



Kaoji Xu & Xifeng Gao & Zhigang Deng & Guoning Chen / 13

[NRP11] NIESER M., REITEBUCH U., POLTHIER K.: Cubecover - pa-
rameterization of 3d volumes. Computer Graphics Forum 30, 5 (2011),
1397–1406. 3

[POB11] PAUDEL G., OWEN S. J., BENZLEY S. E.: Hexahedral Mesh
Refinement Using an Error Sizing Function. Springer, 2011. 11

[PPTSH14] PANOZZO D., PUPPO E., TARINI M., SORKINE-HORNUNG
O.: Frame fields: Anisotropic and non-orthogonal cross fields. Acm
Transactions on Graphics (Proceedings of SIGGRAPH 2014) 33, 4
(2014). 1, 6, 10

[SA07] SORKINE O., ALEXA M.: As-rigid-as-possible surface model-
ing. In Proceedings of the fifth Eurographics symposium on Geometry
processing (2007), pp. 109–116. 5

[Sch96] SCHNEIDERS R.: A grid-based algorithm for the generation of
hexahedral element meshes. Engineering with computers 12, 3-4 (1996),
168–177. 2

[She02] SHEWCHUK J. R.: What is a good linear finite element? - inter-
polation, conditioning, anisotropy, and quality measures. In In Proc. of
the 11th International Meshing Roundtable (2002). 9, 10

[She07] SHEPHERD J.: Topologic and geometric constraintbased hexa-
hedral mesh generation. PhD thesis, University of Utah, 2007. 7

[SJ08] SHEPHERD J. F., JOHNSON C. R.: Hexahedral mesh generation
constraints. Eng. with Comput. 24, 3 (June 2008), 195–213. 2

[SSCO08] SHAPIRA L., SHAMIR A., COHEN-OR D.: Consistent mesh
partitioning and skeletonisation using the shape diameter function. The
Visual Computer 24, 4 (2008), 249–259. 4

[Ste57] STEINHAUS H.: Sur la division des corps matÃl’riels en parties.
Bull. Acad. Polon. Sci. 4 (1957), 801–804. 7

[SZ16] SUN L., ZHAO G.: Adaptive hexahedral mesh generation and
quality optimization for solid models with thin features using a grid-
based method. Engineering with Computers 32, 1 (2016), 61–84. 2

[TAOZ12] TAGLIASACCHI A., ALHASHIM I., OLSON M., ZHANG H.:
Mean curvature skeletons. Computer Graphics Forum 31, 5 (2012),
1735–1744. 3, 4

[THCM04] TARINI M., HORMANN K., CIGNONI P., MONTANI C.:
Polycube-maps. Acm Transactions on Graphics 23, 3 (2004), 853–860.
2

[WLL∗12] WANG K., LI X., LI B., XU H., QIN H.: Restricted trivariate
polycube splines for volumetric data modeling. IEEE Trans. Vis. Com-
put. Graphics 18, 5 (2012), 703–716. 3

[WLT08] WANG Y. S., LEE T. Y., TAI C. L.: Focus plus context visual-
ization with distortion minimization. IEEE Transactions on Visualization
and Computer Graphics 14, 6 (2008), 1731–1738. 5

[YMD11] YANO M., MODISETTE J. M., DARMOFAL D. L.: The impor-
tance of mesh adaptation for higher-order discretizations of aerodynamic
flows. In 20th AIAA CFD Conference, AIAA-2011 (2011), vol. 3852. 1

[ZB06] ZHANG Y. J., BAJAJ C.: Adaptive and quality quadrilat-
eral/hexahedral meshing from volumetric data. Computer Methods in
Applied Mechanics and Engineering 195, 9-12 (2006), 942–960. 1, 2

[ZLX13] ZHANG Y. J., LIANG X., XU G.: A robust 2-refinement algo-
rithm in octree or rhombic dodecahedral tree based all-hexahedral mesh
generation. Computer Methods in Applied Mechanics and Engineering
256 (2013), 88–100. 1, 2

[ZZ07] ZHANG H., ZHAO G.: Adaptive hexahedral mesh generation
based on local domain curvature and thickness using a modified grid-
based method. Finite Elements in Analysis and Design 43, 9 (2007),
691–704. 2

[ZZG∗12] ZHAO X., ZENG W., GU X. F. D., KAUFMAN A. E., XU W.,
MUELLER K.: Conformal magnifier: A focus plus context technique
with local shape preservation. IEEE Transactions on Visualization and
Computer Graphics 18, 11 (2012), 1928–1941. 5

submitted to COMPUTER GRAPHICS Forum (3/2017).


