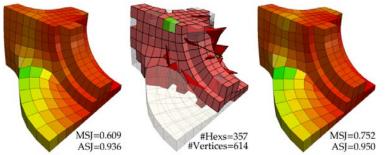
Hexahedral Mesh Quality Improvement via Edge-Angle Optimization

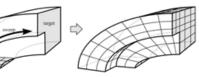
Kaoji Xu¹, Xifeng Gao², Guoning Chen¹

¹University of Houston ²New York University

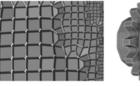


Existing Hex-Meshing Techniques

Sweeping/Octree



[Owen, et al. 1998]



[Maréchal, et al. 2009]

Frame Field

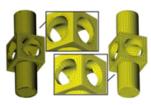
[Nieser, et al. 2011]

[Li, et al. 2012]

[Jiang, et al. 2013]

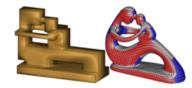
Polycube

HOUSTON



[Gregson, et al. 2011]

[Huang, et al. 2014]



[Livesu, et al. 2013]

Existing Hex-Meshing Techniques

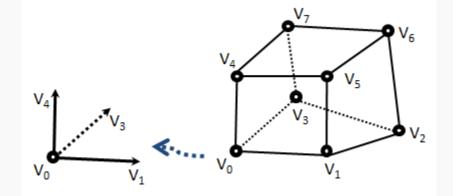
The initial hex-meshes generated by these methods are usually not optimal and may not meet the quality requirements of the target applications.

Polycube

Jacobian Metrics for Hex-mesh Quality

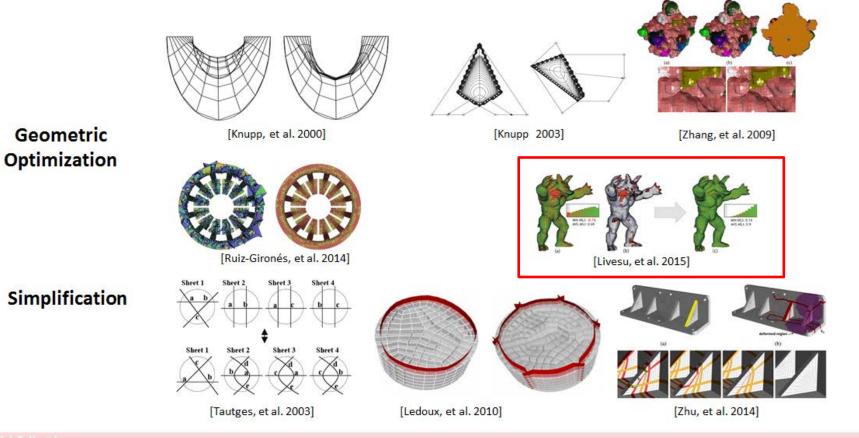
 $\det(A_0) = v_1 v_0 \cdot (v_3 v_0 \times v_4 v_0)$

$$J_{jacobian} = \min\{\det(A_i), i = 0, 1, 2L, 7\}$$

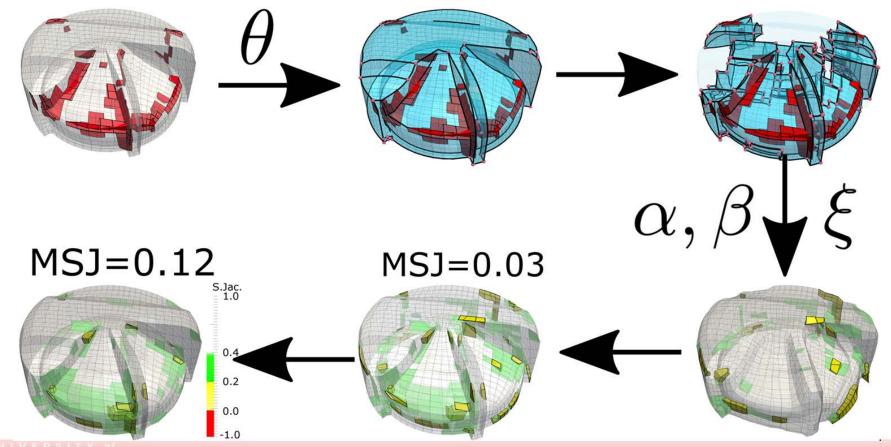


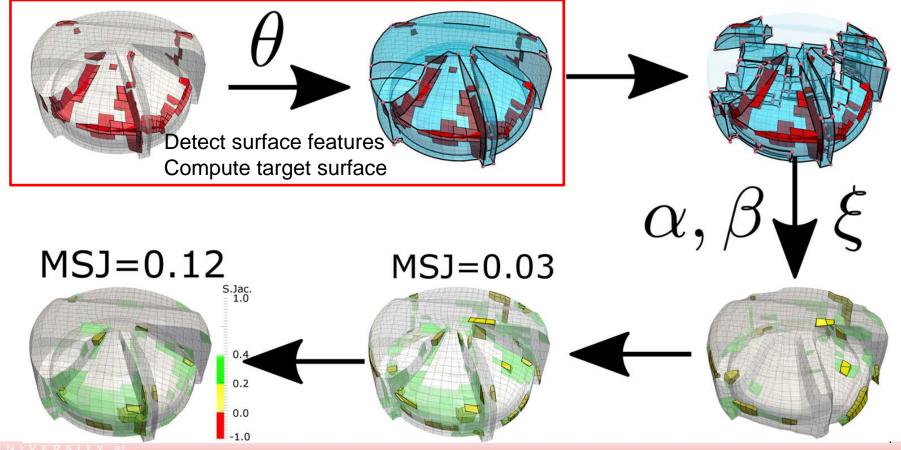
$$det(\hat{A}_{0}) = \frac{v_{1}v_{0}}{\|v_{1}v_{0}\|} \cdot \left(\frac{v_{3}v_{0}}{\|v_{3}v_{0}\|} \times \frac{v_{4}v_{0}}{\|v_{4}v_{0}\|}\right)$$
$$S.J_{scaled_{jacobian}} = \min\{det(\hat{A}_{i}), i = 0, 1, 2L, 7\}$$

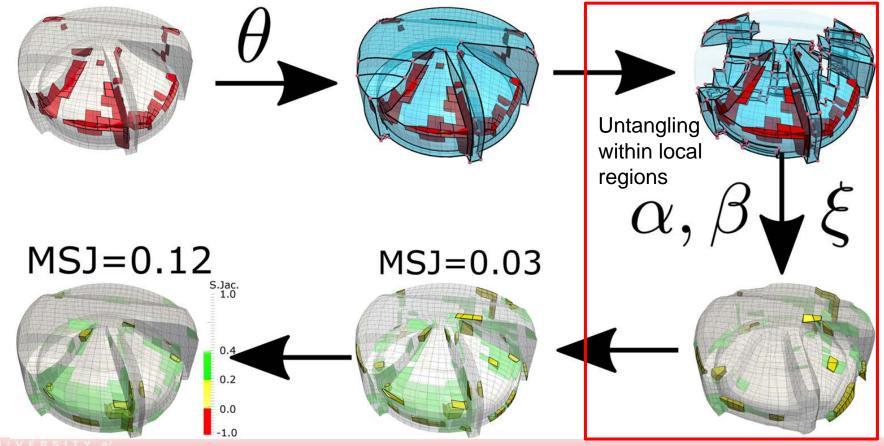
Existing Hex-Meshing Optimization Techniques



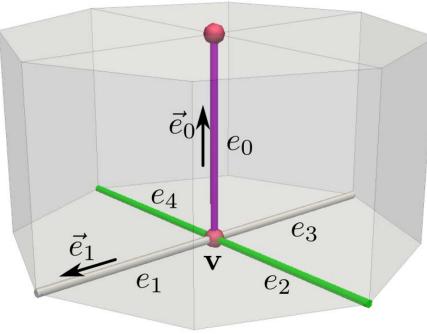
Our Method

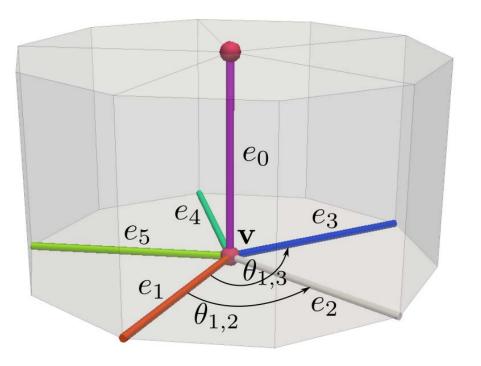




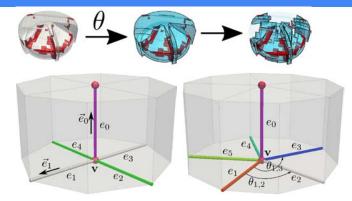


Untangling – Desired angles between edges



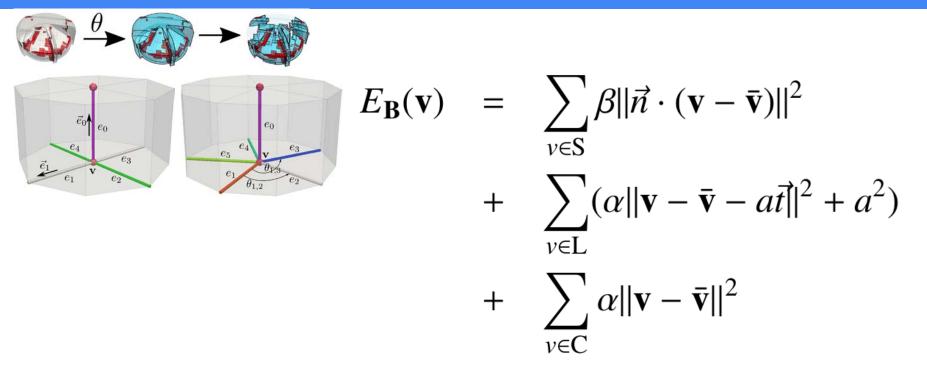


Untangling \rightarrow unified energy



 $\sum_{e \in \mathbf{E}} \sum_{e_i \cap e_i = \mathbf{v}} \left(< \frac{\vec{e}_i}{\|\vec{e}_i\|}, \frac{\vec{e}_j}{\|\vec{e}_j\|} > -\hat{a} \right)^2$ $\tilde{E}(\mathbf{v})$ $e_i \in \mathbf{E} e_i \cap e_j = \mathbf{v}$

Untangling \rightarrow boundary energy

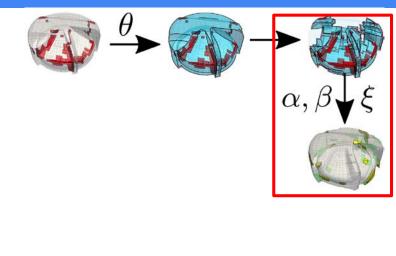


See [Livesu et al., 2015] for more details!

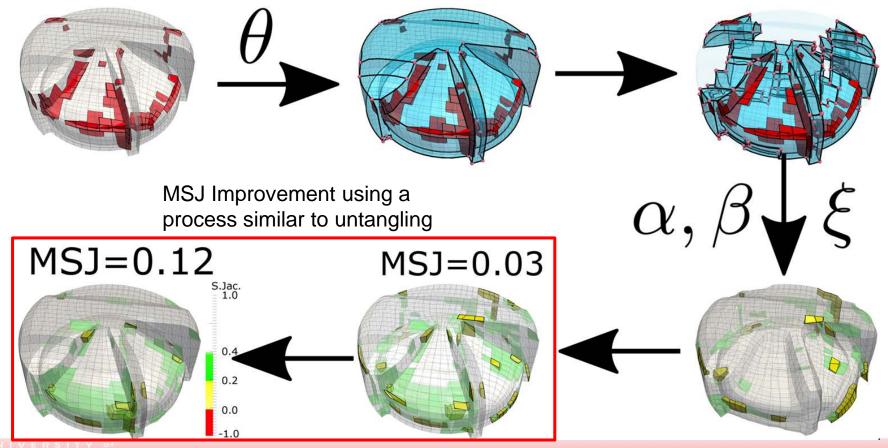
Untangling \rightarrow minimize the combined energy

$\min_{\mathbf{v}} \mathcal{E}(\mathbf{v}) = E_{\mathbf{B}}(\mathbf{v}) + \tilde{E}(\mathbf{v})$

Untangling \rightarrow untangling algorithm



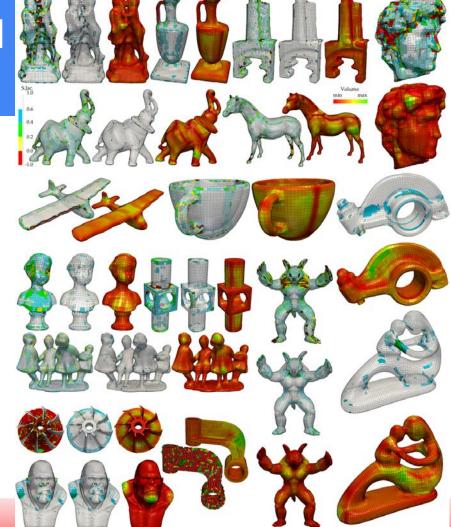
Algorithm 1: Local untangle Input: \mathcal{H}, Ω_t Output: \mathcal{H}' Scale \mathcal{H} and Ω_t ; Set $\alpha = 1000, \beta = 1000, \xi = 0.6$; while *current* $MSJ \le 0$ do while not reach maximum global iteration (default 20) do Identify inverted elements I; Extract local regions \mathcal{R} (a copy from \mathcal{H}); Classify surface vertices for \mathcal{R} ; Compute target edge length by solving Eq. (8) for $\mathcal{R};$ $\tau = 1$: while not reach maximum local iteration (default 20) do $\tau = 0.9\tau;$ Solve Eq. (7) for \mathcal{R} ; Save \mathcal{R} : $\mathcal{R} \leftarrow$ Update vertices. using Eq (9); Project surface vertices of \mathcal{R} to its original surface: if #invertedElements increased then Recover the saved \mathcal{R} ; end Update the vertices of \mathcal{R} ; if current MSJ > 0 then output \mathcal{H}' ; end $\xi = \xi - 0.1$; if $\xi < 0.2$ then $\alpha = 0.5 \times \alpha, \beta = 0.5 \times \beta, \xi = 0.6$; end



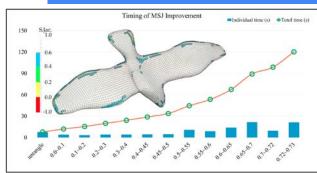
Results

Sampled Results

HOUSTON



Performance



Results \rightarrow Comparison with the edge cone technique

Model	#hexes	#flip	Error	MSJ	ASJ
Armadillo†	29935	323	0.011262	0.14	0.9
Armadillo*	29935	323	0.019349	0.163	0.834
Block†	2520	31	0.004555	0.250	0.870
Block*	2520	31	0.002737	0.252	0.857
Bunny†	37734	1	0.007955	0.606	0.972
Bunny*	37734	1	0.006477	0.651	0.953
Bust†	5258	30	0.007404	0.114	0.922
Bust(Fig1)*	5258	30	0.008843	0.201	0.869
Bust*	5258	30	0.006795	0.183	0.865
Cap†	4420	50	0.009933	0.106	0.870
Cap*	4420	50	0.005320	0.114	0.775
Dancing [†]	35293	5	0.008480	0.354	0.942
Children*	35293	5	0.006905	0.582	0.931
Hanger†	4539	3930	0.002709	0.716	0.987
Hanger*	4539	3930	0.001486	0.723	0.974
Impeller†	11174	8857	0.000935	0.184	0.942
Impeller*	11174	8857	0.000493	0.192	0.934
KingKong†	159488	11	0.010483	0.268	0.967
KingKong*	159488	11	0.016948	0.500	0.954

HOUSTON

Achieve better MSJ for all cases and better Hausdorff distance error in most cases! ©

But have lower ASJ 😕

Results \rightarrow Comparison with AMIPS and edge cone

Table 2. Comparison with AMIPS and	l edge cone. The first row of each
model shows the result by AMIPS	† denotes results of edge-cone
* denotes ours.	

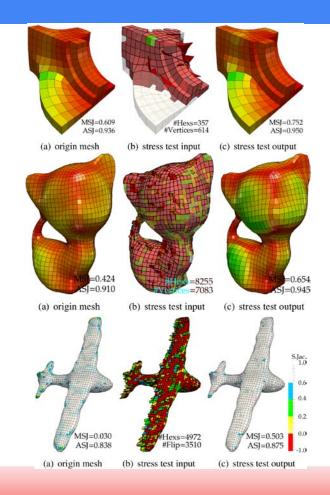
choices ours.				
Model	#hexes	input MSJ	MSJ	ASJ
Fertility	10600	0.209	0.46	0.937
Fertility [†]	10600	0.209	0.478	0.951
Fertility*	10600	0.209	0.602	0.933
RockerArm	19870	0.196	0.550	0.923
RockerArm [†]	19870	0.196	0.556	0.937
RockerArm*	19870	0.196	0.700	0.939

We achieve much better MSJ for both meshes!

Results → Stress Test

Table 3. Stress Test. Fandisk is created by the frame field method, Kitty is generated by the $\ell_1 - PolyCube$ and airplane is obtained using MeshGems . #flip shows the number of inverted elements after the artificial perturbation. * denotes our results. We use metro tools to compute Hausdorff distance w.r.t. bounding box diagonal '-' means the mesh has no reference surface to compute the Hausdorff distance error.

Model	#hexes	#flip	Error	MSJ	ASJ
Fandisk	357	0	_	0.609	0.936
Fandisk*	357	286	0.004769	0.752	0.950
Kitty	7083	0	_	0.424	0.910
Kitty*	7083	3232	0.012656	0.652	0.937
airplane1	4972	0	_	0.030	0.838
airplane1*	4972	3510	0.004369	0.503	0.875



Results \rightarrow Challenging Cases – Polycube/Octree-Meshes

HOUSTON

Table 4. The results on a set of meshes produced from the polycube mapdatabase. † denotes results of edge-cone* denotes ours. Weuse metro tools to compute Hausdorff distance wrt. bounding box diag-onal [47]. '-' means the mesh's surface is not in the same scale with theinput for computing the Hausdorff distance error.

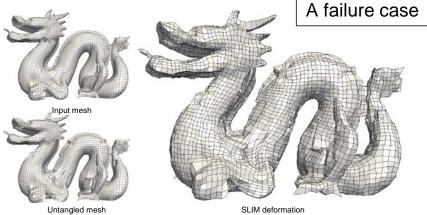
Model	#hexes	#flip	Error	MSJ	ASJ
airplane1*	17913	467	0.006257	0.731	0.959
bird*	16934	288	0.005774	0.732	0.961
cup1*	16862	40	0.006944	0.723	0.960
chair1*	20344	709	0.004720	0.690	0.941
horse*	44145	304	0.017018	0.600	0.944
blade*	14792	141	0.008885	0.650	0.946
kiss*	19976	247	0.014755	0.500	0.913
bottle1†	15478	127	0.008066	0.132	0.925
bottle1*	15478	127	0.009675	0.604	0.948
elephant†	46525	421	_	0.012	0.881
elephant*	46525	421	0.009899	0.500	0.915

Open source code is available to download !!!

http://www2.cs.uh.edu/~cotrikxu/research/papers/cag2017_hexopt/supplementary_material.zip

Limitations

- 1. Our method may not improve the average scaled Jacobian substantially.
- 2. ξ is not the best way to relax the length of edge.
- 3. surface feature detection is sensitive to the user-specified angle threshold θ



- Thank the authors of RSF and polycube methods for providing the meshes.
- Thank Marco Livesu for helping generating the edgecone results for comparison
- Thank all the anonymous reviewers for their valuable comments and suggestions.
- This work was supported in part by NSF IIS 1553329.

Thank you!

