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Fig. 1. We extract all base complex sheets (green and brown in (a) are two sheets) from the base complex (red dots and thick black
lines in (a)) of a hexahedral (hex-) mesh, then select a set of sheets (b) that can most efficiently represent the base complex. Similarly,
for each sheet, a dual surface of it could be further decomposed to a set of chords (c). We calculate the complexity of the structure
using an enhanced adjacency matrix, where each diagonal entry (gray square) shows the complexity of the corresponding sheet, and
the entry (i, j) shows the relations between sheet i and sheet j. From this matrix representation, the complexity of the base complex
can be computed. The above procedure effectively helps us evaluate the structure configuration of a hex-mesh.

Abstract— Understanding hexahedral (hex-) mesh structures is important for a number of hex-mesh generation and optimization
tasks. However, due to various configurations of the singularities in a valid pure hex-mesh, the structure (or base complex) of the
mesh can be arbitrarily complex. In this work, we present a first and effective method to help meshing practitioners understand the
possible configurations in a valid 3D base complex for the characterization of their complexity. In particular, we propose a strategy
to decompose the complex hex-mesh structure into multi-level sub-structures so that they can be studied separately, from which we
identify a small set of the sub-structures that can most efficiently represent the whole mesh structure. Furthermore, from this set of
sub-structures, we attempt to define the first metric for the quantification of the complexity of hex-mesh structure. To aid the exploration
of the extracted multi-level structure information, we devise a visual exploration system coupled with a matrix view to help alleviate
the common challenge of 3D data exploration (e.g., clutter and occlusion). We have applied our tool and metric to a large number of
hex-meshes generated with different approaches to reveal different characteristics of these methods in terms of the mesh structures
they can produce. We also use our metric to assess the existing structure simplification techniques in terms of their effectiveness.

Index Terms—hexahedral mesh, base complex, sheet decomposition, complexity analysis

1 INTRODUCTION

Hexahedral meshes have received increasing attention in the past
decades due to their superior numerical properties when compared
to tetrahedral meshes, which is important for many critical scientific
simulations. Given a valid all (or pure) hex-mesh, a global 3D parame-
terization is imposed within the volume. The irregular elements (e.g.,
the mesh edges whose valence is not 4 in the interior or not 2 on the
boundary) of the mesh correspond to the discontinuity in this 3D pa-
rameterization, which form the singularities. From these singularities,
a global volume partitioning strategy can be induced that organizes the
individual hexahedral elements (i.e., hexahedra) into larger hexahedral
components (or blocks). This partitioning corresponds to the struc-
ture of the given hex-mesh, which is referred to as the base complex.
Fig. 2(a) shows such a 3D structure of a valid pure hex-mesh using
transparent surfaces and wireframe.

The complexity of this 3D structure will affect a number of sub-
sequent tasks performed on the corresponding hex-mesh, such as the
Isogeometric Analysis (IGA) [6, 18] and trivariant spline fitting for a
smooth volume representation [13]. Specifically, in the spline fitting,
a C2 spline basis can be fit to each hex-block for the Finite Element
Analysis (FEA), while only C0 continuity can be guaranteed across the
boundaries of neighboring hex-blocks. The fewer the blocks the fewer
the boundaries, and thus a higher smoothness throughout the entire
volume can be achieved for the above applications. However, even
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the same set of singularities are given, different mesh structures (or
base complexes) can be resulted due to the mis-alignment issue [11],
resulting in complicated configuration. Fig. 2(b) shows a tangling
configuration of the hex-elements within a fertility hex-mesh. This
configuration makes the tasks, e.g. spline fitting, challenging.

It is desirable to develop effective strategies to optimize hex-mesh
structure (i.e., base complex) for various applications. To achieve so,
the possible configurations in the base complex need to be identified and
understood. In addition, an effective complexity measure is required
to accurately quantify the complexity of a base complex so that it
can be used to guide the optimization of base complexes. However,
existing techniques simply rely on transparent surfaces and wireframe
to visualize the base complexes. While this visualization is good at
revealing the overall complexity of the structure, it does not offer an
effective means to decipher the cause of the complexity. This motivates
the present work.

In this paper, we offer the geometers and practitioners alike an
effective visual exploration system to understand the configurations
and complexity of the base complexes of their hex-meshes. Our system
adopts a two-stage pipeline. First, given a valid pure hex-mesh, the
base complex is extracted and decomposed to a series of base complex
sheets (or sheets for simplicity) – a semi-global organization (or sub-
structure) of the hexahedral blocks with planar configuration, from
which a number of sheets are selected that most efficiently represent
the original base complex. From these obtained sheets, their mutual
connectivity relations are classified and properly represented for the
subsequent assessment of the base complex complexity. The reason of
using sheets instead of individual components to study the complexity
of a base complex is that sheets better reveal the global configuration
of the embedded 3D parameterization than local components, which is
crucial for hex-mesh generation and improvement.

Second, with the above extracted information, the user performs
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(a) base complex (b) complicated sheet

Fig. 2. (a) The red dots and thick black lines indicate the vertices and
edges of a base complex, respectively. The green and blue areas high-
light two components of the base complex. (b) A complicated sheet in a
fertility hex-mesh.

various visual exploration operations to understand the single and/or
multiple sheet configurations, and how they influence the complexity
of a base complex. In addition, the users can compare the structures
of the hex-meshes generated with different approaches for the same
objects to identify the characteristics of those hex-meshing approaches.

In summary, this work makes the following contributions:
(1) We propose to use the base complex sheets to study the base

complex configurations and introduce an efficient algorithm to extract
a near optimal subset of sheets that can most effectively represent the
original base complex.

(2) We study the connectivity configuration among neighboring
sheets and propose to use an enhanced adjacency matrix to represent
various configurations, from which a first complexity metric for base
complexes is defined.

(3) We develop a visualization system to aid the exploration of the
base complex configurations that provides users multiple levels of
structural information.

2 RELATED WORK

Hex-meshing methods Considering the importance of hex-meshes to
finite element simulation [29], a large amount of efforts have been
dedicated to their generation. These methods range from the early
sweeping and paving [35,36], grid-based [9,32,37,40] and octree-based
methods [20,26,41,42] to the polycube-based [10,15,16,25] and frame-
field-based approaches [17, 21, 24, 28]. Recent surveys [3, 33] provide
a detailed look at the advances in this direction. In the meantime, some
work is dedicated to address a relaxed problem, i.e., hex-dominant
meshing [12, 34], and has achieved various levels of success.

According to our observation, every meshing method has its unique
characteristic. For the polycube-based methods, the singularities of
the obtained hex-meshes all reside on the surface; in contrast, for
frame-field based methods, singularities could be positioned inside the
volume. For the octree-based hex-meshes, there is a padding layer over
the surface and most of the singularities are attached to the padding,
while the inner layer is equivalent to a voxelized grid (i.e., a very
complex polycube). To some extent, the structure of the polycube
based hex-meshes that have a padding layer shares some similarity with
the one generated by the octree-based method. The question is, given
an arbitrary pure hex-mesh, can one easily identify by which method
the mesh is generated? This motivates us to develop a technique to
help identify the unique patterns within the hex-meshes generated with
those popular meshing methods.
Hex-mesh singularity Singularities play an important role in hex-mesh
generation, structural optimization, and mesh post-processing. For hex-
ahedral mesh generation, especially for frame-field based methods, the
quality of the obtained hex-meshes heavily rely on the placement of
singularities. Armstrong et al. pointed out that a main task in quad/hex
mesh generation is the placement of mesh singularities to give the
desired element orientation and distribution [1]. Nieser et al. [28]
showed that there are 24 possible singularity types and applied a coarse
manually designed meta-mesh to guide the generation of a 3D global
parameterization from the obtained frame field. Huang et al. introduced

a method to automatically construct a boundary-conformal 3D frame
field. However, the obtained frame fields may contain unwanted types
of singularities. Therefore, only hex-dominant meshes can be resulted.
Later, Li et al. [24] restricted the singularities to 10 types that are
needed to obtain a valid hexahedral configuration, which can be used
to generate a hex-mesh with better structure conformal to the surface.
Similarly, Jiang et al. [21] presented a practical framework for adjusting
singularity graphs by automatically modifying the rotational transition
of frames between charts to resolve the invalid (or non-hexahedral)
configuration detected in the internal and boundary singularity graph.
However, this repairing can only detect local invalidity and is not suffi-
cient for global deficits of the singularity graphs. Generally, a common
consensus is that a good placement of the singularities will result in
a good structure of the hex-mesh. For example, by only aligning the
singularities the structure becomes simpler and the quality of mesh
becomes better [11]. In addition, removing unwanted singularities may
help improve the mesh structure and mesh quality [14].
Base complex typically refers to the coarse configuration of mesh ele-
ments, which is of importance in mesh generation, mesh optimization,
and parameterization. Eck et al. converted a triangular base complex
to a quadrangular base complex which helps in extracting a B-spline
surface [8]. The work shows that a mesh can be parameterized by a
coarse quadrilateral layout. Khodakovsky et. al constructed a triangular
base complex for a globally smooth parameterization [22], while Dong
et al. obtained a quad base complex by extracting the Morse-Smale
complex of a selected Laplacian eigenfunction [7]. Considering its
importance, a significant amount of work on mesh base complex has
been reported, especially in the field of quadrangulation [2, 30, 31]. It
is worthy to point out that Tarini et al. proposed a method to extract
simple quad domains from a quad mesh [38]. Later, the concept of base
complex was extended to extract the base complex of a hex-meshes in
help with the generation and simplification of hex-meshes [5, 11, 14].
Sheet representation Borden et al. [4] represented a hexahedral mesh
using a set of spacial twist plane (STC), also referred to as sheet. Later,
Merkley et al. applied sheet insertion to hexahedral mesh to modify
the mesh connectivity [27]. Kowalski et al. proposed a theoretical
classification for fundamental sheets participating in the geometry
capture procedure [23]. It is important to note that the sheets discussed
in the above methods are constructed using the hexahedral elements.
Recently, Gao et al. combined the concept of base complex and sheets
to achieve the efficient alignment of the singularities of a hex-mesh [11],
and the simplification of the structure of the hex-mesh [14]. Wang et al.
combined frame field and base complex sheet adjustment to improve
hex-mesh topological connectivity [39]. As shown in these recent
works, base complex sheets are the keys for the hex-mesh structure
optimization. However, there still lacks an in-depth understanding in
the hex-meshing community on the configuration of the individual
sheets, and, more importantly, their mutual connectivity configuration
and its impact to the overall mesh structure complexity, which hampers
the development of an optimal structure simplification framework. We
aim to address this lack in this work.

3 HEX-MESHES AND BASE COMPLEX

We start with the introduction of some important concepts of hex-
meshes and base complex based on the work by Gao et al. [11, 14].

3.1 Hex-mesh Basis
Hex-mesh In computational solutions of partial differential equations,

meshing is a discrete representation of the geome-
try that is involved in the problem. Essentially, it
partitions space into elements (or cells or zones)
over which the equations can be approximated. A
hex-mesh is a volumetric mesh where each cell,
called hexahedron, also called a hex or a brick, is

isomorphic to a cube, i.e., having 8 vertices, 12 edges, and bounded by 6
quadrilateral faces. For the same cell amount, the accuracy of solutions
in hexahedral meshes is the highest. Mathematically, G = {V,E,F,H}
denotes a hex-mesh graph with a set of vertices V , edges E, faces F ,
and hexes H given a volume Ω with closed boundary ∂Ω. Throughout
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the paper, we define the valence of an edge with respect to the number
of hex-elements (or hexes) adjacent to it.
Singularities Based on the concept of valence, an edge e ∈ E is irreg-
ular if e is an interior edge and its valence is not 4 or e is a boundary
edge and its valence is not 2. Otherwise, it is regular. Thus, we obtain
a set of irregular edges SE (e.g., black curves consisting of many small
edges in Fig. 3(a)). Similarly, singular vertices, SV , may exist (e.g.,
the red dots in Fig. 3(a)). A singular vertex could only be located on
singular edges [28]. Specifically, for the two vertices of an irregular
edge se ∈ SE , if one of them is on the boundary while the other is not,
then the one on the boundary is singular; otherwise (i.e., both of them
are in the interior or on the boundary), then the one(s) having more
than 2 irregular edges incident to it is singular. Next, we stitch the
connected irregular edges in order, to form a link. The link is called
a singularity se, which can be either closed or open (Fig. 3). The two
end vertices of an open singularity are called singular vertices sv. A
singularity graph GS = {SV ,SE} consists of all singular vertices and
all singularities, where sv ∈ SV ,se ∈ SE .
Base complex After obtaining the singularities, we could trace out
a patch of faces starting from a singularity, along a face incident to
the starting singularity, and ending at either itself, another singular-
ity, or the boundary (Fig. 3(c)). We refer to this surface patch as a
separation surface, which consists of a set of connected quads (in F)
in the hex-mesh. For a valence-n singularity, there are n separation
surfaces originated from it. The separation surfaces extracted from all
singularities form a surface network embedded in the hex-mesh, which
partitions the volume into large hexahedral blocks, called hexahedral
components. This partitioning is the base complex of the hex-mesh,
denoted by B = {VB,EB,FB,HB}, where HB are the hex-components
obtained above. VB, EB, FB are the corners, edges, and face patches
of the individual hexahedral components. Further, we denote a hex-
component in HB as Gb = {Vg,Eg,Fg,Hg}, where Vg, Eg, Fg, Hg are
the sets of vertices (located at the corners of Gb), hex-edges (forming
the edges of Gb), quads (forming the face patches), and hexes (filling
the volume) in the hex-mesh, respectively. Note that |Vg|= 8 if Gb is
isomorphic to a cube, while |Vg|= 0 if Gb is a ring (Fig. 4).

(a) SV &SE (b) singularities (c) seperation surfaces

Fig. 3. (a) singular vertices SV (red dots) and singular edges SE (black
lines) in the joint hex-mesh. (b) Valence of singularities: blue 1, green 3,
yellow 5. (c) Five separation surfaces incident to a yellow singularity.

(a) open Gb (b) closed Gb (c) HB

Fig. 4. (a) |Vg| = 8. (b) |Vg| = 0. (c) The base complex of the joint hex-
mesh, where different colors denote different components. Red dots and
thick lines connected indicate the corners (or vertices) and edges of the
base complex, respectively.

Base complex sheet We denote two base complex edges ei and e j in a
quad patch of FB as parallel (ei ‖ e j) if they do not share a vertex. The
parallel edge set of an edge e of a base complex is the set of edges
that are parallel to e or to any other edge in the set. A base complex
sheet is a collection of components that have one or more edges in the
same parallel edge set (Fig. 5(a)). For simplicity, we refer to the base
complex sheet as sheet for the rest of the paper. A sheet consists of

(a) a sheet (b) dual (c) (1,0) sheet (d) (2,0) sheet (e) (3,0) sheet

Fig. 5. (a) a sheet is a set of base complex components (in different
colors) circumscribed by the parallel base complex edges (black lines).
(b) The dual-surface of the sheet in (a) is a quad mesh. The lines
perpendicular to the quad mesh are the parallel base complex edges
defining this sheet. A number of self-intersecting sheets with one 2-
intersection (c), two 2-intersections (d), and three 2-intersections (e).
Intersections are highlighted by the arrows.

two side surfaces (perpendicular to the parallel edges) and an interior
volume [11].

Given any open base complex component Gb, there are three sets
of parallel edges, corresponding to different parameterization direc-
tions. Ideally, this means there are three different sheets going through
Gb. However, due to the potential tangling configuration, the same
sheet may go through the same component more than once (i.e., self-
intersecting) when traversing the components of the sheet in order,
creating complicated configuration. In this work, we study the configu-
rations of individual sheets based on this returning (or self-intersecting)
configuration, which has not been discussed before. In particular, if
a sheet goes through all its components once and exactly once, the
sheet is called a simple sheet. Otherwise, it is called a non-simple sheet.
For a non-simple sheet, the complexity increases with the increasing
number of self-intersections. If a component of a sheet that is visited
by the same sheet twice when traversing through the components of the
sheet, it creates a 2-intersection. If a component of a sheet is visited by
the same sheet three times, it yields a 3-intersection. To characterize
different self-intersection configurations of a sheet, we use a 2-tuple
(I2, I3) (I2, I3 ∈ Z+), where I2 and I3 represent the numbers of the 2- or
3-intersections, respectively. Fig. 5(c-d) show a number of non-simple
sheets and their corresponding 2-tuples. Note that we have not observed
any sheets with 3-intersection in our testing dataset. Ideally, a simple
sheet is preferred, especially for the trivariate spline fitting problem,
because the components with multiple visits will cause ambiguity dur-
ing parameterization. Most of the time, the complex configuration of a
sheet is induced by the location, orientation, and valence of the singu-
larities involved, which we will study later in this work (Section 6). For
a closed base complex component, there is one set of parallel edges,
and self-intersections cannot occur, otherwise additional components
will be created at intersections.

Note that if a sheet self-intersects, at the components where self-
intersections occur, the parallel edges are not actually parallel to each
other since they may share vertices in the same component. Therefore,
the above definition needs to be relaxed to take into account this situ-
ation. In particular, in the search of all parallel edges, if we return to
the components that have been visited before, all the previously visited
edges of those components will not participate with the parallel edges
checking. This additional care has not been mentioned previously.
Dual Since a sheet constructed on a set of parallel edges has a planer
configuration, we compute a mid-surface within the sheet that is ev-
erywhere perpendicular to these parallel edges (Fig. 5(b)). This mid-
surface, a pure quad mesh, is the dual-surface of the base complex
sheet (note that a base complex sheet represents a sub-volume ) [19].
This dual-construction strategy enables us to decompose the 3D base
complex structure into different sub-structure representations with dif-
ferent dimensionality. In particular, a 2D base complex can be extracted
for a dual-surface quad mesh, which can be further decomposed into
individual chords. A chord is a chain of quads that can be defined by a
set of parallel edges in the obtained 2D base complex. The dual of a
chord is the 1D skeletal representation that is perpendicular to the set
of parallel edges that define the chord.
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Fig. 6. A multi-level view of a hex-mesh. We extract a list of sheets from its base complex (Fig. 4(c)), from which a subset of sheets are identified
that cover the space of the base complex. Each sheet could be collapsed into a quad mesh, i.e., its dual-surface. From this subset of sheets, we
construct an adjacency matrix to represent their sheet-to-sheet relations (lower right inset). Next, we construct the 2D base complex for the quad
mesh, from which a series of quad chords are extracted (top row). Similarly, a subset of chords are used to represent the 2D base complex. These
chords can be further collapsed into some 1D skeletons, which are the dual of these chords. Based on the obtained chords, we can construct
an adjacency matrix (upper right inset) to characterize their chord-to-chord relations. Using this top-down decomposition strategy, we can easily
identify the most important or complex sheets/chords by sorting the rows/columns of the adjacency matrices based on the relations of the individual
sheets/chords with other sheets/chords and/or their respective sheet/chord complexity. For instance, chords 0 and 2 in the upper right inset, and
sheets 2 and 3 in the bottom right inset, are more important because they have more connectivity with other sheets/chords.

4 OUR METHOD

According to the concepts of hex-meshes introduced in Section 3, we
see that the base complex B and the boundary surface ∂Ω can already
sufficiently describe the input hex-mesh G. More importantly, a base
complex is comprised of a set of non-overlapping hexahedral (or base
complex) components, which can be organized as series of overlapping
sheets. From each sheet, the dual-surface can be extracted, which
can be further collapsed into its respective dual skeleton. This multi-
level representation (Fig. 6) provides us a means to study the complex
structure of 3D base complexes.

4.1 Our Pipeline

Our method consists of the following key steps. (1) We construct the
base complex of the given pure hex-mesh. The extraction of singulari-
ties is performed as a pre-processing before base complex construction.
(2) We extract all base complex sheets based on the above definitions.
(3) From all the extracted sheets, we identify a subset of connected
sheets that can most effectively represent the base complex of the
hex-mesh. (4) We compute the dual-surfaces for the subset of sheets
obtained in (3) by collapsing the volume of each sheet to its mid-surface.
For each obtained dual-surface, we perform the similar decomposition
using steps (1)–(3). (5) With the identified subset of sheets, we identify
their sheet-to-sheet connectivity relations and construct an adjacency
matrix. With this adjacency matrix, we will compute the complexity of
the base complex and perform visual exploration for the understanding
of the configurations of the obtained base complex. Fig. 6 illustrates
steps (3)–(5) of our processing pipeline.

Next, we provide more details for the individual steps. The extraction
of the individual base complex sheets is achieved by finding groups of
parallel edges according to the definition. To compute the dual-surface
for each sheet, we connect the midpoints of the four parallel edges in
each component of the sheet sequentially to form a valid quad mesh.
Similarly, to compute the dual 1D skeleton of a chord, we connect the
midpoints of the adjacent parallel edges of the chord in order. In the
following, we focus on steps (1), (3), and (5).

(a) failed case (b) successful case (c) one component of (b)

Fig. 7. (a) An incorrect base complex extracted using the previous
work [11]. (b) The correct base complex using our new algorithm and
one component is highlighted in (c).

4.2 Base Complex Extraction

Based on the above definition, base complex is a partitioning of the
mesh based on the obtained separation surfaces originated from the
individual singularities. Despite its importance in understanding and
improving the hex-mesh quality, there exists little description on how to
robustly construct the base complex of a pure hex-mesh in the literature.
Gao et al. [11] is the only work presenting a base complex construction
algorithm. However, their method requires selecting starting points
on closed singularities to finish the tracing of base complex edges,
which may create artificial components (Fig. 7). In this work, we
revisit the base complex construction for pure hex-meshes and propose
a robust algorithm. In particular, after extracting the singularity graph
Gs and computing the valence of each singularity, our base complex
construction proceeds as follows (Fig. 8).

We extract the separation surfaces BS by following the individual
faces attaching to each singularity (e.g., traversing in the hex-mesh
graph G with a consistent direction) until they reach another singularity,
return to the starting singularity, or hit the boundary surface. We then
extract BE and BV from the intersections between surfaces in BS. Next,
we extract HB. Specifically, for each h ∈H, we trace out from all its six
faces in G until meeting one of the patches in BS. This will find exactly
6 patches in BS that form a base complex component Gb ∈ HB. The set
of all Gb is HB (Fig. 8(c)). Similarly, we can extract FB. In particular,

4



(a) Gs&BF (b) BE &BV (c) HB (d) FB (e) EB&VB

Fig. 8. Illustration of the base complex construction process. (a) Extract
singularities Gs and separation surfaces BF . (b) Extract a set of edges
BE and a set of vertices BV from the intersection of separation surfaces.
(c) Extract a set of components HB. (d) Extract a set of face patches
FB. (e) Extract a set of links of edges EB and a set of corners VB. In (c),
(d), and (e), different hexahedral components, face patches, links, and
corners are in different colors.

(a) adjacent (b) intersecting (c) hybrid

Fig. 9. Three basic types of connectivity relations between two sheets:
(a) adjacent, (b) intersecting, and (c) hybrid.

for each quad f ∈ BS (and also f ∈ F), trace all its four edges until
meeting one of the edges in BE . This will find 4 edges in BE that form
a base complex patch Fb, The set of all Fb is FB (Fig. 8(d)). For each
e ∈ BE , trace from both of its two vertices until meeting one of the
nodes in BV , and we will get a Eb, The set of all Eb is EB (Fig. 8(e)).
Extract VB. In fact, VB = BV (Fig. 8(e)).

4.3 Main Sheets Extraction
As described earlier, the extracted sheets overlap each other. In practice,
only a small subset of sheets are needed to sufficiently represent the
original base complex with minimum overlap. The overlap is defined
as how many components the two sheets share. We refer to a subset of
sheets that can cover the space of the base complex the main sheets. In
particular, we aim to identify a subset of sheets that satisfy (1) having
as few sheets as possible; (2) having as little overlap as possible; and
(3) forming as complex sheet-to-sheet structure as possible. In other
words, we aim to identify an optimal subset of sheets that can most
effectively describe the complexity of the base complex.
Sheet-to-sheet connectivity relations Before explaining our main
sheet extraction algorithm, we first define the relation between two
sheets. According to our observation, there are three basic connectivity
relations between two neighboring sheets: adjacent (or tangent), inter-
secting, or hybrid (i.e., both tangent and intersecting to each other),
respectively. Fig. 9 provides a few examples of these possible relations.
Ideally, the tangent relation is preferred as it easily achieves the lay-
ered configuration, while the hybrid configuration is the least preferred
sheet-to-sheet configuration. In addition, sheets that are tangent to each
other may have different lengths, and intersecting sheets may have more
than one intersection. All this information should be considered when
quantifying the complexity of the connectivity configuration between
sheets. To capture this information, we use a 2-tuple, (p, I) to charac-
terize the connectivity configuration of any two sheets, where p ∈ R
represents the percentage of adjacency between two sheets, which is the
ratio |∂S1

⋂
∂S2|

|∂S1|+|∂S2| (|∂S1
⋂

∂S2| is the portion of side surface that sheets

S1 and S2 share). I ∈ Z+ counts the number of intersections between
two sheets. Although one can choose to use the number of components
the two sheets share as I, in practice we find that using the number of
intersections as I is sufficient.
Main sheets identification algorithm Finding the optimal set of main
sheets satisfying the above goals while covering the space of base

complex is a set cover problem (SCP), which is NP-complete. We
propose a practical approximate algorithm based on some greedy depth
first search (DFS) and breath first search (BFS) on a sheet connectivity
graph CG, which enables us to obtain a near optimal solution. The
nodes of CG are the individual sheets, and the edges are inserted
between two sheets if they have one of the above three connectivity
relations. Our algorithm consists of the following steps: (a) Use a DFS
and a BFS with backtracking starting from every node of CG to find
a number of candidate sets of sheets that can cover the base complex;
(b) Remove the redundant sheets in each candidate set and remove
duplicated candidate sets. (c) Find the set that can best satisfy the three
goals. We now describe each step in detail below.

(a) In the DFS, for the current sheet Si in the current set USi , we
insert one of its neighboring sheets (based on CG) that is not in USi
and with minimum number of intersecting base complex components
(i.e., minimum overlap – goal (2)) with Si to USi . If there are multiple
candidate sheets with minimum overlap, we select the one having the
largest number of base complex components because it allows us to
fill the base complex quicker – goal (1). If at this point we still have
multiple choices, we randomly select one. We then set the new sheet as
the current sheet and repeat the above process until the space of base
complex is covered (i.e., all its components are visited at least once
by one of the sheets in USi ). In order to backtrack the previous visited
sheet and its neighbors if the current search path cannot lead to a full
coverage of the base complex, we use a stack to store this path.

The above DFS is a local greedy strategy, which may not find the
optimal subset. To ensure we search more paths and enhance the chance
of capturing the optimal set, we also perform a BFS search from every
node of CG. The difference of this BFS from the above DFS search is
that DFS selects one next sheet, while BFS selects multiple next sheets
which have the same minimum overlap with the current sheet. In either
search, backtracking is needed to obtain a subset covering the entire
base complex.

(b) In step (a), redundancy may be introduced. In particular, a
sheet whose components have all been visited at least once by other
sheets in the same set is removable. For instance, assume we have a
sequence of main sheets {Sa,Sb,Sc}, where Sa = {1,3}, Sb = {2,3},
and Sc = {2,4} (1–4 are the component IDs). Sb is removable given
Sa and Sc. To eliminate this redundancy, we sort all the sheets in a
subset based on the numbers of their components, and remove those
removable ones with small numbers of components. This will enable us
to keep both the number of sheets and overlap among sheets small (i.e.,
goals (1) and (2)). Also, the above DFS and BFS searches may produce
identical sets of candidate main sheets, which should be removed.

(c) We compute the complexity of each candidate subset using a
measurement, ||M||F , defined in Section 4.4, Eq. 2. We then compute
the average per sheet complexity of this set. We rank all the candidate
subsets based on their average complexity, and select the top-ranked
set as the main sheets of our algorithm.

The pseudo-code of our implementation to the above solution is pro-
vided in the supplemental document. The complexity of our algorithm
is O(n3), as the complexity of both DFS and BFS is O(n2) and we
perform the search starting from every node in CG.
Correctness of the main sheets extraction It is easy to see that step
(a) of the above algorithm will guarantee the complete coverage of the
space of base complex. When we search the next sheet we always use
the minimum overlap, which satisfies the second goal. Step (b) ensures
that goals (1) and (2) are satisfied. We use the maximum average per
sheet complexity to select a subset in step (c), which indirectly enables
us to satisfy both the first and third goals. This is because a higher
average complexity will favor a subset with few number of sheets but
relatively high overall complexity. Fig. 10 shows a number of possible
subsets for a fandisk hex-mesh sorted according to the numbers of
sheets in the respective subsets. Our algorithm selects Fig. 10(b) as the
main sheets, which is indeed the optimal set satisfying all three goals.
We also provide some detailed verification for a number of meshes in
the supplemental document to justify the correctness of our algorithm.

The above algorithm can be similarly applied to the identification of
the subset of main chords for a dual-surface quad mesh corresponding
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(a) #4 (b) #4 (c) #4 (d) #7 (e) #7 (f) #8

(g) ||M||F =2.33 (h) ||M||F =3.43 (i) ||M||F =2.99 (j) ||M||F =11.19

Fig. 10. Given the fandisk model generated by the frame-field method in
[24] (a–f) We obtained different sets of representative sheets, ’#’ denotes
the number of sheets. (a), (b) and (c) has the same number of sheets,
(g), (h), and (i) are their relations and complexity ||M||F , respectively.
However we use (b) as the main sheets, see more details about com-
plexity calculation in the Section 4.4. (j) shows the relations for all sheets
(Fig. 16(b)).

(a) all chords (b) #5 (c) #6 (d) #7

Fig. 11. Given a dual-surface of a sheet in the fandisk model (green
quad mesh in Fig. 10(a)), (a) we can extract the base complex (different
colors in quads) and a set of all chords (tubes). (b–d) We use the main
sheet/chord extraction algorithm to extract different sets of chords, ’#’
denotes the number of chords.

to a base complex sheet. Fig. 11 shows a number of possible subsets of
chords for a dual-surface quad mesh.

4.4 Structure analysis
Based on the above obtained connectivity graph CG and the identified
subsets, we introduce an adjacency matrix M to represent and visualize
the configurations of the individual sheets and sheet-to-sheet relations.
In particular, each row i and column i represents sheet Si. An entry (i, j)
is non-zero if sheets Si and S j have one of the above three connectivity
relations. This non-zero value is computed based on Eq. (1), which
quantifies the complexity of the sheet-to-sheet relation between Si
and S j. The value of each diagonal entry (i, i) is ci = āi + I2 +(I3 +

1)2, which characterizes the complexity of sheet Si. I2 and I3 are the
numbers of 2- and 3-intersections of Si, respectively. We take the square
of I3 to emphasize the complexity of this configuration. āi =∑mi j∈N

mi j
|N|

where N is the subset of non-zero entries of row i.

mi j =


p if I = 0
I if p = 0
(p+1)I Others

(1)

Given the above M, we use its Frobenius norm to define a complexity
metric for a subset of sheets as follows.

||M||F =

√√√√ n

∑
i=1

n

∑
j=1
|Mi j|2 =

√
trace(M†M) =

√
n

∑
i=1

σ2
i (M) (2)

where M† denotes the transpose of M, and σi(M) are the singular values
of M. To our best knowledge, this is the first quantitative complexity
metric for 3D base complex. Note that to identify a near optimal
set of main sheets from the candidate subsets (Section 4.3), we use
||M−diag(M)||F for their ranking where diag(M) is a diagonal matrix
whose diagonal entries are the diagonal elements in M. The reason we
do so is we found that with this alternative complexity the identified
optimal subset has fewer number of main sheets in most cases.

Effectiveness of the extracted main sheets We can utilize the pro-
posed complexity metric to assess the effectiveness of the selected main
sheets in representing the complexity of the base complex. Take the
fandisk results shown in Fig. 10 as an example, the selected main sheets
have a complexity value of 3.425656, while the original base complex
with all sheets has a complexity of 11.193765. That said, the four main
sheets (out of 15 total sheets) contribute 30.6% of the complexity of the
base complex. Visually, it is also apparent that the main sheets better
convey the layout configuration of hexes than using all sheets.

Similarly, we construct an adjacency matrix for the obtained subset
of chords derived from each dual-surface quad mesh of a sheet, from
which we compute a complexity value for the dual-surface (Fig. 11).

5 STRUCTURE COMPLEXITY VISUALIZATION

Previous sections describe how we construct and decompose the base
complex of a given pure hex-mesh into multi-level sub-structures to aid
its analysis. In this section, we describe how we visualize the obtained
base complex and its complexity in an intuitive way. In particular, we
visualize both the structure in its original 3D space and its abstract
configuration relation in the 2D space.
3D visualization With the extracted multi-level structure information,
we provide a number of visualizations to aid our exploration. First, to
study the configuration of a single sheet, we visualize either the set of
parallel edges that define this sheet or its dual-surface. The user can set
various transparency and line widths to emphasize different aspects of
the sheet. Second, to study the complexity of the entire base complex,
we visualize its main sheets obtained from the above extraction. To
alleviate the occlusion, transparent dual-surfaces for the main sheets
are shown. To further reduce the occlusion, each dual-surface can be
represented by the dual 1D skeletal curves of the extracted main chords.
Fig. 12 shows an example of how we visualize this multi-level structure
information in 3D. More examples are in Fig. 13.

(a) a subset of sheets (#7) (b) two-levels structure for (a)

(c) a subset of sheets (#8) (d) two-levels structure for (c)

Fig. 12. (a) A padding layer occludes the interior. (b)(d) Use two-levels
structure to represent a hex-sheet. (c) another set of main sheets with
size of 8. (d) two-levels structure of (c).

2D matrix view To ease the user interaction, we offer a 2D visualiza-
tion of the obtained enhanced adjacency matrix based on either all the
sheets or the extracted main sheets. In particular, we use colored disks
to represent sheet-to-sheet connectivity relations with blue disks for
adjacent, green for intersecting, and red for hybrid. Also, we scale the
disks and determine the saturation of their colors based on the values
of the individual entries. To visualize the diagonal entries of the matrix,
we use some dark gray squares. The size of each square and its gray
color are determined based on the value of the corresponding diagonal
entry. Fig. 10 provides a few examples of our matrix visualization.

6 APPLICATIONS

We have applied the aforementioned base complex structure analysis
and visualization framework to a number of well-known hex-mesh data
sets produced by a few popular hex-meshing techniques, including
the volumetric polycube approach [15], `1-polycube approach [16],
polycut [25], close-form polycube approach [10], and a frame-field-
based method [24]. Fig.13 shows the multi-level structure visualization
for a number of representative hex-meshes using our approach.
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Fig. 13. A gallery of multi-level structures for different meshes.

(a) polycut #14 (10.99) (b) `1 #9 (7.89) (c) RSF #8 (7.35)

(d) simp. #8 (7.31) (e) simp. #5 (4.54) (f) simp. #3 (3.36)

Fig. 14. Comparison of different structures. (a), (b), and (c) are gener-
ated by polycut [25], `1-polycube [16], and Singularity Restricted Field
(SRF) approach [24], respectively. (d), (e), and (f) are their respective
simplifications [14]. Different main sheets are shown in different colors. #
denotes the number of sheets. The number in each pair of parentheses is
the complexity of the corresponding main sheets. The adjacency matrix
of each set of main sheets is visualized above each model.

Comparing hex-meshes generated with different approaches
Fig. 14(a-c), Fig. 15, and Fig. 16 provide the visualization of the
main sheets and the corresponding adjacency matrices for a number of
hex-meshes generated with different approaches. From these results
and their comparison, we see that in general, the hex-meshes generated
by the frame field based approach have a less complex structure than
those generated by polycube approaches (see the bunny and fandisk ex-
amples shown in Fig. 14 and Fig. 16). This may be due to the padding
layer that is usually applied in a post-processing step for polycube
approaches to push the boundary singularities into the interior to im-
prove the boundary conformality and the quality of boundary elements.
This padding layer may increase the structure complexity due to the
additional misalignment between singularities in the padding layer.
However, compared to the polycube-based approach, the base complex
of the hex-meshes generated with the frame field based method may
have a very complicated configuration in the interior of the volume.
This is because the 3D parameterization induced by the frame field may
encounter the integer mismatch issue around the holes of the models,
easily resulting in helical configuration in the iso-contours of one of the
three harmonic fields. As can be seen in the fertility example (Fig. 15),
the main sheets of the base complex of the hex-mesh produced by the
frame field method (Fig. 15(c)) contain a tangling sheet (also shown
in Fig. 2(b)) that has 3 2-intersections. Similarly, there is also one
complicated sheet (making 27 2-intersections) in the main sheets of
the mesh generated by the closed-form method. This is because the
closed-form method also relies on a frame field to compute the 3D
parameterization. To summarize, frame field based method may gener-
ate hex-meshes with simpler structure for low genus models (like the
bunny, fandisk, rod and bone), while polycube-based method works
well for high-genus models (like fertility, rocker arm, and joint).

Table 1 provides some statistics of our analysis for the base com-
plexes of a number of representative hex-meshes. Specifically, the
effectiveness of the main sheets extracted using our approach for each
mesh is computed as the ratio between the complexity of the main
sheets (3rd column) and the complexity of all the sheets (5th column).
From these examples, we see that the main sheets extracted using
our algorithm indeed contribute the most to the complexity of their
corresponding base complexes. More statistics can be found in the
supplemental document.

(a) Volumetric (b) polycut (c) RSF (d) closedform

Fig. 15. Comparison of different structures. (a), (b), (c), and (d) are
generated by volumetric polycube [15], polycut [25], RSF [24], and closed-
form polycube [10], respectively. Different main sheets are shown in
different colors. The adjacency matrix of each set of main sheets is
visualized above each model.

We also apply our framework to study the structure complexity of the
hex-meshes generated by other approaches, including the octree-based
method [40] and splitting from an existing tetrahedral (tet-) mesh. See
Figs. 16(c) and 16(d) for the fandisk example. Their corresponding
main sheets are shown in Figs. 16(g) and 16(h), respectively. Com-
paring to the preceding parameterization-based approaches, the base
complexes of the two hex-meshes generated by the octree-based method
and by splitting from a tet-mesh are much more complex. This is ex-
pected as both methods produce unstructured hex-meshes. Comparing
these two methods, though, despite having more regular hexahedra in
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(a) polycube (b) frame-field (c) octree (d) split-from-tet

(e) (5.31) (f) (3.43) (g) (52.89) (h) (34.24)

Fig. 16. Base complexes of hex-meshes of the fandisk model generated
by different approaches. Top row shows all sheets of each base com-
plex, while the bottom row shows the extracted main sheets and their
complexity values. The adjacency matrices of the sets of main sheets
are shown in the middle row.

Table 1. Base complex and main sheets complexity

main sheets all sheets
Model #sheets ||M||F #sheets ||M||F effectiveness

bunny [16] 9 7.63 23 16.55 46.11%
children [16] 37 34.58 105 59.67 57.96%
knot [10] 5 5.28 11 10.06 52.50%
carter [10] 9 25.76 44 43.71 58.92%
bone [24] 8 6.40 14 11.24 56.89%
impeller [24] 14 40.87 51 52.21 78.29%

Table 2. Structure complexity for different simplifications. # denotes the
number of main sheets.

Model Origin Aligned Simplified

BU [15] 11.79 (#16) 10.39 (#13) 6.34 (#7)
bumpy torus [15] 17.11 (#24) 13.25 (#13) 7.19 (#8)
bunny [15] 15.39 (#20) 7.50 (#9) 7.19 (#8)
kiss [15] 24.40 (#23) 17.59 (#16) 10.28 (#9)
BU [25] 12.11 (#15) 6.72 (#8) 5.66 (#6)
fertility [25] 12.24 (#8) 10.07 (#7) 10.11 (#6)
rockerarm [25] 9.09 (#8) 7.93 (#6) 6.62 (#4)

the octree-mesh, the structure of the hex-mesh split from a tet-mesh
has a relatively simpler configuration. In particular, only adjacent and
intersecting connectivity between sheets is observed in the latter, while
all three connectivity relations exist in the sheets of the octree-mesh.
This is captured by our complexity metric. Nonetheless, the identified
main sheets in the hex-mesh split from the tet-mesh do not follow the
shape of the object well, which may not be desired for the subsequent
computation tasks. That is probably why octree-mesh is more preferred
than the hex-mesh split from a tet-mesh in critical simulation. Another
reason is that the Jacobian quality of the individual hex-elements is
typically low for a hex-mesh split from a tet-mesh.

Comparing different structure optimization approaches As most
existing hex-meshing techniques do not take into account the structural
information, the base complexes of the resulting hex-meshes can be
arbitrarily complex. To improve their structures, structure simplification
and optimization is performed. So far, there are only two existing

(a) `1 #6 (7.95) (b) aligned #5 (7.27) (c) simp. #4 (6.64)

Fig. 17. Comparison of different structure-optimization. (a), (b), and (c)
are generated by `1-polycube [16], alignment [11] of (a), and simplifica-
tion [14] of (a), respectively. Different main sheets are shown in different
colors. # denotes the number of sheets. The number in each pair of
parentheses is the complexity of the corresponding main sheets. The
adjacency matrix of each set of main sheets is provided above each
model.

(a) rockerarm (b) fertility

Fig. 18. The self-intersections are typically accompanying with sin-
gularities that have orthogonal configurations, especially when these
orthogonal singularities belong to the same set of parallel edges that
define the sheet. We highlight the parallel base complex edges with
valence 3 and 5 in purple and black tubes, respectively.

techniques [11, 14] that can directly simplify the base complex of
a pure hex-mesh. We apply our structure analysis and visualization
framework to evaluate the effectiveness of these two approaches (Fig. 17
and Fig. 14(d-f)). Table 2 shows the simplification results of the two
approaches for a number of pure hex-meshes. In general, the latter
simplification that may reduce the number of singularities in the mesh
can produce simpler structure, compared to the alignment method. This
is expected considering the close relation between the singularities of
the mesh and the base complex structure. However, there is at least one
case in our experiment that the simplification approach cannot produce
a simpler structure than the alignment method, i.e., for the fertility
hex-mesh generated by the polycut approach. This is likely caused by
the simplification framework that does not explicitly take care of the
misalignment during structure reduction.
Relation between singularities and sheets Based on definition, the
base complex of a pure hex-mesh is determined by the locations and
orientations of singularities of the mesh. As shown in the work by
Gao et al. [11], the misalignment between singularities may result
in additional sheets or complicated sheet configuration. In addition,
neighboring singularities may have different orientations (i.e., different
parameterization directions), increasing the chance of misalignment.
To have an in-depth understanding of the relations between singulari-
ties and the sheet complexity, we concentrate on the sheets that have
complicated configuration (e.g., self-intersecting). Our hypothesis is
that the self-intersections of sheets are often induced by the non-simple
(or non-parallel) configuration of the singularities in the vicinity of the
self-intersecting area. To verify our conjecture, we inspect a number
of self-intersecting sheets in Fig. 18. As shown in this figure, in both
cases the singularities at the locations of intersections are in directions
orthogonal to each other. And more importantly, parts of these or-
thogonal singularities are the parallel edges that define the respective
sheets, which explains the change of the parameterization direction at
self-intersections.
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Fig. 19(a) shows a sheet with an irregular configuration in a kitten
hex-mesh. Specifically, the sheet has a Y-shape like configuration while
the kitten model does not. By carefully examining the configuration of
the singularities (the green and yellow tubes), we can quickly identify
some non-symmetric (or more specifically, non-hexahedral) configu-
ration among some neighboring singularities (highlighted by the red
circles) that are not aligned with the orientation of the model. This
is likely the reason that causes the Y-shape configuration of the sheet.
Fig. 19(b) provides a case where the two main sheets define the entire
base complex (see the main sheet adjacency matrix in Fig. 19(d)). The
two sheets have a hybrid connectivity relation. To understand the cause
of their complex relation, we inspect its singularity configuration and
locate a singularity (highlighted in purple) that is not aligned with the
feature orientation of the model and has some twisting behavior. This
leads to the twisting parameterization, thus the tangling configuration
of the sheets.

(a) (b) (c) (d)

Fig. 19. (a) Non-symmetric configuration of singularities (highlighted
in red circles) might produce a misaligned sheet. (b) Non-symmetry
singularity (highlighted in purple) might generate self-intersecting sheets
(transparent red and non-transparent gray). (c) A multi-level view of (b).
(d) Enhanced adjacency matrix of (b).

In the other end of the spectrum, singularities with simple configu-
ration do lead to simple sheet configuration. Fig. 20 shows a number
of examples of base complexes, each of which requires only a single
main sheet to represent the entire base complex. In the meantime, their
singularities have rather simple configuration. For example, the four
singularities of the fancy ring hex-mesh (Fig. 20(a)) are closed and
parallel to each other (i.e., along the same parameterization direction).
Similar singularity configuration can be seen in the KPDloekr hex-mesh
(Fig. 20(b)). For the nut hex-mesh (Fig. 20(c)), although there are two
groups of singularities that are orthogonal to each other (i.e., following
two orthogonal parameterization directions), one of them forms closed
singularities and aligned with the boundary, thus, a single main sheet
(represented by its dual-surface) can be found to represent the entire
base complex.

From the above examples, we can sufficiently determine that an
ideal and regular configuration of singularities conformal to the feature
orientation of the model is crucial to producing an ideal hex-mesh
with the desired structure. This observation will provide guidance
for the development of an effective singularity structure creation and
optimization for a robust hex-meshing framework.

Another interesting discovery we found during our exploration is
that if the valence of a singularity is 1, then the relation between any
two sheets attaching to this singularity are intersecting; if the valence is

(a) fancy ring (b) KPDloekr (c) nut

Fig. 20. Meshes that have only one main sheet. (a) and (b) are two
base complexes that have only one sheet. Red dots are singular vertices.
Blue and green tubes are valence 1 and 3 singularities, respectively. Red
surface denotes the dual-surface of the main sheet in (c).

Table 3. Performance for close-form models [10]. GB denotes the time
for base complex extraction and CG is for main sheets extraction.

time (s)
Model #V #H #HB #S GB CG

fancy ring 3k 1k 5 1 0.1 0.01
KPDloekr 31k 23k 2 1 25.1 0.01
nut 15k 13k 12 13 0.9 0.02
joint 5k 4k 59 15 0.3 0.02
hollow-eight 11k 9k 249 18 0.7 0.04
kitten 14k 12k 208 16 0.9 0.1
knot 29k 24k 50 11 2.0 0.1
rockerarm 20k 18k 1,202 41 1.5 1.6
carter 75k 65k 1,101 44 5.3 1.7
fertility 22k 16k 2,002 38 2.4 2.1
grayloc 29k 24k 3,183 73 1.9 10.3
chinese-lion 17k 15k 6,235 75 1.4 23.4
pegasus 14k 12k 9,745 120 34.7 69.3
dragon 13k 114k 12,488 134 15.4 112.4

3, it is hybrid. If it is valence 5 or 6, then it would be either adjacent or
intersecting. However, we have not thoroughly verified this.
Performance We tested the performance of our method with a list of
meshes generated by the closed-form method [10]. Table 3 provides
the timing information of this test. Base complex extraction time
(column GB) includes mesh reading, mesh connectivity building, base
complex extraction, and base complex connectivity building. Column
CG reports the time of main sheet extraction. The timing information
was obtained in a workstation with Intel(R) Xeon(R) CPU E5-1620 v2
3.70GHz and 48GB Memory 1866MHz.

7 CONCLUSION

In this work, we propose a multi-level solution to the understanding
of the base complex structure of any given pure hex-mesh. Our so-
lution decomposes the base complex extracted from an input valid
pure hex-mesh into multi-level sub-structures. In particular, we utilize
the concept of base complex sheet as the means to help us define the
configurations within a 3D base complex. We propose an effective
algorithm to identify a small subset of sheets, called main sheets, to
achieve a simplified representation of the base complex. From this
subset of sheets, we define a first quantitative metric to measure the
complexity of 3D base complexes. To aid the visual exploration of the
base complexes, we introduce an adjacency matrix representation to
encode the sheet-to-sheet connectivity configuration effectively. We
have applied our framework to the understanding of the characteristics
of the base complex structures of the hex-meshes generated by different
methods, and to the assessment of the efficiency of the existing struc-
ture simplification approaches. Finally, we apply our visual exploration
system to aid our understanding of the relations between singularities
and base complex configuration.
Limitations There are a number of limitations of our work. First, for
some models, although our algorithm can return a near optimal set of
main sheets, they may not be optimal (see the supplemental document
for some examples). Second, it is still hard to show the structure of
an octree or tet-split hex-mesh due to the overly complex structure
and a large number of extracted main sheets. Furthermore, our current
complexity metric does not explicitly take into account the geometric
complexity of a sheet. Third, the identified set of main sheets for some
meshes could be too abstract to sufficiently represent the configuration
of the corresponding base complex (e.g., the one-main-sheet examples
shown in Fig. 20, adding additional sheets perpendicular to the main
sheet direction may help). Finally, our current framework is for pure
hex-meshes, but can be potentially extended for hex-dominant meshes
should a proper structure and an equivalent concept to sheets be defined
there. We hope to address the above issues in the future.
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