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ABSTRACT
Extracting isosurfaces represented as high quality meshes from three-
dimensional scalar fields is needed for many important applica-
tions, particularly visualization and numerical simulations. One
recent advance for extracting high quality meshes for isosurface
computation is based on a dynamic particle system. Unfortunately,
this state-of-the-art particle placement technique requires a signif-
icant amount of time to produce a satisfactory mesh. To address
this issue, we study the parallelism property of the particle place-
ment and make use of CUDA, a parallel programming technique
on the GPU, to significantly improve the performance of particle
placement. This paper describes the curvature dependent sampling
method used to extract high quality meshes and describes its im-
plementation using CUDA on the GPU.

Categories and Subject Descriptors
I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Re-
alism—Surface Reconstruction; I.3.1 [Computer Graphics]: Hard-
ware Architecture—Graphics processors, parallel processing

Keywords
CUDA, GPGPU, volumetric data mesh extraction, particle systems

1. INTRODUCTION
Extracting isosurfaces is a popular technique to visualize three-

dimensional scalar fields. Given a scalar value for the desired iso-
surface, marching cubes [13], a fast and robust technique, can be
used to extract a mesh for the isosurface from a scalar field defined
on a 3D regular grid. However marching cubes has a few short-
comings which may result in a mesh that does not satisfy the needs
of the specific applications. First, vertices of the extracted mesh
are only linearly interpolated along the edges. No vertices can be
placed in the interior of the cells. Therefore, detailed information,
showing high curvature features smaller than the size of a cell, can
be lost. Second, marching cubes does not provide any guarantees
on the quality of the triangles that are extracted. Ill-conditioned
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triangles can be produced and the mesh can be problematic for nu-
merical simulations.

To overcome these shortcomings, Meyer et al. introduced a so-
lution based on particle placement to extract meshes [15]. The idea
is to place dense particles on the isosurface that is represented as
an implicit surface. A potential energy is computed based on the
density of the particles. The particles are moved along the negative
gradient of the potential energy to minimize the energy. With this
approach, particles can be placed anywhere on the implicit surface
and are no longer constrained to the grid edges. Further, a mesh
with well-shaped triangles (i.e. equilateral triangles) is generated
because minimizing the potential energy of the particle system in-
duces a hexagonal configuration. This well-shaped mesh is suitable
for numerical simulations where the volumetric tetrahedral meshes
are typically generated from the boundary triangular meshes. In ad-
dition, the energy can be adjusted by the curvature of the surface to
place more particles in areas of high curvature and fewer particles
in flat regions.

While a surface extracted using the curvature dependent parti-
cle system has well distributed particles in areas of interest and
well-shaped triangles, it comes with significantly increased com-
putational cost over other methods. To speed-up the system, bin-
ning was introduced. By partitioning the space, the neighboring
search in the energy and velocity computation can be carried out
in a smaller region, thus improving performance [8]. However,
even with binning, the computational costs are still too high. The
excessive computational cost to generate a well-shaped mesh has
hindered the use of the particle system by the bioengineering com-
munity for numerical simulations [18]. Therefore, improving the
performance would increase the use of the particle system for vari-
ous numerical simulation tasks.

In this paper we devise an efficient implementation of a particle
system on the graphics processing unit (GPU) to reduce the run-
time of the particle system. Our contributions are as follows:

• We study the potential parallelization of the particle place-
ment and propose a simple strategy to segment the particles
into groups that can be processed concurrently.

• We explore the parallel feature provided by the recent ad-
vance of CUDA programming on the Graphics Processing
Unit (GPU), which allows us to parallelize the computations
when processing each particle in a group.

• We have applied our GPU-based particle system to a num-
ber of medical data. The obtained meshes have comparable
quality to those generated using a CPU-based particle place-
ment, while the computation of our implementation is at least
one order of magnitude faster than the CPU version for most
cases.



The rest of the paper is organized as follows. Section 2 reviews
the most related work. Section 3 reviews the particle system. Sec-
tion 4 discusses the parallelization of the particle system and 5 pro-
vides the details of implementing the system using CUDA. Finally,
Section 6 provides the experiment results which show that the GPU
implementation is 6 to 44 times faster than a single threaded CPU
implementation.

2. RELATED WORKS
Particle systems on the GPU were first introduced by Kolb et

al. [11] and Kipfer et al. [9] for real-time animation and rendering
of particles in OpenGL. For real-time 3D flow visualization, Kruger
et al. used a particle system on the GPU because the CPU was too
slow [12]. Extending the particle system beyond computer graph-
ics, the GPU was subsequently used for simulating fluid motion
with smooth particle hydrodynamics (SPH) [10]. A good overview
of state-of-the-art in SPH on the GPU can be found in Goswami et
al [5].

Although there are shared characteristics between these particle
systems and the system presented in this paper, such as how par-
ticles are stored and accessed on the GPU, due to different appli-
cation purposes each has a different parallelization strategy. The
particle system by Kolb et al. [11] and Kruger et al. [12] do not re-
quire neighborhood information and are easily parallelizable (i.e.,
assigning a thread for each particle). On the other hand, Kipfer
et al. [9] and the SPH implementations [10, 5] require local neigh-
bors for collision detection and advection of the particles. However,
both of these are Forward-Euler solutions which could use a small
uniform time step to adjust the particle velocity to allow the sys-
tems to converge. In our implementation each particle determines
its step size based on its energy and the local curvature and does
not have a uniform time step. This allows faster convergence for
the purpose of mesh extraction. In what follows, we focus on the
most relevant work of particle placement for surface extraction.

Witkin and Heckbert were one of the first to use particles for
visualization [20]. They used an energy based particle system to
visualize implicit functions. They chose to use a Gaussian energy
function based upon the distance from a particle to its neighbors
to evenly place particles on the surface. The energy of a particle
repelled its neighbors which, after a number of iterations, places
particles evenly on the surface. Following the lead of Witkin and
Heckbert in the use of particles for visualization, Crossno et al. used
a particle system to extract isosurfaces from scalar fields [3].

More recently Meyer et al. employed an energy based particle
system for visualizing implicit surfaces [14] and extracting high
quality meshes from scalar fields [15]. Instead of the Gaussian en-
ergy function used by Witkin and Heckbert [20], Meyer et al. ap-
plied a compact cotangent energy function because it is approxi-
mately scale invariant. Additionally Witkin and Heckbert used a
gradient descent to minimize the energy which requires a tuning
parameter. Meyer et al. replaced it with a Gauss-Seidel update and
used an inverse Hessian scheme to automatically tune the energy
minimization, removing this tuning parameter. Finally, this method
allowed for the placement of more particles near areas of high cur-
vature, while leaving regions of low curvature with fewer particles
and fewer tuning parameters. Bronson et al. introduced a particle-
based system for generating adaptive triangular surfaces and tetra-
hedral meshes for CAD models [2]. Instead of pre-computing fea-
ture size, their system adapts to curvature and moves the particles
in the parameter space.

Our work is based on the particle system by Meyer et al. [15].
While this particle system generates a well-formed triangle mesh,
it comes with a significantly increased computational cost. We in-

troduce the parallelization of the particle system to process parti-
cles and reduce the run-time. Furthermore, we utilize the parallel
computation of the GPU hardware to achieve substantial speed-up,
increasing the likelihood of adoption for numerical simulation.
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Figure 1: Overview of the particle system.

3. PARTICLE SYSTEM
The particle system used in this work is based on the dynamic

particle system described by Meyer et al [14, 15]. A brief overview
of the system is in Figure 1. Initially, a distance field and a siz-
ing field are precomputed to represent the isosurface as an implicit
function, F , and to encode the distance between points on F , re-
spectively. Next, particles are seeded on the isosurface based on
the results of marching cubes. Then, the particles are processed
sequentially: determine neighbors, compute energy and velocity,
and update position. A particle only moves if the new position has
lower energy than its original position. Once every particle has
been processed, the density of the particles are checked to delete
or add particles. The above particle process is repeated until the
system energy has converged.

3.1 Initialization
Before placing the particles, a distance field and a sizing field are

precomputed respectively. A distance field of the implicit surface
is computed from the scalar data and is used with reconstruction
filters to generate the implicit function, F [15, 16, 19]. The sizing
field, h, is based on the local feature size and curvature of the im-
plicit surface, and is used by the particle system to meet ε-sampling
distribution requirements [15]. The distance between particles is
scaled based on the sizing field in order to control the sampling
density which also reflects the local curvature of the implicit sur-
face (Eq. 2). For more information on the construction of the sizing
field, see Meyer et al [15]. Once the distance and sizing fields are
computed, the system is initialized with a set of particles. The po-
sitions of the particles are determined from a marching cubes trian-
gulation. This is done to ensure that the entire isosurface is seeded,
even the disconnected regions. The initial seeds are then projected
onto F (Eq. 5).

3.2 Per Particle Processing
Processing a particle is a four step process (Figure 2). First, the

neighbors of pi are determined. Consider all other particles, p j, in
the system where i ̸= j, p j is a neighbor of pi if di j ≤ 1.0, where
di j is the scaled distance from pi to p j. Second, the energy, Ei of
pi, is computed based on its neighbors. Third, the velocity, vi, at
the position of pi is computed to give a magnitude and direction for
pi to move in. Finally, an iterative process (the red blocks in Figure
2) is conducted to update the position of the particle, depending
on whether the energy, Enew, at the updated particle position p′i =
pi+vi, is less than the current energy, Ei. If Enew is less than Ei then
the particle position is updated to p′i, otherwise we iterate, with a
smaller step size, until the new particle position has a lower energy
than the previous position.

3.2.1 Energy and Velocity Computation
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Figure 2: Processing a particle is a four step process. 1) determine the neighbors, 2) compute the energy, 3) compute the velocity and 4)
update position. The red blocks are the fourth step, i.e. the iterative process to update the position of the particle.

To compute the energy and the velocity, Meyer et al. proposed
the cotangent energy function because of its scale invariance and
compactness [14]. The energy, Ei, of pi is the sum of the energies
Ei j between pi and p j such that

Ei j =

 cot(|di j|
π
2
)+ |di j|

π
2
−

π
2
|di j| ≤ 1.0

0 |di j|> 1.0
(1)

and

di j =
|pi− p j|

2× cos(
π
6
)×min(hi,h j)

(2)

where di j is the scaled distance between pi and p j (i ̸= j) and |pi−
p j| is the Euclidean distance between particles pi and p j. Without
confusion, we will refer to di j as the distance between pi and p j ,
in the rest of the paper.

To compute distance, di j , between pi and p j the sizing values, hi
and h j, at pi and p j are used (Eq. 2). The distance between pi and
p j is scaled by the min(hi,h j). Because the distance and energy are
scaled by the surface curvature as in Eq. 2, when the distance is
less than 1.0 (i.e. within the neighborhood of the desired radius),
the energy Ei j is computed between the two particles using Eq. 1.
Otherwise, there is no energy between them and Ei j = 0.

The energy of a particle is used to determine whether a new po-
sition, p′i, is at a lower energy state than the original position. How-
ever, to move pi, the velocity of pi is computed. The velocity, vi,
is the derivative of the energy function. The velocity for pi is com-
puted as the sum of all the velocities, vi j , between pi and p j and
(i ̸= j) where

vi j =−(H̃i)
−1(

∂Ei j

∂ |di j|
di j

|di j|
) (3)
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where H̃i is the Hessian of pi’s potential with the diagonal of H̃i ad-
justed by λ according to the Levenberg-Marquardt algorithm. The
L-M algorithm is discussed further in Section 3.2.2. The velocity
is used to move pi in the tangent plane of the F at pi. Once pi is
moved in the tangent plane, it is projected back onto the surface,

pi← pi +Fi
∇Fi

∇Fi ·∇Fi
(5)

where Fi is the implicit function and ∇Fi is the gradient of the im-
plicit function at pi.

3.2.2 Update Position
Updating the position of the particle is an iterative process to

find the appropriate step size for vi. The Levenberg-Marquardt al-
gorithm (L-M) is used because with the current step size of vi, the
particle may not be moved to a place with lower energy. Each par-
ticle has a λ value which it maintains throughout the entire run of
the particle system. Increasing λ decreases the step size of vi. As
λ is increased (or decreased), the step size of vi is converging to a
good step size, i.e. the step will produce a proper velocity that leads
to a lower energy state. In practice, λ is incremented by 10. For
more details on the Levenberg-Marquardt algorithm, see Meyer et
al [14].

Algorithm 1 is used to update the position of pi. A possible
new position, p′i = pi + vi, is computed. The energy of p′i, Enew,
is computed using Eq. 1. If Enew < Ei then pi is updated to its
new position p′i. Otherwise, the particle system iteratively increases
λ and computes a new particle position p′i = pi + vi and energy,
Enew, until Enew < Ei or λ ≥ λmax. If λ ≥ λmax, then the particle’s
position is not updated and λ is reset to its value at the beginning
of the iteration process. Otherwise, the position of pi is updated to
p′i.

3.3 Density Control
Controlling the density of the particles is an important aspect in

the placement of the particles. Recall that the particle system is
initially seeded with particles on the surface from marching cubes.
However, the number of particles needed to create the proper den-
sity is not known a priori. Therefore, we may seed too many or
too few particles. If that is the case, no matter how the particles are
moved an optimal configuration may not be achieved.

Therefore, at the end of every iteration, the energy, Ei, of every
particle pi is checked against an ideal energy, Eideal . Recall that Ei
is calculated from the distance, di j , of pi to its neighbors p j and di j
is adjusted by the sizing field, hi (Eq. 2). If the energy is too high,
then there are too many particles close to pi. If the energy is too
low then there are not enough particles close to pi. The ideal energy
of a particle, Eideal = 3.462, is based on the energy computed from
a natural hexagonal configuration [14]. In other words, the desired
configuration is to have six neighboring particles. Achieving Eideal
is controlled through the addition and deletion of particles. The
addition or deletion of particles is biased with a random value from
[0,1] to prevent mass addition or deletion [20].

3.4 Binning and Neighborhoods
The complexity of the aforementioned particle system as ex-

plained is O(N2). A particle’s energy and force is determined by
the distance to every other particle in the system. Heckbert intro-
duced binning as an acceleration structure [8]. Instead of comput-
ing energy between a particle and every other particle in the sys-
tem, he subdivided the space according to a parameter, σ . Thus,
it was only necessary to compare a particle with its immediate
neighbors. By setting the bin length to at least σ it is guaran-
teed that all possible neighbors are located within the current bin
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Figure 3: Processing particles by their bins.

plus all the surrounding bins, i.e. the neighborhood. The neigh-
boring bins must be included since a particle may lie near the edge
of the bin and therefore its neighbors would be in the surrounding
bins. Because the sizing field contains the distance between parti-
cles needed for a quality reconstruction, it is used to determine the
bin size as σ = max(h), the global maximum of the sizing field.
This acceleration structure is used to speed-up the particle system
described by Meyer et al. and is implemented in BioMesh3D.

4. PARALLELIZATION
Although binning reduces the complexity of the particle system,

the computation is still slow. Therefore, we need to explore other
options to further improve performance. Parallelization is one pos-
sible solution to improve performance. The naive approach to par-
allelize the particle system is to map every particle to a thread and
have the thread gather from the neighbors their locations and then
calculate energy and force. Unfortunately, this method may fail to
converge. Assume a particle, pi, calculates its energy and force
while neighboring particles, p j, move. The energy and force cal-
culations of pi will be incorrect if any p j move. If all the particles
move concurrently, then all the movements could be incorrect and
the system may never converge. Although the preceding problem
could be mitigated by directly manipulating the time step, it is still
problematic. Because the velocity step size is adjusted automat-
ically through the L-M algorithm, any direct manipulation of the
step size with a small time step could be compromised by the L-
M. Further, because the velocity step size is dependent on the local
curvature, manipulating the time step to prevent particles from oc-
cupying the same space in areas of high curvature would heavily
penalize particles in areas of low curvature. Finally, this requires
another tuning parameter, something we wish to avoid.

Y Z

W X
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(c) Move to next bins
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Figure 4: Running multiple neighborhoods concurrently in 2D.

4.1 Bin Processing
Instead of trying to process all of the particles concurrently, groups

of particles can be processed simultaneously if their neighborhoods
do not overlap. The binning structure provides the necessary knowl-
edge for such a grouping since every particle contained in a bin is
a potential neighbor to every other particle within the same bin. To
guarantee a correct energy and velocity computation, the particles
in the neighboring bins of the current bin are also considered as
neighbors of every particle in the current bin. That said, the par-
ticles in the neighboring bins cannot be processed simultaneously
while the particles in the central bin are being processed. There-
fore, no overlapping neighborhoods are allowed for any groups of
particles that are being processed concurrently. Before attempting
to run groups of particles concurrently though, how the particles
are processed needs to be changed. Previously, all particles in the
system are processed serially as described in Figure 1. Instead,
since the particles are binned, the particle system can process the
groups of particles. Thus, for each bin, B, and its neighborhood,
NH in the particle system, all the particles pi ∈ B are processed se-
rially as shown in Figure 3. Although this change does not effect
serial processing of the particles within a bin, it allows particles to
be processed concurrently by executing bins with non-overlapping
neighborhoods.

If the particles are grouped (and processed) by their bins, then
the bins can be processed in parallel but only if the neighborhoods
do not overlap. Recall that the bin size is max(h). The step size is
limited to a maximum of the sizing field, h, which means the par-
ticle can travel into an adjacent bin. Therefore, given a bin B(a,b)
and its neighborhood, NH =

∪i=a+1, j=b+1
i=a−1, j=b−1 B(i, j), if B(a,b) is cur-

rently processed, then the other bins that can run concurrently are
B(a+ 3k,b+ 3m). An example of processing multiple bins con-
currently is given in 2D in Figure 4. The bins in Figure 4a that are
about to be processed are labeled W through Z. Bin W is at position
(0,0) therefore the next bins that are processed concurrently are at
positions (3,0), (0,3) and (3,3) for X , Y and Z respectively. Once
all the particles in bins W through Z have been processed, the next
bins are processed as in 4c and 4d. This procedure is repeated until
all the bins in the 3x3 space, i.e. the compute block, are processed.

5. CUDA IMPLEMENTATION
In the previous sections we described how particles are moved

and how bins can be run concurrently. Now, we explain how the
particle system is run on the GPU. The motivation for using the
GPU is simple. For the past several years, processing power on
the GPU has outstripped the CPU [17]. Further, parallel computing
architectures like CUDA have made that processing power more
accessible than what was previously available with GPU shaders
alone. Although the GPU has more processing power than the
CPU, it also has limitations. In particular, the GPU is a massively
parallel system with many hardware threads. Unfortunately these
hardware threads do not handle divergence well, where control
statements may cause threads to follow different execution paths
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which serializes the computations [17]. With the use of the Levenberg-
Marquardt algorithm, it is not possible to run a particle per thread
because there is no way to know a priori how many iterations the
L-M algorithm will take to find an appropriate velocity step size. If
every particle requires a different number of iterations to determine
the step size, some of the threads would have to be run serially,
which hinders performance. Beyond the thread divergence limita-
tion, memory management is important as well. In particular, co-
alescing memory fetches is very important. This requires memory
to be aligned when fetched from global memory.

With divergence and memory management in mind, running the
particle system on the GPU is as follows. First, bins are run con-
currently (Section 4.1) by processing a bin in a CUDA thread block
because processing a bin per thread is not possible due to thread di-
vergence. Second, note that a thread block is composed of tens to
hundreds of CUDA threads, so for every particle run in a thread
block, multiple threads are available for processing. Thus, the pair-
wise energy and velocity computations can be processed in parallel.
Finally, memory management is discussed. To coalesce memory
access, neighborhoods are copied into contiguous memory. Fur-
ther, preprocessed data, i.e. the sizing and distance fields, use tex-
ture memory for automated memory management.

5.1 Bin Processing
Bins are processed concurrently by executing a CUDA block per

bin. Assign each bin Bi and its neighborhood (see Fig. 4), to a
CUDA block CBi. Processing all the bins in the particle system
means iteratively processing bins in a compute block. Thus, once
a group of bins is processed, the adjacent bins are processed next.
We continue until all the bins have been processed, as illustrated in
Figure 4. This is the block level parallelization.

5.2 Energy and Velocity Computation
Since a thread block is run per bin and particles are run serially

within a bin, when pi ∈ B is processed, multiple CUDA threads
are used to calculate the energy and velocity. A CUDA thread, t j,
is assigned to do the pair-wise energy computation from pi to one
other p j ∈NH. Once the pair-wise energy calculations are finished,
a parallel sum reduction is conducted to compute Ei from the array
of energy values, Ei j [7]. The velocity is computed in a similar
manner to the energy computation. By running a CUDA block per
bin, the computation is parallelized at both block (bins) and thread
(energy and velocity computation) levels.

5.3 Memory Management
The method to build the bins efficiently in CUDA is similar to the

one used to build spatial subdivision for uniform grids in Green [6].
To coalesce memory access, at the beginning of every iteration the
indexes of the particles are binned in global memory. Additionally,
a particle count is generated for every bin, B_CNT . Before each

neighborhood is processed, the particles are copied into a contigu-
ous span of global memory. As pi is processed serially in bin B, and
the energy (or velocity) is computed according to Eq. 1 (or Eq. 3)
a thread, t j, is assigned for the pair-wise computation. Copying the
particles to coalesce memory access constitutes less than 4% of the
total run-time required.

To create multiple neighborhoods, NHk, in global memory, NH,
compactly and concurrently, a three step approach is used as out-
lined in Algorithm 2. First, the number of particles in each NHk
are counted (Figure 5a). For each NHk, and for each bin Bi ∈ NHk,
NH_CNTk += B_CNTi. Second, the particle system computes the
memory location, NH_IDXk of NHk (Figure 5b). Recursively, it is
defined as

NH_IDXk = NH_IDXk−1 +NH_CNTk (6a)
with

NH_IDX0 = 0 (6b)

To determine the neighborhoods concurrently in CUDA, Eq. 6
the CUDA atomicInc() function and a global integer, ptr, are used
to create the array of indexes. The atomicInc() function takes two
values, a memory reference ptr and an integer val, and returns
the previous value, prev, at P atomically. Thus, although every
neighborhood in the particle system is calling atomicInc(), it is
serialized because the ptr can only be incremented by NH_CNTk
atomically. Therefore, NH_IDXk = ptr+NH_CNTk where ptr =
NH_IDXk−1. Third, with an index, NH_IDXk into the span of
global memory reserved for NH, it is easy to copy particles into
their respective neighborhoods (Figure 5b). This procedure pro-
duces a per neighborhood count of particles for each neighborhood,
a per neighborhood index into the list of particles and a copy of all
the particles binned into their neighborhoods. As mentioned be-
fore, this is done to copy a neighborhood into contiguous memory
to coalesce memory access.

The sizing field is precomputed in a separate process and there-
fore the data is read into a 3D texture to take advantage of texture
caching. However, the built in interpolation function was not ac-
curate enough. The hardware trilinear interpolation is only a “9-bit
fixed point format with 8 bits of fractional value” [17]. Instead
a full float type trilinear interpolation function was used. Every
thread block has a shared memory variable for the sizing field value
at its location for better localized access. Likewise, the distance
field is precomputed and read into a texture for the same reasons
the sizing field was put into a texture. However instead of linear in-
terpolation, B-Spline kernels were used to reconstruct the surface,
its gradient and Hessian.

Finally, because of the addition and deletion of particles, the
particles are double buffered between iterations. The addition or
deletion of a particle is carried out after all the particles have been
processed. If the energy of the particle is not within a certain
threshold of Eideal , then its either added or deleted. In practice,
if Ei < .75×Eideal then a particle is added and if Ei > 1.35×Eideal
then the particle is deleted. The energy calculation for adding or
deleting particles is done in the same manner as moving the parti-
cles, with the block level and thread level parallelization. Although
adding or deleting can be performed without the double buffer, this
helps cluster the particles by region and allows for faster binning in
the next iteration.

6. RESULTS
A CPU version of the particle system, BioMesh3D [1], is used to

generate the CPU mesh. A level set method [19] is used to generate



the distance field and the sizing field h in the pre-computation step.
A B-spline reconstruction kernel is used to interpolate values and
compute the gradient and the hessian of F . For the sizing field, h,
linear interpolation is used to look up the values at pi.

Once the particles have been saved from BioMesh3D or the CUDA
implementation, TIGHT COCONE [4] is used to create a water-
tight mesh. The three-dimensional scalar fields are 268x129x177
volume data of a human ribcage, human heart and human lungs.
The results of the ribcage, heart and lungs (CPU and GPU) are in
Figures 9a through 9d. Marching cubes is used to seed the particles
and is generated on the CPU. Once the initial particles are seeded
and projected onto the surface, they are copied to the GPU and the
system processes the particles as described in the previous sections.
Once 50 iterations are completed or the energy has stagnated where
Eprev−E

E
< Emin the process is terminated. We have found in prac-

tice that Emin = 0.0015 produces good meshes. All tests were run
on an nVidia Tesla c2070 with 6GB of RAM and an Intel Xeon
X5650 2.67Ghz with 196GB of RAM.

6.1 Quality
To evaluate the quality of the obtained mesh, the ratio of the

inscribed and circumscribed radii is computed for every triangle
on the mesh and the mean radius ratio of the mesh is calculated.
The higher the ratio between inscribed and circumscribed radii, the
closer a triangle is to being equilateral. The radius ratio is a com-
mon quality metric which allows a direct comparison between two
meshes.

Table 1: Multiple data sets including heart, lungs and ribcage on the
CPU and GPU, are compared for quality. Qualitative comparison is
done by calculating the mean radius ratio of the resulting meshes.

CPU GPU
data set Rad. Ratio Min. Ratio Rad. Ratio Min. Ratio
Heart 0.92114 0.249245 0.92079 0.117757
Lungs 0.912578 0.217819 0.913214 0.324375
Ribcage 0.914975 0.186664 0.914975 0.186664

Table 1 has the qualitative results. The mean ratio of a mesh
generated through the GPU system is within 1% of the mean radius
ratio of the CPU implementation. Thus, the GPU meshes have a
very similar quality to the CPU meshes. The histograms in Figures
9d through 9e generated for the heart, lungs and ribcage respec-
tively, shows that the distributions of the ratios are dominated by
good triangles and that both the CPU and GPU meshes have simi-
lar profiles. The close-up images in Figures 9a through 9f show that
the quality of the mesh using our GPU particle system is similar to
or comparable to the one using the CPU version.

6.2 Speed-up
While the quality of the meshes are nearly the same there is a

substantial performance gain with the GPU version (Table 2). The
GPU version is 7.8x to 35.2x faster than the single threaded CPU
implementation. The reductions in the run-time are from 835.26
to 107.64 seconds for the lungs, 3150.38 to 245.77 seconds for
the heart, and 9460.29 to 269.1 seconds for the ribcage (Table 2).
Those are 7.8, 12.8, and 35.2 times speed-up of the GPU over the
CPU respectively.

6.3 Scaling
In the previous section, there is a correlation between the number

of particles and the speed-up. As the number of particles increases
so does the speed-up, but this is across different implicit functions.

Table 2: The amount of time to place particles on the surface is
compared in this table. Multiple data sets including heart, lungs
and ribcage on the CPU and GPU, are listed along with the time, in
seconds, to place the particles and the final number of particles for
the CPU and the GPU respectively. The last column is the speed-up
gained from the GPU system.

CPU GPU
data set Time # Particles Time # Particles Speed-up
Lungs 835.26 74153 107.64 74129 7.8x
Heart 3150.38 80125 245.77 80594 12.8x
Ribcage 9460.29 468877 269.12 468623 35.2x

To measure the speed-up, we conducted a real world test and a syn-
thetic test using the ribcage dataset. The real world test controls the
number of particles by varying ε and δ parameters when generat-
ing the sizing field around the isosurface. The ε and δ parameters
control the density of the particles, where the smaller the values of
ε and δ , the denser the particles [15].

However, for the ribcage data set, the fewest number of parti-
cles generated by manipulating the ε and δ values in the precom-
puted phase was 320,000. Generating a sizing field using ε > 8.0
and δ > 2.0 resulted in an incomplete mesh. For instance, with
ε = 10.0 and δ = 5.0, the ribs of the ribcage were removed. There-
fore, a synthetic test was created. The synthetic test removes the
add new particles stage and seeds a user defined number of parti-
cles. This creates an upper bound on the number of particles in the
system. This seeding is done through marching cubes and gener-
ates an initial seeding that is closer to the original implicit function
than using large ε and δ values.

Table 3: Synthetic test data for scaling the ribcage data set with-
out adding any particles to give an upper bound on the number of
particles. The details are the initial number of particles (60,000 to
300,000), the time and final number of particles for the CPU sys-
tem, the time and final number of particles for the GPU system and
the speed-up.

CPU GPU
Init. Parts. Time # Particles Time # Particles Speed-up
60000 213.22 57456 34.75 56844 6.14x
90000 444.62 81432 48.82 80208 9.1x
120000 756.8 103913 66.35 103716 11.4x
150000 1360.87 131145 98.26 133792 13.8x
180000 1571.96 145958 100.76 146754 15.6x
210000 2354.04 170805 141.4 175775 16.6x
240000 2860.53 185035 160.28 194354 17.8x
270000 3455.14 200925 172.31 208866 20.1x
300000 4042.60 225054 183.98 237921 22.0x

For the synthetic test, the seed numbers were 60,000 to 300,000
increasing by 30,000. Note in Table 3 that although adding parti-
cles is disallowed, removing particles is still active. Therefore, the
final particle count is less than the initial number seeded. Figure 7
shows a plot of the amount of time to generate a mesh vs the num-
ber of particles. As the number of particles increase, the speed-up
increases as well, from 6.14 times speed-up of the GPU over the
CPU with 57,000 particles to 22.0 times speed-up with 230,000
particles. Therefore, for the synthetic test, as the number of parti-
cles increase, the speed-up increases in a linear manner.

While the synthetic test is useful to verify linear speed-up when
the number of desired particles is not achievable by changing the
sizing field, the real world test is a more accurate reflection of at-
tainable speed-ups. Table 3 contains the data from generating dif-
ferent sizing fields dependent on the ε and δ values. Further, the



(a) σ = 0.125, δ = 0.125, with the
area marked for Fig. 6c - 6d

(b) σ = 2.0, δ = 1.0, 384,531 particles (c) σ = 0.5, δ = 0.5, 405,097 particles (d) σ = 0.125, δ = 0.125, 468,623 particles

Figure 6: Three meshes of the same data set, with varying number of particles. As the σ and δ parameters are decreased, the number of
particles increase.
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Figure 7: Synthetic test for the ribcage data set. Graph of Table 3
where the red plot is the CPU and the blue plot is the GPU.
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Figure 8: Real world test for the ribcage data set. Graph of Table
4 timing results as the number of particles are increased. The GPU
results are in blue while the CPU results are in red.

iteration number is the number of times the level set method is run
to generate the sizing field. Thus, the more iterations of the level
set method, the denser the particles.

The real world test mirrors the results of the synthetic test, i.e.
the speed-up is related to the number of particles. Figure 8 is a
graph of Table 4 comparing the GPU (in blue) timing results in
seconds versus the CPU (in red) timing results. As the ε and δ
parameters are decreased and the iteration number is increased, the
number of particles increases while the speed-up increases as well
(Figure 8). Further, as the number of particles increases, the speed-
up increases in a linear manner as well.

7. CONCLUSION
We have presented a particle system for surface extraction on the

GPU. The method is parallelized by processing bins concurrently.
Further, on the GPU, by mapping bins to thread blocks, the energy
and velocity computations are parallelized as well. We have pre-
sented a variety of data sets that show a reliable speed-up can be
achieved regardless of the number of particles. We compared the
accuracy of the GPU particle system against a CPU particle system
and demonstrated that the resulting meshes are similar as measured

by the mean ratio of the triangles. Finally, we have shown that as
the number of particles increase so does the speed-up of the GPU
system over the CPU system.

A current constraint of the system is the use of a global param-
eter, the maximum of the sizing field, to bin the space. Instead, an
adaptive binning strategy could be used to decrease the size of the
bin in areas of high curvature. This could lead to further decrease
computational time because the number of neighbors are restricted.

Looking forward, the techniques presented could be applied to
different applications as well. For instance, the binning technique
could be applied to PIC (particle in cell) or MPM (material point
method) for the GPU. Further, the successful speed-up of the par-
ticle system could change how the system is used. Currently for
BioMesh3D, a command line interface with Python scripts is used
with no user interaction or feedback because of the required amount
of time to generate the mesh. Instead, it would be interesting to al-
low user interactions such as adding more particles to areas or fea-
tures that are of particular interest to the user. Further, extending
the current particle systems for extracting the conformal meshes is
a useful addition to the present work.
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10. APPENDIX

Algorithm 1 Update Particle Position

iterate← true
while iterate do

increase λ by 10
p′i← pi + vi
Project p′i onto surface as in Eq. 5.
for all particles p j in neighborhood NH do

if p′i ̸= p j AND distance(pi, p j)≤ 1.0 then
Ei j← calcEnergy() as in Eq. 1

end if
end for
Enew = sum Ei j over NH
if Enew < Ei then

Save λ
pi← p′i
iterate← f alse

else if λ ≥ λmax then
iterate←= f alse
reset λ to its original value.

end if
end while

Algorithm 2 buildNeighborhoods()

for all neighborhoods NH do
for all bins B ∈ NH do

NH_CNT += num of particles ∈ B
end for
NH_IDXk = atomicInc(ptr, NH_CNT )
Copy particles in NH to NH_IDX

end for
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(a) GPU heart with zoomed in image and histogram of radius ratio.
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(b) CPU heart with zoomed in image and histogram of radius ratio.
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(c) GPU lungs with zoomed in image and histogram of radius ratio.
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(d) CPU lungs with zoomed in image and histogram of radius ratio.
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(e) GPU torso with zoomed in image and histogram of radius ratio.
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(f) CPU torso with zoomed in image and histogram of radius ratio.
Figure 9: Images of the heart, lungs and ribcage data sets, CPU and GPU, respectively. Further, embedded is a zoomed in area for each
image and the histogram for the data sets. The visual quality of the CPU implementation compared to the GPU implementation is very
similar across the data sets. The histograms show that both the CPU and GPU systems are dominated by well-shaped triangles.


