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Abstract. This paper proposes a novel methodology for creating efficient 
polygon models for spatial datasets. A comprehensive analysis framework is 
proposed that takes a spatial cluster as an input and generates a polygon model 
for the cluster as an output. The framework creates a visually appealing, simple, 
and smooth polygon for the cluster by minimizing a fitness function. We 
propose a novel polygon fitness function for this task. Moreover, a novel 
emptiness measure is introduced for quantifying the presence of empty spaces 
inside polygons. 
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1 Introduction 

Polygons serve an important role in the analysis of spatial data. In particular, 
polygons can be used as a higher order representation for spatial clusters, such as for 
defining the habitat of a particular type of animal, for describing the location of a 
military convoy consisting of a set of vehicles, or for defining the boundaries between 
neighborhoods of a city consisting of sets of buildings. It is computationally much 
cheaper to perform certain calculations on polygons than on sets of objects. For 
example, polygons have been used to describe the functional regions of a city [1]. A 
given location can be assigned to one of those functional regions efficiently by 
checking in which polygon the location is included. Moreover, relationships and 
changes between spatial clusters can be studied more efficiently and quantitatively by 
representing each spatial cluster as a polygon. Polygon analysis is particularly useful 
to mine relationships between multiple related datasets, as it provides a useful tool to 
analyze discrepancies, progression, change, and emergent events [2].  

However, there is not an established procedure in the literature on how to derive 
polygonal models from spatial clusters. The objective of the research described in this 
paper is to find an optimal set of polygons for two dimensional spatial clusters. The 
input of this process is a spatial cluster containing a set of points and its output is a 
polygon—the model of the cluster. As shown in Figure 1, many different polygon 
models (or a set of polygons as in Figure 1e) can be generated for the same set of 
points. Therefore, it is desirable to define application specific criteria for evaluating 
different polygon models. Coming up with such criteria and evaluation measures is 
the focus of this paper.  
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Fig. 1. Different shapes generated for the same set of points (taken from [3]) 

Main contributions of this paper include: 

• A novel quantitative polygon fitness function is introduced to guide the generation 
of polygons from point clouds, alleviating the parameter selection problem when 
using existing polygon generation methods.  

• A novel emptiness measure is introduced that quantifies the presence of empty 
areas in a polygon. 

The rest of the paper is organized as follows. In Section 2, we compare the existing 
methods for creating polygon models. Section 3 provides a detailed discussion of our 
methodology. We present the experimental evaluation in Section 4, and Section 5 
concludes the paper.   

2 Related Work 

Convex hulls are the simplest way to enclose a set of points in a polygon. However, 
convex hulls may contain large empty areas that are not desirable. Creating polygon 
models based on Voronoi diagrams or Delaunay triangulations is another commonly 
used approach. Matt Duckham et al. [4] propose a “simple, flexible, and efficient 
algorithm for constructing a possibly non-convex, simple polygon that characterizes 
the shape of a set of input points in the plane, termed a Characteristic shape”. The 
algorithm firstly creates the Delaunay triangulation of the point set—which actually is 
the convex hull of the point set—and then reduces it to a non-convex hull by 
replacing the longest outside edges of the current polygons by inner edges of the 
Delaunay triangulation until a termination condition is met.   

The Alpha shapes algorithm, introduced by Edelsbrunner et al. [5] also uses 
Delaunay triangulation as the starting step and generates a hull of polylines, enclosing 
the point set and this hull is not necessarily a closed polygon. Thus, the Alpha shapes 
algorithm requires post-processing for creating polygons out of the polylines. Besides, 
there is no easy way of determining the proper parameter for Alpha shapes algorithm.  

Chaudhuri et al. [6] introduce s-shapes and r-shapes; the proposed algorithm firstly 
generates a staircase like shape called s-shape, which is determined using an s 
parameter and then reduces it to a smoother shape using the r parameter. Authors state 
that “to get a perceptually acceptable shape, a suitable value of r should be chosen, 
and there is no closed form solution to this problem”. 
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φ(P,D)= Emptiness(P,D) + C * Complexity(P)   (1) 

subject to the following constraint: 

∀o∈D: inside(o,P)     (2) 

where C is a parameter which assesses the relative importance of polygon complexity 
with respect to polygon emptiness; e.g. if we assign a large value of C, smooth 
polygons will be preferred. Emptiness(P,D) is a quantitative emptiness measure that 
assesses the degree to which P contains empty regions with respect to D. 
Complexity(P) measures the complexity of polygon P. 

3.2 Measuring the Emptiness and Complexity of P with Respect to D 

In this paper we use Delaunay Triangulation DT(D) of a point set D, to define 
emptiness of polygon P which is supposed to model D. In general, as can be seen in 
Fig. 2d, areas with very low density can be identified as large triangles in the 
Delaunay triangulation; that is, triangles whose area is above a certain size θ. Let 
PCONV=(∪t∈DT(D) t) be the outer polygon of the DT(D) which is the convex hull of D. 
We define emptiness of a polygon P with respect to a point cloud D as follows: 

Emptiness(P,D):= (Σt∈DT(D)∧area(t)>θ^inside(t,P)  (area(t)-θ) /area(PCONV)          (3) 

When assessing emptiness, we go through the triangles inside P and add the 
differences between θ and the area they cover, but only if the size of their area is 
above θ, and divide this sum by the area of the convex hull of D; be aware that pCONV 
is not the area P covers, but a usually larger polygon which is the union of all triangles 
of Delaunay triangulation. It should be noted that when measuring emptiness, 
triangles that are not part of P do not contribute to emptiness. 

We assess the complexity of polygons using the polygon complexity measure 
which was introduced by Brinkhoff et al. [9]. In this work, polygons with too many 
notches, having significantly smaller areas and larger perimeters compared to their 
convex hulls are considered complex polygons. Most importantly, it is a suitable 
measure to assess the ruggedness of a polygon model generated.  

At the moment, we use Characteristic shapes to generate polygons in conjunction 
with the proposed fitness function as this produces decent polygon models. The 
algorithm itself has a normalized parameter chi which has to be set to an integer value 
between 1 and 100. In order to find the value of chi which minimizes the employed 
fitness function we exhaustively test all 100 chi values, and return the fittest polygon. 

4 Experimental Evaluation 

In this section, we present the experimental results using the fitness function φ defined 
in equation (1) for spatial clusters in a dataset called Complex8 [10]. Figures 3b-3d 
depict the polygons generated for the cluster in Fig. 3a  using different C parameters 
and Table 1 reports the area, perimeter, emptiness, and complexity for polygons in 
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Fig. 3. Complex 8 Data

Table 1. Statistics for polygo
P0-P7 represent polygons for c

area pe

P0 1088, 2030, 2030 32

P1 2697, 2697, 2741 28

P2 21492, 23107, 23107 10

P3 9477, 18057, 20146 24

P4 4829, 8408, 11246 11

P5 9007, 19122, 20413 24

P6 17560, 34719, 35061 30

P7 19759, 19759, 20807 10
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erimeter emptiness complexity chi

28, 173, 173 0.077, 0.219, 0.219 0.49, 0.02, 0.02 37, 70, 7

87, 287, 286 0.144, 0.144, 0.148 0.052, 0.052, 0.046 34, 34, 3

052, 997, 997 0.084, 0.096, 0.096 0.125, 0.072, 0.072 6, 13, 13

465, 1058, 954 0.072, 0.192, 0.233 0.589, 0.118, 0.02 2, 5, 10

171, 751, 561 0.057, 0.113, 0.197 0.562, 0.319, 0.089 5, 10, 16

460, 968, 947 0.063, 0.19, 0.211 0.606, 0.043, 0.015 2, 8, 18

019, 1018, 1003 0.044, 0.162, 0.168 0.632, 0.054, 0.04 4, 13, 14

003, 1003, 984 0.042, 0.042, 0.049 0.188, 0.188, 0.17 8, 8, 14
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It can be seen that quite different chi values are chosen for different spatial clusters 
by our approach. The polygon P4 (cyan-colored) best illustrates the effect of changing 
the C parameter. The generated polygon for P4 in Fig. 3b is very tight and rugged 
having a smaller area, larger perimeter, smaller emptiness and larger complexity 
values compared to polygons generated with larger C values. On the other hand, the 
generated polygon for P4 in Fig. 3d is smoother; it has fewer edges and empty areas 
producing a larger area and emptiness value, smaller perimeter and a smaller 
complexity value.  

5 Conclusion 

In this paper, we proposed a methodology for creating simple polygons for spatial 
clusters. As popular polygon model generation algorithms have input parameters that 
are difficult to select, we introduced a novel fitness function to automate parameter 
selection. We are not aware of any other work that uses this approach. The fitness 
function balances the complexity of the polygon generated and the degree the polygon 
contains empty areas with respect to a point set. The methodology uses the 
Characteristic shapes algorithm in conjunction with the fitness function. We also 
claim that the proposed fitness function can be used in conjunction with other polygon 
generating algorithms, such as the Concave Hull algorithm, and Alpha shapes.  

We tested the methodology with Complex 8 dataset and our methodology proved 
to be effective at creating desired polygon models. When used with our polygon 
fitness function, the Characteristic shapes algorithm generated very accurate polygon 
models. As a future work, we plan to extend our methodology to allow for holes in 
polygons and for polylines in spatial cluster models.  
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