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F

Additional results of the example shown in Fig. 21(b) of the paper.
Fig. 1 of this supplemental document provides a number of sampled time steps, i.e., t = 2,5,10,13,18, respectively, of the unsteady

flow shown in Fig. 21(b) of the paper. A group simplification has been applied to this vector field. The top row shows the vector
fields before group simplification, while the bottom provides their corresponding simplification results. The highlighted purple contours
illustrate the sublevel sets that were used to perform the group simplifications at the individual steps. There are a total of eight critical
points involved in this group simplification. Although most of the times, only four critical points are canceled in a given time step (e.g.,
when t = 10,13,18 in Fig. 1), in the earlier time, the critical pairing switches occur more often, as can be seen that the canceled critical
points range from two to six (e.g., t = 2,5 in Fig. 1). Nonetheless, these involved critical points are identified as one group, and the
proposed relax group simplification successfully removes them with only a small amount of local change, while the other parts of the
flow are preserved.

t=18t=13t=5 t=10t=2

Fig. 1. A number of sampled time steps of the example shown in Fig. 21(b) of the paper. The top row shows the vector fields before simplification,
while the bottom provides their simplified results. The highlighted purple contours indicate the sublevel sets used by the simplification at the
individual steps.

Running time. The sampled running times of the various operations used in simplifying the vector fields based on our approach are
shown in Table 1.
Bounded perturbations. By construction, the algorithm comes with theoretical guarantees on the amount of perturbation introduced
to the vector field. We formally state the following theorem and its proof.
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Dataset Name Tile # Region # of vertices # of edges Reading input (sec) Smoothing (sec) Cut (sec)

OceanC 20904
(1,6) 120 285 0.007 0.647 0.014
(8,9) 85 212 0.005 0.521 0.010

Synthetic SyntheticC 1318 3767 0.100 19.993 0.195

Combustion 173

(10,13) 21662 64035 0.273 166.723 2.007
(0,3) 1694 4852 0.020 0.1031 0.151
(5,8) 3949 11474 0.084 0.423 0.542

(18,20) 1106 3091 0.019 0.070 0.108

TABLE 1
The running times of the various operations used in simplifying the vector fields. For comparison, we show the time taken to load as inputs the

respective vector fields. The code is implemented in MATLAB and the running time is given in seconds. The main bottleneck in the computation is
often the Laplacian smoothing, whose running time is highly dependent on the chosen parameters, e.g., error threshold. The values shown are

obtained with identical parameters to the ones which are used for the results in the paper. Finally, we note that in a more recent C++
implementation of the same algorithm, the times have been reduced by at least an order of magnitude and could be further improved with a more

optimized implementation.

Theorem 4.1: Let x be a critical point of robustness r, with the corresponding component C(x). Let f and f̂ denote the vector
fields before and after simplification respectively using Unwrap and Cut operations. Then || f (p)− f̂ (p)||∞ ≤ r+ ε for all p ∈C(x)
and f (p) = f̂ (p) for p 6∈C(x).
PROOF. The equality outside of C(x) follows from the algorithm, as it only changes the interior of C(x). If only the Cut operation
is used, then the vector field only potentially changes during the projection, which moves the vector field value at a point by at most
r+ε . Since all points that are projected lie within the disc of radius r, that is, their distances to the center are at most r. Also, since the
distance between the line and the center is ε , the distance from any point to the line is bounded by the triangle inequality, at r+ ε .

The only remaining case is when Unwrap is used. In this case, however, only the boundary values are altered (and later restored).
This may alter which points are projected in the subsequent Cut operation, but the bound on perturbation remains the same. In the
Restore, again only the boundary values are changed (i.e., restored) whereas the internal points remain unchanged, thereby maintaining
the perturbation bound.

Note that this guarantee only applies to the algorithm without Smoothing. To the best of our knowledge there are no known
non-trivial results to bound the amount of perturbation for Laplacian smoothing. Given the construction of the components such that
the maximum magnitude of the vectors is r, we can only guarantee the trivial perturbation bound of 2r, since after Laplacian smoothing
the magnitude is still bounded by r. However, we note that simplification does not require the smoothing step and it was only used for
aesthetic reasons.

Finally, Lemma 3.2 implies that there exists no simplification for C(x) with a perturbation smaller than r (since by assumption the
degree is non-zero). This implies that the simplification is optimal with respect to this metric.
Results for bounded perturbations. The main motivation for introducing Laplacian smoothing is to produce more visually appealing
results. As shown in Fig. 2(b), the cutting procedure alone gives a correct, continuous but not visually appealing simplification result,
compared to the vector field with Laplacian smoothing in Fig. 2(c). To further describe the amount of perturbation we introduce in
practice for both our synthetic and real-world datasets, we include Table 2 below. In practice, the addition of Laplacian smoothing does
increase the amount of perturbation but not significantly. For most datasets, the total amount of perturbation after Cut alone (the 5th
column), as well as combining Cut and Smoothing (the 6th column) is roughly upper-bounded by the robustness of the critical points
(e.g., the maximum magnitude of the vector field in the region of interest, the 7th column), as indicated by a ratio below 1.

(a) (b) (c)

Fig. 2. SyntheticB. (a) the original vector field with its topological skeleton. (b) Simplification result by Cut only (without smoothing). (c) Simplification
result by Cut and Smoothing.
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Dataset Name Tile # Region Smoothing Cut Cut and Smoothing Max Magnitude

OceanA
20311 (6,9) 0.8863 0.4547 0.7162 4.2849
21217 (8,9) 0.5902 0.5598 0.5727 5.0136

OceanB 20821
(2,4) 0.2869 0.2409 0.2409 8.0435
(6,7) —- 0.5432 0.5432 6.3153

OceanC 20904
(1,6) 0.1744 0.3095 0.3095 8.3236
(8,9) 0.2740 0.5080 0.5080 9.8286

OceanD
20710

(4,5) 0.7971 0.5296 0.6801 8.3474
(7,8) 0.3533 0.1923 0.2830 6.7341

20715
(5,7) 1.2277 0.7006 0.9239 8.0544
(8,9) —- 0.5040 0.5040 10.7337

Synthetic
SyntheticA 1.0744 1.1701 1.0744 0.0059
SyntheticB 1.2003 1.1706 1.2003 0.0059
SyntheticC 1.4375 1.1706 1.2024 0.0059

Combustion 173

(3,6) 0.1490 0.0936 0.1490 0.1220
(10,14) —- 0.5944 0.6016 0.2542
(12,13) 0.4614 0.2674 0.2699 0.0699
(18,19) —- 0.3626 0.3669 0.1998
(10,13) 0.2775 0.9446 0.9448 0.4557
(0,3) —- 0.1439 0.1439 0.2583
(5,8) —- 0.4559 0.4559 0.3015

(18,20) 0.0846 0.2661 0.2661 0.1109

TABLE 2
Amount of perturbation introduced during our simplification algorithm. The first three columns indicate the specific regions of interest, where the

3rd column includes the coordinates of the regions to be simplified. For a particular region C, the amount of perturbation (or vector field distortion)
introduced by the simplification is shown as a ratio with respect to the radius of im(C) (which is approximately the robustness value), which is given
by the maximum magnitude of the region C (7th column). The 4th column includes distortion introduced using just Laplacian Smoothing. The 5th
column is for Cut procedure (possibly preceded by Unwrap) and the 6th column is for Cut and Smoothing (corresponds to results shown in the

paper). For the synthetic datasets, for Cut operation only, the values could be brought arbitrarily close to 1 through an appropriate choice of ε (see
Section 4.3). Some values are missing for Smoothing as these operations do not remove the critical points.


