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ABSTRACT

Microvessels are frequent targets for research into tissue develop-
ment and disease progression. These complex and subtle differences
between networks are currently difficult to visualize, making sample
comparisons subjective and difficult to quantify. These challenges
are due to the structure of microvascular networks, which are sparse
but space-filling. This results in a complex and interconnected mesh
that is difficult to represent and impractical to interpret using conven-
tional visualization techniques. We develop a bi-modal visualization
framework, leveraging graph-based and geometry-based techniques
to achieve interactive visualization of microvascular networks. This
framework allows researchers to objectively interpret the complex
and subtle variations that arise when comparing microvascular net-
works.
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1 INTRODUCTION

Microvasculature is a critical component of tissue function and
disease progression [5, 11, 29]. While the microscopic features of
capillaries are routinely studied, the structural complexity drasti-
cally increases with volume. Recent advances in three-dimensional
microscopy now provide sufficient resolution and field-of-view, en-
abling the analysis of microvascular variations that are important,
but ill-understood, characteristics of tissue function.

In this work we present an integrated framework for visualizing
microvascular networks, which have a unique set of traits, when
compared to traditional volumetric images of biomedical tissue:

• Topological Sparsity: The number of capillaries scales pro-
portionally with the number of branches. Expressing the net-
work as a mathematical graph, where edges are defined by
capillaries and branches by vertices, this property is defined by
a small graph density: D = 2·E

V (V−1) .
• Space-Filling Geometry: The network geometry forms a

space-filling structure optimized for depositing nutrients into
tissue. This property is analogous to space-filling curves or
trees, however the network lacks a single root structure.

• Lattice-Like Topology: The network topology forms a three-
dimensional lattice structure that attempts to minimize the
distance between tissue regions and the network.

• Visual Homogeneity: Variability in the network is subtle, and
difficult to detect due to the network complexity and occlusion
of outer capillaries.

Microvascular networks form sparse but space-filling networks
embedded within biological tissues. Understanding the relation-
ships between these structures is important for research in disease
progression [5, 11, 29], treatment [4], tissue engineering [21, 37],
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and biomimetic models [14, 19, 30]. However, the complexity of
these interconnected structures makes microvasculature difficult to
visualize with traditional techniques [13]. Filament-like capillar-
ies form complex anisotropic cyclical networks by branching and
merging into structures designed to provide ideal nutrient transport.
This interconnected structure causes severe occlusion in volumetric
visualization, limiting the volume size and number of microves-
sels that can be meaningfully displayed. This occlusion debilitates
any selective visualization strategies researchers employ to study
microvascular relationships, resulting in attractive, but uninfor-
mative visualizations (Figure 3 top row).

Variations in microvascular structure across tissues are subtle.
Small differences between microvessels are difficult to visualize.
Despite this challenge, researchers have identified strong correla-
tions between microvascular structure and progression of neurode-
generative diseases and cancer [3, 27]. For example, many cancers
increase production of vascular endothelial growth factor (VEGF)
to increase microvascular density to support tumor growth. On the
other hand, Alzheimer’s disease progression is characterized by a
7%-10% loss of brain microvasculature, with corresponding changes
in microvessel tortuosity and fragmentation [39].

New visualization strategies are therefore required to address the
link between two critical factors: (1) local microvascular structure,
consisting of individual loops and local statistics, (2) large-scale mi-
crovascular structure across larger tissue volumes (1 mm3 to 1 cm3).

To develop a framework that satisfies the aforementioned require-
ments, we develop a bi-model visualization system that integrates a
volumetric representation of the network, providing its spatial con-
figuration, with a two-dimensional graph representation, providing
the abstract statistical characteristics and connectivity information of
the network. These two representations are interactively linked for
efficient user exploration. The proposed framework is presented as
a graphical user interface that maps microvascular features onto two
representations: a graph view showing microvascular connectivity
and a volumetric view showing a rendering of capillaries based on
selected criteria in the statistics or graph view.

We exploit the network’s graph-like properties, given by G =
{V,E}, by conceptualizing capillaries as edges (E) and branches as
vertices (V ). This allows us to leverage existing research in graph
visualization to guide selective volumetric visualization [23]. We
also leverage the relationship between the volumetric view camera
and network components to visualize network anisotropy in the
graph view through camera manipulation. The graph-view and
the volume-view elements also allow selection based on common
metrics of interest to researchers, such as length, volume or tortuosity.
To our knowledge, this work is the first of its kind that leverages
the graph structure to guide the selective visualization of complex
microvascular networks.

2 RELATED WORK

2.1 Microvascular Visualization
Vascular visualization in biomedicine relies on traditional volumet-
ric and isosurface rendering. These methods have generally been
sufficient because either (1) available images do not obtain sufficient
resolution to detect microvessels [22, 25] or (2) microscopy images
have a small field-of-view (FOV) that minimizes volume and net-
work size [7, 9]. When visualization of large, prominent arteries and
veins is necessary for surgery preparation and assistance, flattening
approaches have shown been used for robust visualization [12, 38].
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Figure 1: (a) maximum intensity projection over 100 slices, with a much smaller region showing an extracted sub-graph (b). An edge represents a
3D curve between two vertices (blue), where a vertex is the 3D location of a micro-vessel. Where a 3D centerline is an approximation of a tubular
structure with a varying radius (green) (c). The same graph can be summarized with an arc glyph (d). This summary shows the color of the cluster,
the fraction of some global property represented by the cluster and some user selected local property.

Recent advances in imaging provide both sufficient resolution and
volume extent, making traditional techniques impractical [1, 24, 33].
While recent visualization efforts support teravoxel-scale volumet-
ric images [2], these methods don’t address the underlying model
complexity and the resulting occlusion that makes microvascular
visualization challenging. One promising approach is selective cap-
illary visualization by culling a majority voxels based on graph
connectivity [23]. While this method addresses the issue of occlu-
sion, it provides very little insight into vascular structure across large
volumes.

Aggregation techniques enable exploring the statistical properties
of microvascular networks. For example, the complex geometry
can be simplified using a tensor or glyph-based visualization to
summarize important features [13]. While glyph techniques have
an advantage in preserving local and global anisotropic character-
istics [34, 41], they remove structural details necessary for compar-
ison between volumes. An area of few microvessels surrounded
by healthy tissue would not be clearly visible using an aggregation
technique.

2.2 Graph Visualization
Previous surveys on graph visualization identify the key issues of
clarity and viewability [16], which are generally controlled by lay-
out selection. The most prominent issue affecting viewability is a
large number of crossing edges [31]. Radial and tree layouts are
advantageous when there are only a few crossing edges [18]. Direct
visualization of a pre-processed adjacency matrix is ideal for hierar-
chical graphs [15]. Otherwise, the most common graph layouts use
iterative force-directed (FD) algorithms [20], which have O(V 2E)
complexity. The Fruchterman-Reingold algorithm is one of the ear-
liest layout generation algorithms [10,20], but suffers from common
FD problems, such as getting caught in local minima [17].

Microvasculature can be represented as a highly-cyclical but
sparse graph, with a density [8] on the order of 10−4 to 10−3 (in the
mouse cortex) with large Cheeger constants [26]. This suggests that
there are very few “bottlenecks” and a large number of redundant
edges. The visual quality of these graphs is dependent on how
planar they are. A common strategy for generating planar layouts
is node-subdivision and combinatorics, where nodes and edges are
merged or split to generate a planar graph. While this is often not an
issue in information visualization, it would break down our direct
mapping to physical structures, such as capillaries and branches. We
generate an effective layout by maintaining the embedded correlation

with physical structures and focus on leveraging connectivity for
visualization and exploration.

3 GRAPH-BASED MICROVASCULAR VISUALIZATION

3.1 Encoding a Microvascular Network as a Graph
We first encode the three-dimensional microvascular network using
a graph. Network segmentation is performed using a GPU-based
predictor-corrector algorithm [13] that extracts the vascular cen-
terline while preserving connectivity and topology. The extracted
medial axis is encoded into a graph G = {V,E} (Figure 1b and c).
The vertex set V = [v0,v1,v2...vn] represents all capillary intercon-
nections (branches). A property vector is specified for each vertex
to store metrics such as degree, vertex connectivity, and closeness
centrality. Each edge in E = {e0,e1,e2...en} represents the medial
axis using a variable number of points (Figure 1). Similar to the ver-
tices, these points, their associated radii along with singular metrics
including length, volume, and eccentricity are stored as edge prop-
erty vector describing the changes between two connected vertices
in V . We use the edge properties as candidates for color, width, and
shape, as well as generating graph layouts.

3.2 Graph Cuts and Clustering
Our multi-modal approach leverages graph-based methods to allow
annotation of the volumetric view. We generate rudimentary clusters
using a full weighted affinity matrix A with edge properties, where
ai j is defined by the step function:

ai j =

{
1, if i = j
G(∑wi j,σ), if i 6= j

(1)

where G(x,σ) is a normalized Gaussian function and wi j is a user-
selected property (e.g. microvessel length). When i 6= j, we treat the
value as the sum of weights over the shortest path between vertices
i and j using the property wi j as the edge length. Since capillary
length is traditionally used to characterize microvascular networks
in biomedical studies [7], most visualizations presented here make
use of this property. A Gaussian kernel is applied to all weights wi j
to generate compact clusters. The standard deviation σ is chosen by
fitting a one-sided distribution to the histogram of edge weights W j .

An optimal cluster number is commonly selected using the eigen-
gap heuristic [40], however data with poorly separated eigenvalue
spectra does not have a singular best solution. This is the case for
microvascular data, resulting in a small number of clusters (k ≈ 1).
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Figure 2: An illustrated exploration of a small graph network. The user first loads a microvascular network and is presented with a default layout
(a). The user then looks at the overview glyphs and tweaks the layout to better facilitate their exploration (b). The user then selects a cluster
highlighted in (b) for a detailed exploration. The user positions the camera in order to view the selected cluster in the context of the surrounding
microvessels (c), and after being satisfied with the visualization, the user fades out the microvasculature surrounding the cluster (d) and begins
exploring the metrics within the vertices of their chosen cluster using the camera in the 3D (e) to build a correlation between the graph topology
and the 3D rendering.

To mitigate this problem, we select the third-smallest eigengap, re-
sulting in a value of k ≈ 10 to 20 for smaller networks and k ≈ 20
to 30 for larger networks.

3.3 Arc Glyph
We introduce an arc glyph to summarize cluster properties as an
annotation to the graph. Vertices and edges within a cluster are
summarized by user-specified properties to provide an overview of
inter- and intra-cluster relationships (Figure 1d). The glyph center
designates cluster (by color), the middle arc shows globally separable
properties, and the outer arc shows properties within the cluster.
Since the middle arc depends on the global property fraction, it
allows the viewer to compare regions based on the clustering results.
The outer arc supports the comparison of some multi-variate inter-
cluster property. For example, this arc can display the distribution of
node degrees within the cluster. From the visualization in Figure 1d,
we can deduce that this cluster is central to the network because the
size of the blue arc (Degree < 3) is much smaller than the size of the
green arc (Degree ≥ 3), signaling a lower number of terminal edges.
Summary glyphs are connected using line segments with thickness
based on the number of connections between clusters. The potential
use of each metric is demonstrated in Figures 2 and 3.

Finally, users can select clusters of interest via their glyphs that are
then emphasized by making all other clusters translucent. This effect
is duplicated in the three-dimensional view for the corresponding
capillaries.

3.4 Mapping Between Graph and Volumetric Views
As discussed in Section 3, a set of points representing the centerline
of a microvessel j: P j and their corresponding radii R j are stored as
edge properties. This information used to build a three-dimensional
mesh representing the network.

We introduce a novel projection strategy that allows a user to intu-
itively link between vertices in the 2D graph and microvasculature in
3D. This mapping uses transfer functions that calculate the distance
between the camera and mesh components corresponding to graph
features (branch points and capillaries). Equation 2 shows how this
transfer function is calculated with respect to the vertices vi.

dvi = ||pcamera−vi|| (2)
These distance properties are normalized to the range [0.0,1.0].

The set of distance properties Dv is binned into five bins and used
to assign an alpha value and scale-factor for corresponding edges
and rendering graph nodes. This reduces the size and increases

the translucency of vertices associated with branches further from
the camera, providing context between the two visualizations and
allowing the user to readily select components from either view port.

4 IMPLEMENTATION

All rendering data is stored in a GraphTool [28] object, a Python
library leveraging the Boost Graph Library [36], for fast and ro-
bust performance in an open-source framework. The rendering is
performed with OpenGL using custom GLSL vertex and fragment
shaders. These are also used to efficiently calculate the distance-
to-camera property based on the view matrix [35]. The graphical
user interface is implemented with PyQt [32]. Both the graph and
3D networks are implemented as separate Qt classes that communi-
cate through PyQt using signals and slots. The GLSL shaders are
implemented using the VisPy [6] API.

5 RESULTS AND DISCUSSION

5.1 Feature Selection and Disease Characterization
We demonstrate one scenario for our workflow (Figure 2) to fa-
cilitate microvascular exploration. In this example, we study the
relationships within a small microvascular network. The user uses
the microvascular graph to first establish an intuitive mapping be-
tween the graph and volumetric visualization by manipulating the
camera. Figures 2 (d-e) demonstrate how the camera, color, and
distance metric isolate features across view ports. By positioning
the camera closer to the smaller clusters of interest, the user can
understand the relationship between capillaries and edges in the
graph topology.

Cortical microvasculature exhibits fragmentation during the pro-
gression of Alzheimer’s disease, where approximately 5 to 10%
of the microvascular network degrades. When exploring large vol-
umes, occlusion limits visibility to fragmentation occurring near
the volume boundary. Our method exposes fragmentation within
the volume through the graph view using the summary arc glyphs
(Figure 3). In this example we extract a fully connected network
from a section of cortex. This produces a topology consisting en-
tirely of D ≥ 3 vertices. We simulate progression of Alzheimer’s
disease by removing 10% and 5% of the microvessels to produce
fragmentation, resulting in D = 1 vertices (Figure 3b and c). Our
method presents a clear advantage over tradition visualization by
effectively mitigating the occlusion and visual homogeneity of
the three-dimensional volume visualization.
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Figure 3: A simulated example that allows for drawing conclusions that are inaccessible using traditional visualization methods. We simulate the
progression of Alzheimer’s disease by taking a fully connected, healthy microvascular network (a) and removing 5% during early stages (b) and
10% during the late stages (c) of the disease. In order to highlight the resulting broken edges, we overlay the healthy network over the culled
network in the 3D visualization in (b) and highlight some areas where the difference is visible (A). Our application allows us to quickly identify the
areas most affected using the outer arc of the overview glyphs which shows the degree distribution of each cluster.

Additionally we establish a visual relationship between the pro-
portion of the size of the cluster silhouette in the graph view and the
metric used to scale the vertices. Silhouette that appears visually
larger intuitively communicates to the user that the cluster contains
larger proportions of that metric since the size of the vertices is
proportional to the value of the metric used in graph view. This,
combined with the ability to dim all the capillaries belonging to
clusters that hold little interest to the user and the summary arc
glyphs, facilitates exploration of complex microvasculature without
information overload.

We have found that clustering tends to cut larger vessels that serve
as connections across clusters, which we annotate as the black mi-
crovessels (Figure 2a-c). Our experts believe that this is biologically
relevant since those larger vessels are venules and arterioles used
to carry blood to and from the capillary network. Therefore, this
could potentially be used in segmentation of microvascular volumes
to annotate vascular trees. Spectral clustering therefore improves
separation between clusters while generating clusters that divide
microvasculature into subsystems linked by arterioles and venules.

5.2 Expert Evaluation
We provided our interface to domain experts studying relationships
between microvascular networks in Alzheimer’s disease. We asked
general questions related to their ability to form new conclusions
with our interface. Additionally, we also recorded their feedback to
the interface design.

Our visualizations centered on regions of the mouse brain col-
lected using knife-edge scanning microscopy (KESM) [24]. We
visualized areas of the brain exhibiting high fragmentation (Figure
3). The experts were interest in the application potential, mentioning
that “the ability to visualize large structural changes would be novel
in the study of Alzheimer’s and cancer.” This type of analysis is cur-
rently limited to averaging vascular volume over regions of interest,
so the ability to visualize connectivity across large volumes could
provide significant benefit in quantifying disease progression. In
cases where both degeneration and growth were observed, previous
methods fail to capture a significant difference between volumes.
Experts also mentioned that the arc glyphs allowed them to “easily
focus on the areas of significant degeneration based on the outer
ring of the arc glyph.” This provides potential for studying tumoroge-
nesis and cancer treatment, since angiogenesis during tumor growth
also exhibits fragmentation that can be partially repaired through a

variety of anti-angiogenic treatments.
We received feedback that the ability to use the zoomed in view

was “less useful due to the distraction caused by the overlapping
intra-cluster edges.” However, in the zoomed out view using the
camera to explore specific section would “improve the quality of
the visualization in our publications.” Focus on a single cluster
by applying dimming to external microvessels compensated for
some of these inadequacies. While the experts mentioned that this
framework would allow ” “novel paradigms”, they did state that
further refinement of the system may be required.

6 CONCLUSION AND FUTURE WORK

In this work we show how 2D graph topology can be leveraged to
guide scientific exploration of complex microvaculature by separat-
ing the data into subsections using spectra clustering. We implement
a set of techniques that allow users to derive an intuitive relationship
between a 2D graph and 3D model of a network. We also demon-
strate that our method is promising for overcoming occlusion and
visual homogeneity that makes analysis of diseased microvascular
networks virtually impossible to visualize.

There are a number of limitations of our current framework, in-
cluding the non-deterministic nature of the graph layout, the lack
of focus on structure near the center of the networks and a discon-
nection between graph and real-space visualization that may be
confusing to the user. We plan to address them in the future. The
potential impact of our work could be significantly increased by
designing clustering with biologically relevant labels. While these
labels are difficult to generate, they are a top priority for researchers
in the field. Using this set of visualization tools to annotate more
accurate clusters of microvascular data set is a possible direction
for future work. Furthermore, the experts evaluating our platform
showed an interest in studying how the microvascular topology is
correlated with the cell-types in the same region. Expanding this
work to guide multivariate visualization of both cells and microves-
sels also has tremendous potential.
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