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Abstract—Advances in high-throughput imaging allow researchers to collect three-dimensional images of whole organ microvascular
networks. These extremely large images contain networks that are highly complex, time consuming to segment, and difficult to
visualize. In this paper, we present a framework for segmenting and visualizing vascular networks from terabyte-sized
three-dimensional images collected using high-throughput microscopy. While these images require terabytes of storage, the volume
devoted to the fiber network is ≈4% of the total volume size. While the networks themselves are sparse, they are tremendously
complex, interconnected, and vary widely in diameter. We describe a parallel GPU-based predictor-corrector method for tracing
filaments that is robust to noise and sampling errors common in these data sets. We also propose a number of visualization techniques
designed to convey the complex statistical descriptions of fibers across large tissue sections - including commonly studied
microvascular characteristics, such as orientation and volume.

Index Terms—Microvessel, network tracking, glyph visualization, predictor-corrector, segmantation, spherical harmonics,
superquadrics, KESM.
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1 INTRODUCTION

F IBERS and filaments, often connected into large net-
works, are frequently encountered in biomedicine. Ex-

amples include microvascular vessels, or microvessels, that
are visible using magnetic resonance angiography (MRA)
[1] or computed tomography angiography (CTA) [2]. Mi-
crovascular networks, formed by complex interconnected
microvessels, play a key role in brain tissue function [3],
[4]. Microvascular structures are also commonly studied in
cancer, where tumors emit signaling proteins that encourage
microvessel growth [5]. The important role of microvessels
in disease makes them a strong target for clinical interven-
tion [6]. However, researchers and clinicians do not fully
understand the characteristics of microvascular networks
and how they can be used to diagnose disease or quantify
treatment.

Recent advances in high-throughput microscopy, such
as Knife-Edge Scanning Microscopy (KESM) [7], allow fast
acquisition of large, terabyte sized data sets at microscopic
resolution [8], [9] for understanding complex microvascular
structures. The resulting images are terabytes in size and
challenging to reconstruct, since they are extremely thin
and tortuous. The shear volume of data demands efficient,
automated, and scalable algorithms that are robust to noise
and can be run in a medical and research setting. However,
the highly interconnected nature of these networks makes
the development of a robust segmentation framework chal-
lenging. Existing methods [10], [11], [12] typically involve
constant user intervention during the fiber segmentation,
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which greatly limits their scalability. This paper attempts to
address this scalability issue while improving the segmen-
tation accuracy.

Once the microvascular networks are extracted, visual-
izing and interpreting their complex structure is necessary
for experts to diagnose and compare networks. Among
many characteristics, the anisotropy property of features
in structures, composed of filament data, is of particular
interest to domain specialists. Pathologists, for example, can
use anisotropy measures in microvascular data to quantify
and categorize structural changes due to the development
of certain diseases such as Alzheimer’s (Figure 2). However,
due to the space filling and highly interconnected nature of
the networks, it is nearly impossible to parse the anisotropy
property of certain characteristics of the networks from the
conventional visualization techniques, such as the direct
volume rendering as shown in Figure 3. In particular, it is
difficult to answer questions regarding anisotropic features,
including

• What is the general direction of the fibers in this region?
• Are the fibers in this region homogeneous or heteroge-

neous in nature?
• Are these two regions the same in terms of the fibers in

them?

These questions are difficult to answer because visually
human eyes tend to focus on outliers and attribute more
importance to them than to other parts of the visualization
that may be more important. In the case of microvascular
data, this is demonstrated in Figure 3 where the thick fibers
might be given higher importance, when in reality the
thinner fibers are more in numbers and contribute more to
blood flow in the closed system. This reduces an expert’s
ability to quantitatively distinguish and compare densely
connected networks. Solving this issue is one of the primary
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motivators for this work.
To address the above challenges, we present researchers

and pathologists with a scalable framework to segment
dense microvascular networks and to visualize important
anisotropic characteristics of the extracted networks that can
be used for analysis and comparison between regions in
heterogeneous tissue samples. In particular, we make the
following two major contributions in this work.
• We revisit the formulation of a template-based

predictor-corrector algorithm [12] (Section 3) to
optimize the segmentation algorithm by reducing
the required number of samples (Section 3.2), and by
introducing a novel and automated branch detection
process (Section 4);

• We devise strategies to effectively visualize aggregated
anisotropy information about the aforementioned seg-
mented networks that are useful to experts (Section
5). In particular, we employ the binning technique to
aggregate a number of statistical information of the
network so that glyphs can be applied to visualize
this aggregated information in a concise form. Specif-
ically, we describe the mathematical model for fitting
2nd-order symmetric tensors to the anisotropic direc-
tionality information to enable a visualization using
superquadric tensor glyphs. In addition, we model
the distribution of various statistics information of the
fibers within a local region using the spherical har-
monics, which enables us to visualize this high-order
information using high-order glyphs.In this work, we
focus on two primary metrics: flow-distance and flow-
volume, where flow-distance is based on the length of
decomposed microvessels and in flow-volume the de-
composed microvessels are weighted by their volume.
For both metrics we assume the direction of flow to be
ambiguous.

While we focus our implementation (see a publicly
available link in the Appendix) on microvascular data and
demonstrate how our methods can be of use to pathologists
and researchers interested in the effects of certain diseases,
these methods and strategies can be adapted to other disci-
plines where cylindrical structures are common.

2 RELATED WORK

In this section, we will discuss current work in the areas of
microvascular segmentation, specifically focusing on algo-
rithms that are practical for terabyte-scale data sets. We will
then discuss work in visualizing and characterizing network
structures.

2.1 Network Segmentation and Fiber Tracking

Standard methods used to collect 3D images of microvascu-
lar networks rely on confocal microscopy [13], [14], which
is generally limited to 200µm - 300µm thick sections. While
more advanced techniques can alleviate depth constraints
[15], [16], they do so at the expense of image acquisition
time. In order to collect large volumes of tissue, our analysis
is performed on data obtained using Knife-Edge Scanning
Microscopy (KESM) [7].

Many algorithms are effective for the segmentation of
MRA and CTA [17], where vessels are large (≈1mm) and
form tree-like structures. Traditional MRA and CTA im-
ages are also significantly smaller, making time-consuming
pattern recognition algorithms more practical. Microvessels,
on the other hand, are often ≈4µm in diameter and no
more than a few pixels in size. In addition, KESM data
that contain miscrovessels are typically with terabyte size,
which demands data-parallel approaches using GPU-based
hardware to process [18].

A majority of algorithms focus on image pre-processing
to isolate larger blood vessels [19], [20]. While multi-scale
techniques can be used to accelerate this pre-processing,
most microvessels have the same small diameter at or near
the sampling rate, resulting in little improvement. Meth-
ods based on selecting threshold values, such as centerline
detection [21] and thinning [22] work well on small, high-
contrast data sets. For large-scale data sets, these thresholds
tend to vary significantly and require iterative pixel-level
processing. Such methods are also susceptible to artifacts.
KESM offers relatively high signal-to-noise ratio (SNR), but

(a) (b)

Fig. 1: A cropped section of two different KESM data sets
using different stains stains: India-Ink (a) and Thionin (b)
collected using KESM. Poor staining can lead to a loss of
fibers (blue), while striping can lead to over-segmentation
(red), our algorithm was tested on both of these data sets.

the process suffers from barding, striping and staining arti-
facts [12] as shown in Figure 1. During segmentation these
artifacts are responsible for topological errors as well as
significant over-segmentation. Region growing approaches
[23] are effective for segmenting vessel surfaces, but require
a relatively complex initial surface which can be difficult to
find in the complex topology of the network. Convolutional
neural networks (CNN) are shown to be effective at dealing
with sampling noise, dropped fibers and cyclical data [24]
at the cost of extra time spent on training.

Template matching methods [10] are robust, at the high
computational cost of matching templates with multiple
orientations and scales, even if the majority of the vox-
els contain no relevant fiber information. Vector tracking
methods [11] share some similarity to template matching,
but rely on an underlying vector field to simulate particle
advection for tracking fiber paths. The bottleneck in both
cases is sampling, which becomes time-consuming for large
data sets. GPU-based tracking methods offer a solution
by parallelizing data fetches [12]. However, these methods
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Fig. 2: Heterogeneity in microvessel structure. Examples of
mouse microvessels stained using Collagen IV antibody,
from age-matched wild-type (a) and 12-month-old APdE9
(Alzheimer’s Disease) (AD) models (b). Close-ups show
vessel sparsity and fragmentation (fr) in the AD model (c-d).
Structural variations are also seen in different brain regions,
including caudoputamen (e) and basolateral amygdaloid
nucleus (f).

require constant user-intervention in the form of (manual)
seed-point selection. In practice, an automated approach is
desired.

In this paper, we implement a robust GPU tracking
algorithm that (a) significantly reduces the number of sam-
ples required in the previous work [12] and (b) uses prior
information about network connectivity to eliminate the
need for user intervention but allows the user to tune the
algorithm to prioritize performance and/or accuracy.

2.2 Microvascular Morphology
Microvascular morphology varies significantly across or-
gans and tissue types (Figure 2). There is extensive research
exploring the statistical and morphological variations in mi-
crovascular structures, most prominently in the brain [13],
[14]. Models produced using images of microvasculature
have been used to understand flow characteristics [25], [26].
This research plays a critical role in understanding the neu-
rovascular unit, a biological concept that couples microves-

sels with surrounding neurons [27], [28]. These structures
may have a significant effect on disease progression and
are candidates for many translational treatments [29]. Mi-
crovasculature also plays an important role in tumor growth
[30], where antiangiogenic therapy is a critical component
in treatment [31]. Finally, there is significant evidence for
microvascular variation in neurodegenerative disease and
psychiatric disorders [32], many of which can be used to
quantify the effectiveness of treatment using pharmaceuti-
cals [33].

2.3 Visualization

All of these afformentioned analyses rely on accurate char-
acterization of microvascular networks, which are extremely
difficult to quantify. This is primarily due to two factors: (a)
limited ability to collect large volumes of data describing
microvascular structures and (b) inability to explore how
microvascular structures vary across multiple regions or
samples. Visualization offers a tangible solution to help
experts analyze and characterize these networks.

Standard visualization techniques (e.g., direct volume
rendering and iso-surfacing) may be useful for understand-
ing small volumes. For instance, direct volume rendering
methods are useful for selective fiber visualization that
focuses on visualizing culled and partial volumes (Figure
2). Jeong et al. propose a similar method for segmentation
and visualization of large tubular structures [34]. However,
their method focuses on visualizing a few fibers. It is unclear
whether their approach can provide a clear visualization
of dense and highly interconnected networks, as we are
dealing with in this work. In practice, volume rendering
and iso-surfacing for the networks at the scale necessary
to understand microvascular morphology are difficult to
interpret (Figure 3). Other methods have used the graph-
like structure of networks in order to selectively visualize
network features [35]. This allows raw volumetric data to
be visualized using highly compressed structures, such as
OpenVDB [36], [37] that build a correlation between the
volumetric data and a connected graph.

Most of the aforementioned existing visualization tech-
niques focus on the exploration of specific physical struc-
tures. In contrast, our goal in this work is to convey to re-
searchers how the statistical properties of the sub-networks
vary within a large heterogeneous microvascular network.
We focus on using local functions, in the form of tensor
fields and spherical harmonics, and glyphs to convey local,
aggregated network characteristics. Ropinski et al. conduct
a survey of glyph-based visualization techniques for bio-
medical data [38], including diffusion tensor imaging, dif-
fusion weighted MRI, and CT based data. In contrast, we
focus on making use of the extensive work on glyph-
based tensor visualization [39], [40], [41] to handle dense
and complex microvascular networks in this work. We aim
to demonstrate that these matured glyph-based techniques
(e.g., superquadric glyph) for DTI data are equally useful
for visualizing summarized vascular information and con-
veying the necessary information.
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Fig. 3: KESM image of a mouse brain (top left) shown as a
maximum intensity projection over 1000 slices (top right).
The total depth of the image stack is 7000 slices. Traditional
approaches rely on extracting a sub-volume (bottom left)
to generate an iso-surface for visualization (bottom right).
Here, color mapping is based on vessel radius. As the
volume size increases, the visualization quickly becomes GB
to interpret.

3 NETWORK TRACKING

We are given a 3D data set Γ(x, y, z) ∈ R representing
a grayscale image with an intensity difference between
pixels that lie inside (Ii) and outside (Io) of the network.
We assume that the network is highly connected, i.e., any
given volume contains very few disconnected components.
Reconstructing the network from Γ requires:
• tracing one filament given a seed location
• identifying points where filaments branch or connect
• generating new seed locations as necessary
Given an initial seed point, we track the corresponding

fiber using a predictor-corrector algorithm [11], which cal-
culates the movement of a tracer along the filament path.
Each tracer has the following properties:

1) position p ∈ R3 on the network
2) estimated trajectory v ∈ R3 of the fiber at p
3) estimated size s ∈ R at p

Given a tracer τi = {pi,vi, si} at any point on the net-
work, we update the component values using a predictor-
corrector algorithm to obtain τi+1 (Algorithm 1). The tracer
is initialized at a seed point i = 0 and terminates when a
stopping condition is met. In order to optimize data look-
ups, a GPU-based algorithm is used to parallelize memory
fetches [12].

In the following section (3.1) we outline the mathemat-
ical model used for template matching. We then propose
several modifications from previous algorithms to signifi-
cantly reduce the number of required samples for cost func-
tion computation (Section 3.2). In Sections 3.3 through 3.6
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Fig. 4: Simplification of 3D volumetric template matching to
a 2D integral with a 1D template. (a) The entire template
is shown, with the coordinates (ux, uy, uz) given in a con-
sistent template space. Cross-sections of the template are
shown along the z (b) and x (c) axes. Note that the template
at ux = 0 and uy = 0 are identical (d), while the template
function itself can be expressed as a 1D function of distance
from (ux, uy) = (0, 0).

we describe the individual steps of our predictor-corrector
algorithm. Finally, Section 4 describes our new, automated
branch-detection method.

Algorithm 1 Predictor-corrector algorithm used to segment
a single microvessel.

Require: (p0,v0, s0)
Ensure: a list P = [p0, · · · ,pn]

a list S = [s0, · · · , sn]
i = 0
while terminating conditions are not met do
vi+1 = Predict (pi+1, vi, si)
pi+1 = Correct (vi, si)
si+1 = Fit (pi+1, vi+1)
i = i+ 1

end while
DetectBranches

3.1 Template Matching

The center of any shape embedded in an implicit function
Γ(x, y, z) can be found by specifying a cost functionC based
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on the integral of absolute differences between the image Γ
and a template function f that matches the desired shape:

C(T) =

∫∫∫
|Γ(Tu)− f(u)|du (1)

where

u =


ux

uy

uz

1


is a position vector in some pre-defined template space such
that ui ∈ [−1, 1], and T ∈ R4×4 is an augmented affine
transformation matrix used to transform points from the
template space to coordinates in Γ. Any arbitrary position,
orientation, and/or scale can be evaluated by specifying
T using a single template f . The optimal transformation
matrix is found by minimizing the cost function:

arg min
T

C(T) (2)

This optimization will find a set of transformation matrices
Ti such that

pi = T−1i


0

0

0

1

 (3)

where all pi lie at the medial axis of the network. Note
that calculating T ∈ (R)4×4 directly is a high-dimensional
(16-D) optimization, which is impractical for large images.
In order to address this we isolate the optimization to the
minimal template required to identify the shape.

3.2 Cost Function Sampling

The template function f is typically symmetric. In our work,
we opt for a cylindrical template function symmetric about
(and independent of) the z-axis:

f(u) = f
(∣∣u‖∣∣) where u‖ =

[
ux

uy

]
(4)

Thus, f depends only on the x and y components
∣∣u‖∣∣ =√

u2x + u2y (Figure 4), resulting in the simplified cost func-
tion:

C(T) =

∫∫∫ ∣∣∣Γ(Tu)− f
(√

u2x + u2y

)∣∣∣du (5)

Consider a two-dimensional slice through the center of
C at uy = 0 (Figure 4a):

c(ux, uz) = Γ

T


ux

0

uz

1


− f(ux) (6)

If a symmetric fiber is aligned with f , the cost function can
be approximated by integrating the volume of revolution:

C(T) ≈ π
∫
u2x

∫
|c(T, ux, uz)|duzdux (7)

However, a single template cross-section is insufficient to
guarantee that the central template coordinate lies at the
fiber center, since any cylindrical cross section oriented
along uz will produce a matching pattern (Figure 4c). Two
cross-sections are therefore required to ensure correct lo-
calization of the vessel center line, resulting in a pair of
two-dimensional cost functions used to approximate the
volumetric result (Figure 4d):

C1(T) =

∫
u2x

∫
∣∣∣∣∣∣∣∣∣∣
Γ

T


ux

0

uz

1


− f (|ux |)

∣∣∣∣∣∣∣∣∣∣
duzdux (8)

C2(T) =

∫
u2y

∫
∣∣∣∣∣∣∣∣∣∣
Γ

T


0

uy

uz

1


− f (|uy |)

∣∣∣∣∣∣∣∣∣∣
duzduy (9)

C(T) ≈ π[C1(T) + C2(T)] (10)

This allows us to approximate a cylindrical fit by minimiz-
ing two orthogonal 2D integrals, rather than a single 3D
integral as is previously proposed [12]:

arg min
T

[C1(T) + C2(T)] (11)

3.3 Predict - Estimate Fiber Orientation

Given a position pi and size si of tracer τi, an estimate of the
fiber trajectory vi is calculated. To find the optimal direction
vector vi, we choose a series of N unit vectors V = [v1, v2

, v3 , . . . , vn] uniformly distributed within a solid angle θ
[12].

For each vector vn ∈ V, we create a transformation
matrix Tn that aligns the template function f to the current
tracer position pi, with size si and along the candidate
orientation vn. Evaluating the cost function (Equation 10)
for each candidate vector produces a set of corresponding
cost values cn ∈ C, where i = mini(ci ∈ C) corresponds to
the direction vi of the tracer (Algorithm 1).

3.4 Correct - Estimate Fiber Medial Axis

Based on the position and orientation of the current tracer
τi, an initial guess p′ of the next tracer position is estimated
using Euler’s method:

p′ = pi + ∆τvi (12)

where ∆τ = δsi is the update step size (0 < δ < 1). This
position is then corrected by sampling a uniform set of N
points pn on the plane orthogonal to vi and within distance
si from p′. A transformation matrix Tn is calculated for each
candidate point pn using orientation vi and scale si. The
point corresponding to the minimum cost value (Equation
10) is used for the new tracer position pi+1 (Algorithm 1).
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3.5 Fit - Estimate Fiber Size
The final step adjusts the scale parameter of the tracer
to obtain a better fit to the fiber. The new scale value
si+1 is estimated by sampling M uniformly with samples
sm ∈ si ± δsi. Corresponding transformation matrices Tm

are generated using the position pi+1 and orientation vi+1.
After evaluating the cost function for all M samples, si+1

is set to the scale value associated with the minimum
(Algorithm 1).

3.6 Termination Conditions
The functions Predict(·), Correct(·), and Fit(·) (Algorithm 1)
continue until one of four conditions is satisfied:

1) C (T) > λ where λ is a maximum cost value allowed
for a successful template match.

2) pi goes outside of the bounds of the image Γ.
3) The tracer intersects a previously segmented filament.
4) If the size of the template changes too quickly over a

short number of steps.
The most used termination conditions are (3) intersect-

ing a previously traced vessel and (2) hitting the bound-
ary of the traceable volume. Encountering the case where
C(T) > λ is generally due to an image or tissue preparation
artifact. In the case of India ink perfusion [42], this artifact
may be a bubble in the dye or a burst vessel. If λ is properly
calibrated, this condition is rarely triggered. This threshold
will be much smaller than the maximum possible cost.
For example, λ � 23 if both the image and template are
normalized: Γ ∈ [0, 1] and f ∈ [0, 1].

Condition (3) for termination is critical for reconstruct-
ing network connectivity. Intersections are detected during
tracing using a nearest-neighbor search. If an intersection is
identified, tracing is terminated and the network connectiv-
ity is updated (see Appendix).

The last condition is used as a failsafe to stop seg-
mentation in areas of poor staining, where the microvessel
becomes indistinguishable from the background. In this case
the FIT step will choose the largest size of the template
to maximize the difference between the template and the
sample. This signals that the algorithm has lost track of the
microvessel, and the segmentation from the current seed
point is then terminated.

4 BRANCH DETECTION

When a termination condition is satisfied, our algorithm
automatically looks for potential seed points. This process
is called branch detection. Note that there is no automatic
branch detection in the previous method [12]. Since the net-
work is highly connected, we expect candidates to be adja-
cent to the traced fiber defined by centerline P ∈ [p0, ···,pn]
and radii S ∈ [s0, · · ·, sn], found by the Fit and Correct
functions (Algorithm 1).

We first parametrize the surface surrounding the fiber
as a 2D manifold R(t, θ) that forms a generalized cylinder
around the centerline P, where the distance between pi ∈ P
and the closest point onR is proportional to si (Figure 5). We
establish this parameterization by creating four continuous
functions used to build a local, rotation minimizing Frenet
frame using a quaternion to avoid orientation flips [43]:

𝜃𝜃

(a)

𝑧𝑧
𝜃𝜃

𝑧𝑧

(b) (c)

+ seed point

2D blob detection

local maxima

Fig. 5: The vessel centerline (a) is used to define a 2D mani-
fold R that takes the form of a generalized cylinder (b). This
cylinder is unwrapped into a flat image R(t, θ) (c, bottom).
Candidate seeds are found using LoG blob detection (c, top).
These candidate seed points in (t, θ) are mapped back into
Cartesian coordinates in Γ. Their initial orientation v0 is
given by the associated normal to R (red arrows). These
serve as the starting state for candidate fibers.

• p̂(t): continuous centerline for the fiber
• d̂(t): local tangent to the centerline
• n̂(t): normal vector
• ŝ(t): radius of R

The intensity value of any point on the surface R(t, θ) can
be calculated using:

R(t, θ) = Γ(x)

x = p̂(t) + v

v = ŝ(t)
[
n̂(t) cos θ + n̂(t)× d̂(t) sin θ

] (13)

where x is the position of R(t, θ) in Γ and v is the surface
normal of R. In our implementation p̂(t) and ŝ(t) are piece-
wise linear functions generated from P and S, respectively
using linear interpolation. The derivative function d̂(t) is
calculated using finite differences along P. Finally, the nor-
mal n̂(t) is the result of a quaternion transformation from
an initial arbitrary orientation n̂(t0) perpendicular to d̂(t0).
All functions are continuous along the interval t ∈ [t0, t1]

To find the locations of candidate seed points, we use
Laplacian of Gaussian (LoG) blob detection by finding the
local maxima of the separable convolution:

arg max
t,θ

−R(t, θ) ∗
[

1

πσ4

(
1− x2 + y2

2σ2

)
e−

x2+y2

2σ2

]
(14)

Candidate seed points are placed at the corresponding 3D
location in Γ (Equation 13). The initial fiber direction v0 = v
(Equation 13) is the surface normal at R.

We implemented the above segmentation and network
construction framework using GPUs. The implementation
details of those critical steps, such as sampling, cost function
evaluation and branch point detection are provided in the
Appendix. A reference implementation (with source code)
can be accessed via a link provided in the Appendix.

5 VISUALIZATION

After applying the above segmentation and network track-
ing algorithm to the input data, large and complex mi-
crovascular networks are obtained. As discussed earlier,
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direct volume rendering or iso-surfacing (Figure 3) of such
networks cannot effectively convey important biological in-
formation. To address that we instead focus on aggregating
and visualizing multimodal statistical information regard-
ing a number of important characteristics of microvascular
networks, such as blood flow volume and vessel orientation.
The following strategies also work on other statistical fea-
tures important to biologists as long as they can be decom-
posed into a vector representation. We employ two strate-
gies to generate the visual representation for the aggregated
information. First, based on the extracted vessels and their
directional information we fit a second-order symmetric
positive definite (s.p.d) tensors, from which superquadric
glyphs are constructed to convey the general trends of the
vessel orientation. Second, we estimate the distribution of
the directional information of the fibers within a local region
(e.g. a data block of the entire data set) using spherical
histograms, based on which we fit a spherical harmonic
function to create a glyph. This glyph enables the represen-
tation of the aggregated multimodal vessel characteristics
represented by the shape and other statistics using a pro-
jected colormap on the glyph. Both strategies preserve the
multimodality of the underlying distributions, a necessity
for distinguishing between regions. In the following we
provide more details on these two visualization strategies.

5.1 Anisotropic Statistics

Vessel orientation or directionality is of particular interest
when attempting to differentiate two networks [44], or when
creating artificial (synthesized) microvascular networks that
are statistically similar to real tissues. Such an artificial
microvasculature is important for understanding the physi-
ological properties of red blood cells [45] and tissue fabrica-
tion [46]. Visualizing directionality information is a complex
endeavor as the network cannot be represented by a contin-
uous vector field (Figure 3) and the local propagation trend
is not clearly identifiable using volume rendering.

In order to extract the directional information, we de-
compose every vessel into a collection of vectors. Any given
vessel P = [p0, ...,pn] can be decomposed into n − 1
segments, each of which is defined as pi-pi+1. Given this de-
composition we are now able to analyze statistics associated
with directional information. Flow volume, for example,
is a scaling of the directional information relative to the
size of the vessel. This can be quite unintuitive to visualize
because the thicker vessels need not carry the larger flow since the
microvasculature is much more dense.

To demonstrate the presence anisotropy, we bin each
segment according to its direction in spherical coordinates (θ,
φ) to create a spherical histogram. To account for ambiguous
flow direction, each vector is binned along with it’s inverse.
We project the resulting histogram onto the surface using
both color mapping and deformation (Figure 6).

The resulting histogram provides an overview of the
orientation of microvessels. Many regions in normal tis-
sue have highly oriented microvessels, while others are
isotropic. The histogram also suggests that the orientation
can be multimodal. Because of this heterogeneity and multi-
modality, researchers attempt to quantify vessel orientation
in order to characterize tissue [13], generally using 1D

(a)

(c) (d)

(b)

7

0

20

0

Fig. 6: The results of binning decomposed vessels and
projecting them onto a sphere (left) as well as using them
to create a surface (right). Color is mapped to the number
of vectors in each bin. While using a large number of bins
preserves details(a)-(b), aggregating the bins highlights any
pattern present in the vessel decomposition (c)-(d). The
ranges θ = [0, π] and φ = [0, 2π] are subdivided into 90
and 180 bins (top), respectively, and aggregated into 45 and
90 bins(bottom). In order to deal with the varying bin size
we divide the contents of each bin by its calculated size
(integral over the volume of the bin). Note the reduction in
the number of artifacts as the bin size increases. All binning
figures are symmetric since every vector and its inverse are
binned, to account for ambiguous blood flow direction.

angular histograms. In the following sections, we describe
two strategies for visualizing this aggregated anisotropic
information of the network, both of which employ the glyph
representations to achieve an abstract visualization while
using different mathematical models to map the anisotropic
information to glyphs.

5.2 Superquadrics

The spherical histograms discussed in the previous section,
while precise in visualizing the directional details of a single
tissue section, are not particularly effective for larger het-
erogeneous samples where multiple histograms would be
useful to capture the changing statistics. Spherical histogram
representations only convey directional information and its
visualization quality depends purely on perspective, while
the surface deformations lack uniformity and consistency
in shape (Figure 6). The histogram’s ability to display het-
erogeneity is achievable with glyphs, which are commonly
used for tensor and vector field visualization. In what fol-
lows, we describe a glyph representation to convey the ag-
gregated directional statistics within a local region. Our first
strategy resorts to superquadrics to represent the above ag-
gregated information. In particular, we place glyphs within
the individual data blocks, which allows us to obtain an
overview of fiber directions for a large heterogeneous data
sets as well as their change due to locality.
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Fractional Anisotropy
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Fig. 7: Result visualization from a large section of segmented tissue (inset-e) using superquadrics from several perspectives.
The region is composed of multiple brain regions including caudoputamen (CP) (i), corpus colossum and supra-colossal
white matter (ccb/scwm) (ii), and the cortical surface (iii). We present resampled data showing large vessels (a) and the
actual data (c) visualized using MIP. Glyphs (b and d) show the directed volume of blood flow and are colored based on
fractional anisotropy [47]. The volume tensor demonstrates the ability to extract larger trends present in the data, such as in
region (2) (in (d)) where a color variation reveals the presence of a large central blood vessel, and perpendicular branching
in the cortical tissue. This is further exemplified in CP (1) where a few large vessels heavily affect the shape of the glyphs
visualization. We note that in (2), the density of the vessels is much higher than in (1), which lessens the effects of large
vessels. As seen by variations in glyph shape and size (b), superquadrics allow the user to visualize spatially varying trends
in vascular orientation within the region.

In this work we chose to represent vessel flow-distance
(G0) and flow-volume (G1), because they are generally con-
sidered both biologically useful for pathologist classifying
blood vessel degenerative diseases, as well as neurological
models used in fields, such as fMRI, and are difficult to
characterize using traditional visualization methods. The
local information for both of these quantities can be encoded
in a tensor:

G0 =
1

N − 1

∑
di∈D

did
T
i (15)

G1 =
1

N − 1

∑
di∈D

did
T
i Vi (16)

Vi =
π

3
|di|(s2n + s2n+1 + snsn+1)

where Vi is the volume of a frustum made from two circles
of radius sn and sn+1. The flow-volume tensor is similar to
the flow-distance tensor, however thick microvessels have a
significantly larger effect in this representation. Due to the
nature of the superquadric representation we are still able to
visualize sections of tissue with microvessels propagating in
multiple directions.

For each cube of data we create a single tensor represen-
tation using the above formulation. Due to the symmetric

nature of the problem, we only keep 6 of the 9 entries
for each tensor in a cube. For tissue blocks composed of
multiple sections we stitch the tensor representations into a
rectilinear grid and export the resulting binary file for visu-
alization using Amira [48]. The results of this visualization
technique for a 2x9x1 grid of 5123 pixels is shown in Figure
7 with intermediate values being interpolated.

5.3 Spherical Harmonics

Superquadrics are well understood in visualization, how-
ever the statistical distributions of features like flow volume
and flow direction are not clearly conveyed due to their
multimodality. In order to achieve a visual representation
of the mean and variance of these anisotropic features, we
use spherical harmonics (SH) [49] to generate smoothed
spherical functions capturing these distributions.

To find a set of SH coefficients that best represents the
overall directionality, we consider all of the decomposed
vessels in a segmented region as a set of measurements
Si ∈ S = (s1, θ1, φ1), (s2, θ2, φ2)..., (sN , θN , φN ) where si
scales the directional segments (θi, φi) in spherical coordi-
nates. Each scale si is weighted by the length of the segment
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Fig. 8: Visualization of a large section of segmented tissue (e) using spherical harmonic (SH) glyphs from several
perspectives. The visualized data covers multiple brain regions, including CP (i), ccb/scwm (ii), and the cortical surface
(iii). We present resampled data showing large vessels (a) and the actual data (c) visualized using MIP. Glyphs (b and d)
use two colormaps. (b) When the color map corresponds to the shape of the spherical function, the highlighted directions
indicate the direction of longer vessels. (d) Alternatively, basing the colormap on vessel radius indicates the prominent
directions of blood flow. In this case, the glyph shape and colormap indicate two different features: the glyph shape
indicates vessel volume/direction, while the glyph color indicates vessel radius/direction. The size of the glyphs correlates
with the density of the microvasculature in the region, as seen by the difference is density between regions (1) and (2).
At the cost of complexity and size, SH glyphs are better than superquadrics at showing anisotropy and connectivity.
The ccb/scwm (ii) is surrounded by smaller glyphs on the left and right, signifying a small amount of microvasculature
connecting the structure to CP (i) and the cortical surface (iii), which is biologically true. Furthermore, the shape of the SH
glyphs highlight the anisotropic characteristics of the microvascular network, such as in the cortical surface (2) where the
vessels are more homogeneous in growth when compared the structure in region (1), where the vessels tend toward the
y/z-plane, further supporting that the ccb/scwm structure is microvascularly separable from it’s neighbors in this area.

described by (θi, φi) and a weight wi which is calculated by:

wi =
N∑
j=0

(
Si • Sj

(||Si||)(||Sj ||)
)k (17)

where k is some scaling factor. The contribution of Sj towi is
higher if Sj and Si are parallel with a perpendicular vector
contributing nothing. The model function is a spherical
harmonic of order L is given by:

s(θ, φ) =
B−1∑
i=0

ciyi(θ, φ) (18)

where B = L(L + 2) + 1. yi(θ, φ) is the formulation of
spherical harmonic Y ml functions of the order l and degree
m . In order to align the functions with the direction of the
fibers we use the tesseral spherical harmonics. The real form
is given by:

yi(θ, φ) = yl(l+1)+m(θ, φ) = yml (θ, φ) (19)

yml (θ, φ) =


ABP

|m|
l cos θ sin (|m|φ), if m < 0

APml cos θ, if m = 0

ABPml cos θ cos (mφ), if m > 0

(20)

A =

√
(2l + 1)

4π

B =
√

2

√
(l − |m|)!
(l + |m|)!

where P |m|l is the associated Legendre polynomial. For the
rest of the formulation we will be using the 1D index i =
l(l + 1) + m. We define the least squares cost function as
the difference between the model function s(θ, φ) and each
sample sn as

K(c) =
N∑
n=1

[
B−1∑
i=0

ciyi(θN , φN )− sn

]2
(21)
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where c ∈ RB−1. Note that the cost function K(c) is
quadratic in terms of coefficients C ∈ RB−1, meaning there
is only one minimum in the first derivative. We minimize
the cost function by setting the first derivative dk/dc to 0
and simplifying:

N∑
n=1

[
yj(θn, φn)

B−1∑
i=0

ciyi(θn, φn)

]
=

N∑
n=1

snYj(θn, φn) (22)

Eq. 22 yields a linear system of equations that we can
solve for all cj in c ∈ RB−1. This solution represents the
spherical harmonic that optimally fits the samples in S.

We used a Python implementation [50] to directly com-
pute Ym

l as well as solve the linear system of equations.
A large value of N provides more accuracy, while a large
value of L provides sharper features and a closer fit to the
histograms as presented in Figure 6 (b),(d). However, this
can result in overfitting, with a lobe around every sample
if the number of samples is too small. The number of
samples required to accurately model the underlying distri-
bution increases exponentially as a factor of L, which is the
main limitation of the algorithm. Aside from this limitation
spherical harmonic glyphs offer all the same advantages
as their superquadric counterparts, including interpolation.
Typically for a network consisting of 50,000 samples, an
appropriate choice for L is 100, i.e the degree of the spherical
harmonic basis equaling to 9. The set S is typically com-
posed of all the fibers in a particular segmentation blocks.
The scaling factor k is chosen to be 200 in our simulations.

Since each individual harmonic is created for a smaller
sub-volume composing a larger tissue section and the sub-
volumes are uniformly spaced, we form a rectilinear grid.
The colormaps in Figure 8 are also calculated as a spherical
harmonic. The volume of each fiber segment is calculated
as a conical frustum and stored as a separate set of Y lm
coefficients, meaning that each point in the rectilinear grid
is composed of two spherical harmonics, one representing
the shape of the glyph, another representing the colormap
for that glyph. As described in Eq. (20) each harmonic is
stored as a set of coefficients multiplied by static functions,
meaning that by storing the numerical coefficients we can
interpolate between functions on our rectilinear grid. Since
the colormap is an independent spherical harmonic, we can
also interpolate between two color harmonics.

6 RESULTS AND DISCUSSION

In this section, we report the results of our segmentation
and visualization framework, along with an expert evalua-
tion (Section 6.1). To quantitatively assess performance, we
report the average timing of the segmentation process (Sec-
tion 6.2) and study its accuracy (Section 6.3) by comparing
our method with the previous methods. Finally, we perform
a parameter study to assess the stability of our algorithm,
which provides users a guidance on selecting appropriate
input parameters for their specific data (Section 6.4).

6.1 Evaluation
We have applied the proposed algorithms to several data
sets visualized using superquadric (Figure 7) and spherical

(a)

(b)

(c)

Fig. 9: To demonstrate the viability of both the spherical
harmonics and the superquadrics we display some cases
of both used to represent small networks with only a few
fibers (a, b, c). From top to bottom are length-direction
superquadric, a spherical harmonic with an average radius
color map and flow-volume superquadric superimposed
over small number of segmented fibers (grey). We show two
types of networks, a more homogeneous case (left) and a
more heterogeneous case (right). The harmonic is generate
with l = 8 and N = 100k. The network on the left contains
fibers with relatively constant radii and the network on
the right contains fibers of varying radii. All three cases
are presented at optimal viewing angles for demonstrating
the shapes of the glyphs relative to the network. The color
maps for such small network on the spherical harmonic
surfaces tend to be quite sparse due to a smaller number
of fibers. In these sparse cases they represent the actual
direction of propagation of fibers. The volume and direc-
tion superquadrics are much better at representing the bi-
directional modality common in these mini-networks. The
distinct difference between the volume (c) and the length
(a) glyphs is a direct result of the presence of fibers with
varying radii. This difference is a lot less prominent in a
more homogeneous network.

(Figure 8) glyphs, respectively. These results were submitted
to domain experts for comments. The review process was
composed of a short tutorial in which we explained the
visualization mapping. The tutorial was composed of Figure
9, demonstrating the resulting glyphs encoding the summa-
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rized characteristics for different microvascular networks.
Following this explanation we allowed the experts to con-
duct their visual analysis without interference, and asked
them specific questions regarding homogeneity and hetero-
geneity of the regions represented by our visualization. Each
glyph was shown first without the accompanying maximum
intensity projection (MIP) image. High resolution and low
resolution MIP images were shown afterwards, allowing
experts to validate their comments and to gain additional
insights. Visualizations were shown in the following order:

1) Tutorial image (Figure 9)
2) 200x3000x200 micron tissue section visualized using

superquadrics (Figure 7b and d)
3) the accompanying high and low-resolution maximum

intensity projections (Figures 7a, c, and d)
4) a 200x3000x200 micro section visualized using spherical

harmonic glyphs (Figure 8c)
5) the MIP of the same region (Figure 8b).

Using the superquadrics visualization (Figure 7b), ex-
perts were able to easily discriminate between normal and
transgenic mice, since the flow was ”of a consistent orienta-
tion” in control animals. They were also able to ascertain
that there were three regions represented in the brain: (1)
caudoputamen (Figure 7c-i), (2) white matter (Figure 7c-
ii), (3) and cortical surface (Figure 7c-iii). In addition, the
experts found that the ”visual flow could be used to select re-
gions for further analysis and could be used to extract information
about underlying structures,” such as in the caudoputamen.
They were able to select regions of interest based on their
homogeneity and heterogeneity. As for the MIP image (Fig-
ure 7c), Expert 1 indicated that it was difficult to identify
a predominant direction of the fibers due to the vascular
density. The MIP images tend to draw the attention of the
viewer to the large vessels, however, ”seeing the large vessels
is not as important since the majority of pathological vascular
changes are associated with alterations in capillary structures in
these models”. One limitation of both the MIP images and
the superquadric glyphs indicated by our experts is that the
quality of analysis was dependent on the view perspective
that was presented.

When presented with the spherical glyph visualization
(Figure 8c), the experts noted that they preferred the spher-
ical harmonic representation over the the superquadric ap-
proach. Specifically, spherical harmonics provided ”a clearer
visual representation of the homogeneity and heterogeneity of
the capillary structure, while showing the position of the larger
vessels that exist perpendicular to the capillaries” than using
superquadrics. The experts agreed that the ”information rep-
resented by the superquadrics and spherical harmonics appears to
be similar to the MIP images but that the spherical harmonics
approach simplified the detection of microvascular heterogeneities,
and offered clearer representation of vascular microvasculature
flow”; however, both experts mentioned that they would
need the MIP to provide more content for the analysis. After
seeing the accompanying maximum intensity projection,
one expert said that ”with enough training it would be viable
to analyze the data without the MIP”. They did, however,
mention that it would be useful to have the superquadric
visualization as ”a supplement to the MIP”.

TABLE 1: Timing breakdown of the total segmentation time.
Our
approach
(India
Ink)

Mayerich’s
approach
(India
Ink) [12]

Our
approach
(Thionin)

Total Time 16.975 s 30.462 s 20.323 s
Predict step 1.484 s unreported 0.869 s

Correct step 1.449 s unreported 0.858 s

Fit step 1.429 s unreported 0.807 s

Cost calculation 1.678 s unreported 3.340 s

Branch detection 0.507 s unreported 0.729 s

Collision detection 9.682 s unreported 13.720 s

TABLE 2: Step Breakdown (average performance)
Our approach
(Nissl and India
Ink)

Mayerich’s ap-
proach [12]

Cost calculation 67.40ns/step. 0.230ms/step
Predict Step 0.123 ms/step. 1.248ms/step
Correct Step 0.122 ms/step. 1.177ms/step
Fit Step 0.121 ms/step. 0.994ms/step

6.2 Timing
The algorithm performs well. Tables 1 and 2 provide the
timing information of our segmentation algorithm tested on
a section of tissue with 512x512x300 pixels in size containing
857 fibers. Table 1 shows the breakdown of the performance
on the individual steps of our algorithm, while Table 2
shows the averaged per fiber segmentation time over every
fiber in a 3.7 Gb India Ink data set and a 6.7 Gb Thionin data
set respectively. The total segmentation time of the India Ink
data is 1.6 hours, and 2.8 hours for the Thionin data set. The
time spent per cube is difficult to average since the actual
performance depends on the number of fibers inside each
individual volume rather than the size of the data. Hence,
Table 2 is a better representation of the timing. Compared to
Mayerich’s approach [12], our new segmentation algorithm
achieves about 50% speedup in total performance (Table
1), while our method is about 10x faster than Mayerich’s
approach in the predict and correct steps and at least 3x
faster in other steps (Table 2). The most time consuming
stage of our segmentation is the collision detection. The
amount of time spent on rendering the entire network to
detect collisions increases as more fibers are segmented.
This is due to the current collision detection framework
implemented via OpenGL selection mode, which we plan
to improve in the future.

6.3 Accuracy
To evaluate the accuracy of our method, we manually seg-
mented the aforementioned test volume Γ using a simple
application we developed specifically for that purpose. The
program allows a user to cycle through the image stack
composing Γ and click on the approximate center of each
fiber at the location in the image stack. This process was
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used to segment every fiber and was repeated multiple
times with differences in results merged in order to achieve
complete accuracy. The resulting volume was rechecked
again to make sure the tissue block was completely seg-
mented. Connectivity information was ignored since the
extracted point where one fiber merges with the other was
often difficult to distinguish. The fiber was simply ended in
the location where two fibers start merging, since this area
is clearly distinguishable for every fiber merging, resulting
in approximate connectivity information. This may cause
a slightly higher False Positive Rate (FPR) error in areas
where the fibers interconnect. The algorithm showed a high
accuracy as compared to manual segmentation: 4.769% FPR
and and False Negative Rate (FNR) of 8.054%. The FNR
statistic is of significant importance as it shows where the
algorithm fails to detect the fibers. The areas of error are
generally located in the corners and the edges of the vol-
ume, where fibers from adjacent volumes enter, but do not
connect to the main network. Because each execution of our
algorithm uses a single seed point, the algorithm will only
find the interconnected fibers. Any fibers at the edge of the
volume that enter and exit without connecting to the main
bulk of fibers are invisible to the segmentation algorithm.
This can be alleviated by adding multiple seed points, one
for every fiber at the edge of the volume Γ using an LoG
filter, a process similar to branch detection. The results in
Figure 10 show both the regions with high error that are
heavily localized to the edge of the volume. We hypothesize
that the majority of these can be removed by using multiple
seeds.

Another source of error is due to bad staining. Regions of
a poorly stained fibers that become indistinguishable from
the background for a significant length cause the algorithm
to terminate. While using the manual segmentation tool, the
user can easily predict where the fiber is based on where it
becomes indistinguishable and where it continues, in most
cases this distance is only a few pixels in length, which is
still enough for the algorithm to lose track. Such staining
artifacts result in an inflation of the FNR ratio.

Our algorithm does miss some fibers that are not a result
of border issues. These tend to be exceptionally small fibers
interconnecting with thicker vessels. When the fiber has
a large radius during the branch-detection phase, smaller
interconnections on the surface of the larger fiber are lost
due to under sampling. In most case, these lost fibers are
handled when another fiber of similar radius connects with
them at a different point. In cases when the prior condition
is not met those fibers are lost permanently. Large fibers may
occasionally cause errors, specifically around thick fibers
where the tracer may segment the same large fiber multiple
times and artificially creates a connection to a neighboring
fiber of similar thickness (2). This can possibly be avoided
by implementing collision detection using cylinders, instead
of line segments. Mayerich et al, did not report accuracy in
their work.

We performed the segmentation and timing using
NVidia GTX 1080 GPU and an Intel i7-5820K CPU and
32GB of RAM under Ubuntu 16.04. During testing we found
that the type of processor did not have an noticeable effect
on the performance. RAM was also not the limiting fact
since the majority of the memory allocation is isolated to

1

2

Fig. 10: A comparison of the manually traced network
(left) and the predictor-corrector algorithm (right) using a
single initial seedpoint. All brightly colored fibers on the
left represent fibers present in the manual segmentation but
absent in the predictor-corrector results contributing to the
false-negative ratio (FNR), while bright fibers on the right
are present in the automated segmentation but absent in
the manual segmentation increasing the false positive ratio
(FPR). Majority of the fibers found during manual seg-
mentation are also present in the automatically segmented
network. The major contributors to the FNR in Table 3 are
the fibers on the edge of the network that are not connected
to the central network.

the GPU. Additionally the algorithm was tested and timed
on other GPU configurations including: NVidia GTX 1070,
Nvidia Titan X, and Nvidia GeForce 700 with no noticeable
performance difference. The choice for using the Nvidia
GeForce 700 was to compare with the hardware available
during the publication of the original paper [12]

6.4 Parameter Study
In this section we study how various parameters in our al-
gorithm affect the result on KESM data. As with Lagrangian
particle advection, the most important parameter is ∆τ ,
which in our implementation is set directly by tweaking the
parameter δ. In our algorithm the parameter δ is constrained
by 0 < δ ≤ 1. Values above 1 are not recommended as
it would advance the tracer across regions of the data set
that have not been sampled. While setting a smaller δ can
increase the accuracy of the segmentation, it may lead to
oversampling, hence adversely affecting the performance.
We chose δ = 0.30 for all the tracing performed in this
work, as it achieves a good trade-off between accuracy and
performance.

Another important parameter to consider is the sam-
pling resolution (i.e., the size of the templates in terms of
pixel resolution). This parameter has very little effect in the
xy plane, but is important in the z plane (i.e., along the
filament), especially for noisy data. A larger value provides
smoother integration along the filament length, and there-
fore a higher accuracy in noisy data sets with the cost of
more computation time on sampling and cost evaluation.
We chose values that are multiples of 8 to maximize the oc-
cupancy in the CUDA-based cost evaluation (see Appendix
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for more details). For high contrast data a parameter of 8 is
often adequate. However, because the cost and evaluation
processes of the algorithm are relatively cheap we found
that using 16px produced the best result, while values
higher than 16px did not result in a significant increase in
accuracy for our KESM data sets, an example of which was
shown in Figure 3.

The last parameters that we studied are the numbers of
templates for direction, correction and fitting. An advantage
to using the predictor-corrector algorithm is the high toler-
ance for inaccuracies. Any error in the direction prediction is
corrected during the later steps, for that reason the number
of direction templates is generally kept high, while the
number of correction templates is kept much lower. The
cost on sampling is still relatively small compared to other
stages of the algorithm, but in general we found that the
ratio 1/0.5/0.25 for Predict/Correct/Fit is most ideal for
our data sets. One thing to keep in mind is the size of the
texture that the GPU can handle. We tested values of 1000,
500, 250 and 100, and we found that keeping the value of 250
was optimal for tracing the entire network. Setting larger
values resulted in unnoticeable increase in accuracy, at the
cost of oversampling and a slight decrease in performance.

The cost value is a user-selected parameter, but has
no influence to the performance. This parameter needs to
be tuned for every specific data set. The maximum value
depends on the sampling resolution and the template type.
For a uniform template of size 16 the maximum value is
256, considering that the sampled data is complete opposite
of the template. For the KESM data set this algorithm was
tested on the value between 190 and 200, and we chose 198
for the best results. This value was used across the entire
data set and not only the sub-volume displayed previously.
For glyph visualization we used 100000 samples to create
the spherical harmonics.

7 CONCLUSION AND FUTURE WORK

Our main goal is to provide an efficient network tracking
framework to address the increasing abundance of large
high-throughput microscopy data sets. We also present a
number of glyph-based visualization techniques to repre-
sent the aggregated, biologically relevant information of the
extracted network to aid the inspection and comparison
of these complex networks. This is an important problem
for researchers exploring the statistical and morphological
variations in microvasculature, but lack the tools to do so
efficiently. We apply our segmentation and visualization
techniques to a large data set obtained using KESM to
demonstrate their efficacy. Our aggregation strategies for
generating glyphs using spherical harmonics, superquadrics
and binning, present statistical information about large in-
terconnected microvascular networks embedded in tissue.
We show that our techniques are robust enough to reduce
the amount of visualized data without losing detail about
local and global microvascular trends.

There are a number of limitations to the current ap-
proach. First, our framework is currently implemented us-
ing an OpenGL/CUDA inter-operability framework, which
might not be optimal. We plan to further improve the
performance by performing all sampling in CUDA or to

explore the recent release of Vulkan by the Kronos group
[51]. Second, our visualization strategies remove most infor-
mation about the connectivity of individual microvessels,
while the segmentation portion of our toolset retains con-
nectivity information. In the future, we plan to use layout
generation algorithm and clustering algorithms to enable
the exploration of the networks as graph structures.
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