Scalar Field Visualization

Some slices used by Prof. Mike Bailey
Scalar Fields

• The approximation of certain scalar function in space $f(x,y,z)$.

• Most of time, they come in as some scalar values defined on some sample points.

• Visualization primitives: colors, transparency, iso-contours (2D), iso-surfaces (3D), 3D textures.
In Visualization, we Use the Concept of a **Transfer Function** to set Color as a Function of Scalar Value.

Scalar values $\rightarrow [0,1] \rightarrow$ Colors

$Hue = 240 + 240 \cdot \frac{S - S_{\text{min}}}{S_{\text{max}} - S_{\text{min}}}$

In OpenGL, the mapping of 1D texture
2D Interpolated Color Plots

Here’s the situation: we have a 2D grid of data points. At each node, we have an X, Y, Z, and a scalar value S. We know S_{min}, S_{max}, and the Transfer Function.

Even though this is a 2D technique, we keep around the X, Y, and Z coordinates so that the grid doesn’t have to lie in any particular plane.
2D Interpolated Color Plots

- We deal with one square of the mesh at a time

```
float hsv[3], rgb[3]

hsv[0] = 240. - 240. \frac{S - S_{min}}{S_{max} - S_{min}}

HsvRgb (hsv, rgb)
```

We let OpenGL deal with the color interpolation
2D Interpolated Color Plots

- We let OpenGL deal with the color interpolation

```c
// compute color at V0
setColor3f(r0, g0, b0);
setPosition3f(x0, y0, z0);

// compute color at V1
setColor3f(r1, g1, b1);
setPosition3f(x1, y1, z1);

// compute color at V3
setColor3f(r3, g3, b3);
setPosition3f(x3, y3, z3);

// compute color at V2
setColor3f(r2, g2, b2);
setPosition3f(x2, y2, z2);
```
A Gallery of Color Scales
Iso-Contouring and Iso-Surfacing for Scalar Field Visualization
2D Contour Lines

- Here’s the situation: we have a 2D grid of data points. At each node, we have an X, Y, Z, and a scalar value S. We know the Transfer Function. We also have a particular scalar value, S^*, at which we want to draw the contour line(s).
2D Contour Lines: Marching Squares

- Rather than deal with the entire grid, we deal with one square at a time, marching through them all. For this reason, this method is called the **Marching Squares**.
Marching Squares

- What’s really going to happen is that we are not creating contours by connecting points into a complete curve. We are creating contours by drawing a collection of 2-point line segments, safe in the knowledge that those line segments will align across square boundaries.
Marching Squares

Does S^* cross any edges of this square?

Linearly interpolating the scalar value from node 0 to node 1 gives:

$$S = (1 - t)S_0 + tS_1 = S_0 + t(S_1 - S_0) \quad \text{where} \quad 0 \leq t \leq 1.$$

Setting this interpolated S equal to S^* and solving for t gives:

$$t^* = \frac{S^* - S_0}{S_1 - S_0}$$
Marching Squares

If $0. \leq t^* \leq 1.$, then S^* crosses this edge. You can compute where S^* crosses the edge by using the same linear interpolation equation you used to compute S^*. You will need that for later visualization.

$$t^* = \frac{S^* - S_0}{S_1 - S_0}$$

$$x^* = (1 - t^*)x_0 + t^*x_1$$
$$y^* = (1 - t^*)y_0 + t^*y_1$$
Marching Squares

• Do this for all 4 edges – when you are done, there are 5 possible ways this could have turned out

 – # of intersections = 0

 – # of intersections = 2

 – # of intersections = 1

 – # of intersections = 3
Marching Squares

- Do this for all 4 edges – when you are done, there are 5 possible ways this could have turned out
 - # of intersections = 0 Do nothing
 - # of intersections = 2 Draw a line connecting them
 - # of intersections = 1 Error: this means that the contour got into the square and never got out
 - # of intersections = 3 Error: this means that the contour got into the square and never got out
Marching Squares

What if $S_1 == S_0$ (i.e. $t^* = \infty$)

$$t^* = \frac{S^* - S_0}{S_1 - S_0}$$

There are two possibilities.
Marching Squares

What if there are four intersections

This means that going around the square, the nodes are $>S^*$, $<S^*$, $>S^*$, and $<S^*$ in that order. This gives us a **saddle function**, shown here in cyan.

If we think of the scalar values as terrain heights, then we can think of S^* as the height of water that is flooding the terrain, as shown here in magenta.
The exact contour curve is shown in yellow, The Marching Squares contour line is shown in green. Notice what happens as we lower S^* -- there is a change in which sides of the square get connected. That change happens when $S^*>M$ becomes $S^*<M$ (where M is the middle scalar value)
Marching Squares

The 4-intersection case: Compute the middle scalar value

Let’s linearly interpolate scalar values along the 0-1 edge, and along the 2-3 edge:

\[
S_{01} = (1 - t)S_0 + tS_1 \\
S_{23} = (1 - t)S_2 + tS_3
\]

Now linearly interpolate these two linearly-interpolated scalar values:

\[
S(t, u) = (1 - u)S_{01} + uS_{23}
\]

Expand this we get

\[
S(t, u) = (1 - t)(1 - u)S_0 + t(1 - u)S_1 + (1 - t)uS_2 + tuS_3
\]

This is the bilinear interpolation equation.
Marching Squares

The 4-intersection case: Compute the middle scalar value

The middle scalar value, M, is what you get when you set $t = .5$ and $u = .5$:

$$S(t, u) = (1 - t)(1 - u)S_0 + t(1 - u)S_1 + (1 - t)uS_2 + tuS_3$$

$$M = S(.5, .5) = \frac{1}{4}S_0 + \frac{1}{4}S_1 + \frac{1}{4}S_2 + \frac{1}{4}S_3 = \frac{S_0 + S_1 + S_2 + S_3}{4}$$

Thus, M is the average of the corner scalar values.
Marching Squares

The 4-intersection case: Compute the middle scalar value

The logic for the 4-intersection case is as follows:

1. Compute M
2. If S0 is on the same side of M as S* is, then connect the 0-1 and 0-2 intersections, and the 1-3 and 2-3 intersections
3. Otherwise, connect the 0-1 and 1-3 intersections, and the 0-2 and 2-3 intersections

![Diagram showing the connection logic for S* > M and S* < M]
Artifacts?

What if the distribution of scalar values along the square edges isn’t linear?

What if you have a contour that really looks like this?
Artifacts?

What if the distribution of scalar values along the square edges isn’t linear?
We have no basis to assume anything. So linear is as good as any other guess, and lets us consider just one square by itself. Some people like looking at adjacent nodes and using quadratic or cubic interpolation on the edge. This is harder to deal with computationally, and is also making an assumption for which there is no evidence.

What if you have a contour that really looks like this?
You’ll never know. We can only deal with what data we’ve been given.

There is no substitute for having an adequate number of Points data
And, of course, if you can do it in one plane, you can do it in multiple planes

And, speaking of contours in multiple planes, this brings us to the topic of wireframe iso-surfaces...
Iso-surfacing
A contour line is often called an *iso-line*, that is a line of equal value. When hiking, for example, if you could walk along a single contour line of the terrain, you would remain at the same elevation.

An iso-surface is the same idea, only in 3D. It is a surface of equal value. If you could be a fly walking on the iso-surface, you would always experience the same scalar value (e.g., temperature).

Sometimes the shapes of the iso-surfaces have a physical meaning, such as with bone, skin, clouds, etc. Sometimes the shape just helps turn an abstract notion into something physical to help us gain insight.
Trilinear Interpolation

This is useful, for example, if we have passed an oblique cutting plane through a 3D mesh of points and are trying to interpolate scalar values from the 3D mesh to the 2D plane.

\[
S(t,u,v) = (1-t)(1-u)(1-v)S_0 + t(1-u)(1-v)S_1 + (1-t)u(1-v)S_2 + tu(1-v)S_3 + (1-t)(1-u)vS_4 + t(1-u)vS_5 + (1-t)uvS_6 + tvS_7
\]
Wireframe Iso-Surfaces

Here’s the situation: we have a 3D grid of data points. At each node, we have an X, Y, Z, and a scalar value S. We know the Transfer Function. We also have a particular scalar value, \(S^* \), at which we want to draw the iso-surface(s).

Once you have done Marching Squares for contour lines, doing wireframe iso-surfaces is amazingly easy.

The strategy is that you pick your \(S^* \), then draw \(S^* \) contours on all the parallel \(XY \) planes. Then draw \(S^* \) contours on all the parallel \(XZ \) planes. Then draw \(S^* \) contours on all the parallel \(YZ \) planes. And, then you’re done.

What you have looks like it is a connected surface mesh, but in fact it is just independent curves. It is easy to program (once you’ve done Marching Squares at least), and looks good. Also, it’s fast to compute.
Overall Logic for a Wireframe Iso-Surfacing

```c
for( k = 0; k < numV; k++ )
{
    for( i = 0; i < numT - 1; i++ )
    {
        for( j = 0; j < numU-1; j++ )
        {
            Process square whose corner is at (i,j,k) in TU plane
        }
    }
}
for( i = 0; i < numT ; i++ )
{
    for( k = 0; k < numV-1; k++ )
    {
        for( j = 0; j < numU-1; j++ )
        {
            Process square whose corner is at (i,j,k) in UV plane
        }
    }
}
for( j = 0; j < numU; j++ )
{
    for( i = 0; i < numT - 1; i++ )
    {
        for( k = 0; k < numV-1; k++ )
        {
            Process square whose corner is at (i,j,k) in TV plane
        }
    }
}
....
In Display() routine, render the obtained contour line segments
```
Iso-surface Construction: Marching Cubes

• For simplicity, we shall work with zero level ($s^*=0$) iso-surface, and denote

positive vertices as

There are EIGHT vertices, each can be positive or negative - so there are $2^8 = 256$ different cases!
These two are easy!

There is no portion of the iso-surface inside the cube!
Iso-surface Construction - One Positive Vertex - 1

Intersections with edges found by inverse linear interpolation (as in contouring)
Joining edge intersections across faces forms a triangle as part of the iso-surface.
Isosurface Construction - Positive Vertices at Opposite Corners
Iso-surface Construction: Marching Cubes

• One can work through all 256 cases in this way - although it quickly becomes apparent that many cases are similar.

• For example:
 – 2 cases where all are positive, or all negative, give no isosurface
 – 16 cases where one vertex has opposite sign from all the rest

• In fact, there are only 15 topologically distinct configurations
Case Table
8 Above
0 Below

1 case
7 Above
1 Below

1 case
6 Above
2 Below
3 cases
5 Above
3 Below

3 cases
7 cases
4 Above

4 Below

7 cases

4 edge-connected
4 Above
4 Below
7 cases
1 opposite pairs
7 cases

- 4 Above
- 4 Below

1 vertex opposite to triplet
4 Above
○ 4 Below

7 cases

1 isolated vertices
Marching Cubes – Look-up Table

• Connecting vertices by triangles
 – Triangles shouldn’t intersect
 – To be a closed manifold:
 • Each vertex used by a triangle “fan”
 • Each mesh edge used by 2 triangles (if inside grid cell) or 1 triangle (if on a grid face)
 • Each mesh edge on the grid face is shared between adjacent cells

• Look-up table
 – $2^8=256$ entries
 – For each sign configuration, it stores indices of the grid edges whose vertices make up the triangles

Sign: “0 0 0 1 0 1 0 0”
Triangles: {{2,8,11},{4,7,10}}
Further Readings

• Marching Cubes:
 • “Marching cubes: A high resolution 3D surface construction algorithm”, by Lorensen and Cline (1987)
 – >6000 citations on Google Scholar

• Dual Contouring:
 • “Dual contouring of hermite data”, by Ju et al. (2002)
 – >300 citations on Google Scholar
 • “Manifold dual contouring”, by Schaefer et al. (2007)
Polygonal Iso-Surfaces (Optional)

Marching Cubes is difficult, and so we will look at another approach.
Polygonal Iso-Surfaces: Data Structure
Polygonal Iso-Surfaces: Data Structure

bool FoundEdgeIntersection[12]
One entry for each of the 12 edges.
false means S^* did not intersect this edge
true means S^* did intersect this edge

Node EdgeIntersection[12]
If an intersection did occur on edge #i, Node[i] will contain the interpolated x, y, z, nx, ny, and nz.

bool FoundEdgeConnection[12][12]
A true in entry [i][j] or [j][i] means that Marching Squares has decided there needs to be a line drawn from Cube Edge #i to Cube Edge #j
Both entry [i][j] and [j][i] are filled so that it won’t matter which order you search in later.
Strategy in *ProcessCube()*:

1. Use *ProcessCubeEdge()* 12 times to find which cube edges have S^* intersections.

2. Return if no intersections were found anywhere.

3. Call *ProcessCubeQuad()* 6 times to decide which cube edges will need to be connected. This is Marching Squares like we did it before, but it doesn’t need to re-compute intersections on the cube edges in common. *ProcessCubeEdge()* already did that. This leaves us with the *FoundEdgeConnection[][]* array filled.

4. Call *DrawCubeTriangles()* to create triangles from the connected edges.
Strategy in \textit{DrawCubeTriangles()}:

1. Look through the \textit{FoundEdgeConnection[][]} array for a Cube Edge #A and a Cube Edge #B that have a connection between them.
2. If can’t find one, then you are done with this cube.
3. Now look through the \textit{FoundEdgeConnection[][]} array for a Cube Edge #C that is connected to Cube Edge #B. If you can’t find one, something is wrong.
4. Draw a triangle using the \textit{EdgeIntersection[]} nodes from Cube Edges #A, #B, and #C. Be sure to use \texttt{glNormal3f()} in addition to \texttt{glVertex3f()}.
5. Turn to \textit{false} the \textit{FoundEdgeConnection[][]} entries from Cube Edge #A to Cube Edge #B.
6. Turn to \textit{false} the \textit{FoundEdgeConnection[][]} entries from Cube Edge #B to Cube Edge #C.
7. \textit{Toggle} the \textit{FoundEdgeConnection[][]} entries from Cube Edge #C to Cube Edge #A. If this connection was there before, we don’t need it anymore. If it was not there before, then we just invented it and we will need it again.
Polygonal Iso-Surfaces: Why Does this work?

Take this case as an example. The intersection points A, B, C, and D were found and the lines AB, BC, CD, and DA were found because Marching Squares will have been performed on each of the cube’s 6 faces.

At this point, we could just draw the quadrilateral ABCD, but this will likely go wrong because it is surely non-planar. So, starting at A, we break out a triangle from the edges AB and BC (which exist) and the edge CA (which doesn’t exist, but we need it anyway to complete the triangle).

When we toggle the `FoundEdgeConnection[][]` entries for AB and BC, they turn from `true` to `false`. When we toggle the `FoundEdgeConnection[][]` for CA, it turns from `false` to `true`.

This leaves `FoundEdgeConnection[][]` for CA, CD, and AD all set to `true`, which will cause the algorithm to find them and connect them into a triangle next.

Note that this algorithm will eventually find and properly connect the little triangle in the upper-right corner, even though it has no connection with A-B-C-D.
Polygonal Iso-Surfaces: Surface Normals

We would very much like to use lighting when displaying polygonal iso-surfaces, but we need surface normals at all the triangle vertices. Because there really isn’t a surface there, this would seem difficult, but it’s not.

Envision a balloon with a dot painted on it. Think of this balloon as an iso-surface. Blow up the balloon a little more. This is like changing S^*, resulting in a different iso-surface. Where does the dot end up?

The dot moves in the direction of the normal of the balloon surface (the iso-surface).

Now, turn that sentence around.

The normal is a vector that shows how the iso-surface is changing. How “something is changing” is called the gradient. So, the surface normal to a volume is:

$$\hat{n} = \left(\frac{dS}{dx}, \frac{dS}{dy}, \frac{dS}{dz} \right) = \nabla S$$

Prior to the iso-surface calculation, you compute the surface normals for all the nodes in the 3D mesh. You then interpolate them along the cube edges when you create the iso-surface triangle vertices.