Iso-surfacing
Iso-Surfaces: Applications

A contour line is often called an *iso-line*, that is a line of equal value. When hiking, for example, if you could walk along a single contour line of the terrain, you would remain at the same elevation.

An iso-surface is the same idea, only in 3D. It is a surface of equal value. If you could be a fly walking on the iso-surface, you would always experience the same scalar value (e.g., temperature).

Sometimes the shapes of the iso-surfaces have a physical meaning, such as bone, skin, different layers of earth etc. (e.g., the left example above). Sometimes the shape just helps turn an abstract notion into something physical to help us gain insight (e.g. the other two examples).
Trilinear Interpolation

This is useful, for example, if we have passed an oblique cutting plane through a 3D mesh of points and are trying to interpolate scalar values from the 3D mesh to the 2D plane.

\[S(t,u,v) = (1-t)(1-u)(1-v)S_0 + t(1-u)(1-v)S_1 + (1-t)u(1-v)S_2 + tu(1-v)S_3 + (1-t)(1-u)vS_4 + t(1-u)vS_5 + (1-t)uvS_6 + tvS_7 \]
Wireframe Iso-Surfaces

Here’s the situation: we have a 3D grid of data points. At each node, we have an X, Y, Z, and a scalar value S. We know the Transfer Function. We also have a particular scalar value, S^*, at which we want to draw the iso-surface(s).

Once you have done Marching Squares for contour lines, doing **wireframe iso-surfaces** is amazingly easy.

The strategy is that you pick your S^*, then draw S^* contours on all the parallel XY planes. Then draw S^* contours on all the parallel XZ planes. Then draw S^* contours on all the parallel YZ planes. And, then you’re done.

What you get looks like it is a connected surface mesh, but in fact it is just independent curves. It is easy to program (once you’ve done Marching Squares at least), and looks good. Also, it’s fast to compute.
Overall Logic for a Wireframe Iso-Surfacing

for(k = 0; k < numZ; k++)
{
 for(i = 0; i < numX - 1; i++)
 {
 for(j = 0; j < numY-1; j++)
 {
 Process square whose corner is at (i,j,k) in XY plane
 }
 }
}
for(i = 0; i < numX ; i++)
{
 for(k = 0; k < numZ-1; k++)
 {
 for(j = 0; j < numY-1; j++)
 {
 Process square whose corner is at (i,j,k) in YZ plane
 }
 }
}
for(j = 0; j < numY; j++)
{
 for(i = 0; i < numX - 1; i++)
 {
 for(k = 0; k < numZ-1; k++)
 {
 Process square whose corner is at (i,j,k) in XZ plane
 }
 }
}

....
In Display() routine, render the obtained contour line segments
Iso-surface Construction: Marching Cubes

• For simplicity, we shall work with zero level \((s^*=0)\) iso-surface, and denote

\[\text{positive vertices as} \quad \begin{array}{c}
\end{array}\]

There are **EIGHT** vertices, each can be positive or negative - so there are \(2^8 = 256\) different cases!
These two are easy!

There is no portion of the iso-surface inside the cube!
Iso-surface Construction - One Positive Vertex - 1

Intersections with edges found by inverse linear interpolation (as in contouring)
Iso-surface Construction - One Positive Vertex - 2

Joining edge intersections across faces forms a triangle as part of the iso-surface
Isosurface Construction - Positive Vertices at Opposite Corners
Iso-surface Construction: Marching Cubes

• One can work through all 256 cases in this way - although it quickly becomes apparent that many cases are similar.
Iso-surface Construction: Marching Cubes

• One can work through all 256 cases in this way - although it quickly becomes apparent that many cases are similar.

• For example:
 – 2 cases where all are positive, or all negative, give no isosurface
 – 16 cases where one vertex has opposite sign from all the rest
Iso-surface Construction: Marching Cubes

• One can work through all 256 cases in this way - although it quickly becomes apparent that many cases are similar.

• For example:
 – 2 cases where all are positive, or all negative, give no isosurface
 – 16 cases where one vertex has opposite sign from all the rest

• In fact, there are **only 15** topologically distinct configurations
Case Table
8 Above

0 Below

1 case
7 Above

1 Below

1 case
6 Above
2 Below
3 cases
5 Above

3 Below

3 cases
7 cases

- 4 Above
- 4 Below
Above

Below

7 cases

4 connected
4 Above
4 Below

7 cases

1 opposite pairs
- 4 Above
- 4 Below

7 cases

1 vertex opposite to triplet
4 Above
4 Below

7 cases

1 isolated vertices
Marching Cubes – Look-up Table

• Connecting vertices by triangles
 – **Triangles shouldn’t intersect**
 – To be a closed manifold:
 • Each vertex used by a triangle “fan”
 • Each mesh edge used by 2 triangles (if inside grid cell) or 1 triangle (if on a grid face)
 • Each mesh edge on the grid face is *shared* between adjacent cells

• Look-up table
 – $2^8=256$ entries
 – For each sign configuration, it stores indices of the grid edges whose vertices make up the triangles

Sign: “0 0 0 1 0 1 0 0”
Triangles: \{2,8,11\}, \{4,7,10\}
Additional Readings

• Marching Cubes:
 • “Marching cubes: A high resolution 3D surface construction algorithm”, by Lorensen and Cline (1987)
 – >6000 citations on Google Scholar

• Dual Contouring:
 • “Dual contouring of hermite data”, by Ju et al. (2002)
 – >300 citations on Google Scholar
 • “Manifold dual contouring”, by Schaefer et al. (2007)
Polygonal Iso-Surfaces (Optional)

Marching Cubes is difficult, and so we will look at another approach.
Polygonal Iso-Surfaces: Data Structure
Polygonal Iso-Surfaces: Data Structure

```c
bool FoundEdgeIntersection[12]
One entry for each of the 12 edges.
false means S* did not intersect this edge
true means S* did intersect this edge

Node EdgeIntersection[12]
If an intersection did occur on edge #i, Node[i] will contain the
interpolated x, y, z, nx, ny, and nz.

bool FoundEdgeConnection[12][12]
A true in entry [i][j] or [j][i] means that Marching Squares has decided there
needs to be a line drawn from Cube Edge #i to Cube Edge #j
Both entry [i][j] and [j][i] are filled so that it won’t matter which order you
search in later.
```
Polygonal Iso-Surfaces: Algorithm

Strategy in ProcessCube():

1. Use ProcessCubeEdge() 12 times to find which cube edges have S* intersections.

2. Return if no intersections were found anywhere.

3. Call ProcessCubeQuad() 6 times to decide which cube edges will need to be connected. This is Marching Squares like we did it before, but it doesn’t need to re-compute intersections on the cube edges in common. ProcessCubeEdge() already did that. This leaves us with the FoundEdgeConnection[][][] array filled.

4. Call DrawCubeTriangles() to create triangles from the connected edges.
Polygonal Iso-Surfaces: Algorithm

Strategy in `DrawCubeTriangles()`:
1. Look through the `FoundEdgeConnection[][][]` array for a Cube Edge #A and a Cube Edge #B that have a connection between them.
2. If can’t find one, then you are done with this cube.
3. Now look through the `FoundEdgeConnection[][][]` array for a Cube Edge #C that is connected to Cube Edge #B. If you can’t find one, something is wrong.
4. Draw a triangle using the `EdgeIntersection[]` nodes from Cube Edges #A, #B, and #C. Be sure to use `glNormal3f()` in addition to `glVertex3f()`.
5. Turn to `false` the `FoundEdgeConnection[][][]` entries from Cube Edge #A to Cube Edge #B.
6. Turn to `false` the `FoundEdgeConnection[][][]` entries from Cube Edge #B to Cube Edge #C.
7. **Toggle** the `FoundEdgeConnection[][][]` entries from Cube Edge #C to Cube Edge #A. If this connection was there before, we don’t need it anymore. If it was not there before, then we just invented it and we will need it again.
Polygonal Iso-Surfaces: Why Does this work?

Take this case as an example. The intersection points A, B, C, and D were found and the lines AB, BC, CD, and DA were found because Marching Squares will have been performed on each of the cube’s 6 faces.

At this point, we could just draw the quadrilateral ABCD, but this will likely go wrong because it is surely non-planar. So, starting at A, we break out a triangle from the edges AB and BC (which exist) and the edge CA (which doesn’t exist, but we need it anyway to complete the triangle).

When we toggle the `FoundEdgeConnection[][][]` entries for AB and BC, they turn from `true` to `false`. When we toggle the `FoundEdgeConnection[][][]` for CA, it turns from `false` to `true`.

This leaves `FoundEdgeConnection[][][]` for CA, CD, and AD all set to `true`, which will cause the algorithm to find them and connect them into a triangle next.

Note that this algorithm will eventually find and properly connect the little triangle in the upper-right corner, even though it has no connection with A-B-C-D.
Polygonal Iso-Surfaces: Surface Normals

We would very much like to use lighting when displaying polygonal iso-surfaces, but we need surface normals at all the triangle vertices. Because there really isn’t a surface there, this would seem difficult, but it’s not.

Envision a balloon with a dot painted on it. Think of this balloon as an iso-surface. Blow up the balloon a little more. This is like changing S^*, resulting in a different iso-surface. Where does the dot end up?

The dot moves in the direction of the normal of the balloon surface (the iso-surface).

Now, turn that sentence around.

The normal is a vector that shows how the iso-surface is changing. How “something is changing” is called the gradient. So, the surface normal to a volume is:

$$\mathbf{n} = \left(\frac{dS}{dx}, \frac{dS}{dy}, \frac{dS}{dz} \right) = \nabla S$$

Prior to the iso-surface calculation, you compute the surface normals for all the nodes in the 3D mesh. You then interpolate them along the cube edges when you create the iso-surface triangle vertices.
Acknowledgment

• Thanks for materials from
 – Dr. Mike Bailey