3D Scalar Field Visualization: Volume Rendering
Iso-surfacing Could Be limited

• Iso-surfacing is "binary"
 – point inside iso-surface?
 – voxel contributes to image?

• Is a hard, distinct boundary necessarily appropriate for the visualization task?
Iso-surfacing Could Be Limited

- Iso-surfacing poor for ...

 - measured, "real-world" (noisy) data

 - Amorphous (fog-like), "soft" objects

virtual angiography

bovine combustion simulation
What is Direct Volume Rendering

• Any rendering process which maps from volume data to an image without introducing binary distinctions / intermediate geometry

• How do you make the data visible?
What is Direct Volume Rendering

• Any rendering process which maps from volume data to an image without introducing binary distinctions / intermediate geometry

• How do you make the data visible? : Via Color and Opacity

• How to achieve that?
What is Direct Volume Rendering

• Any rendering process which maps from volume data to an image without introducing binary distinctions / intermediate geometry

• How do you make the data visible? Via Color and Opacity

• How to achieve that?
 – The data is considered to represent a semi-transparent light-emitting medium
 • Also gaseous phenomena can be simulated
 – Approaches are based on the laws of physics (emission, absorption, scattering)
 – The volume data is used as a whole (look inside, see all interior structures). Think of color plots in 3D!
Volume Rendering is Useful

- Measured sources of volume data
 - CT (computed tomography)
 - PET (positron emission tomography)
 - MRI (magnetic resonance imaging)
 - Ultrasound
 - Confocal Microscopy
Volume Rendering is Useful

• *Synthetic* sources of volume data
 – CFD (computational fluid dynamics)
 – Voxelization of discrete geometry
Data Representation

- Volume rendering techniques
 - depend strongly on the grid type
 - exist for both structured and unstructured grids
 - are predominantly applied to uniform grids (3D images).
 - for uniform grid, voxels are the basic unit
Data Representation

• Volume rendering techniques
 – depend strongly on the grid type
 – exist for both structured and unstructured grids
 – are predominantly applied to uniform grids (3D images).
 – for uniform grid, voxels are the basic unit

• Cell-centered data for uniform grids
 – are attributed to cells (pixels, voxels) rather than nodes
 – can also occur in (finite volume) CFD datasets
 – are converted to node data (for, e.g., iso-surfacing)
 • by taking the dual grid (easy for uniform grids, n cells -> n-1 cells!)
 • or by interpolating.
Important Concepts

• Interpolation
 – **trilinear** common, others possible

• Color and opacity transfer function
 – Turning scalar values to colors

• Gradient
 – direction of fastest change

• Compositing
 – "over operator"
This is useful, for example, if we have passed an oblique cutting plane through a 3D mesh of points and are trying to interpolate scalar values from the 3D mesh to the 2D plane.

\[S(t, u, v) = (1-t)(1-u)(1-v)S_0 + t(1-u)(1-v)S_1 + (1-t)u(1-v)S_2 + tu(1-v)S_3 + (1-t)(1-u)vS_4 + t(1-u)vS_5 + (1-t)uvS_6 + tuvS_7 \]
Color and Opacity Transfer Functions

- \(C(f(p)), \alpha(f(p)) \) – \(p \) is a point in volume

- Functions of input data \(f(p) \)
 - \(C(f), \alpha(f) \) – these are \textbf{1D functions}
 - Can include lighting effects
 - \(C(f, N(p), L) \) where \(N(p) = \text{grad}(f) \)
 - Derivatives of \(f \)
 - \(C(f, \text{grad}(f)), \alpha(f, \text{grad}(f)) \)
Transfer Functions (TFs)

Map data value f to color and opacity

Shading, Compositing...

Human Tooth CT
Gradient

$$\nabla f = (df/dx, df/dy, df/dz)$$

$$= \left(\frac{(f(1,0,0) - f(-1,0,0))}{2}, \frac{(f(0,1,0) - f(0,-1,0))}{2}, \frac{(f(0,0,1) - f(0,0,-1))}{2} \right)$$

Approximates "surface normal" (of iso-surface)

Central difference

$$\frac{df}{dx} = \frac{f(x + h) - f(x - h)}{2h}$$
Pipelines: Iso vs. Vol Ren

- The standard line - "no intermediate geometric structures"

Diagram:
- Volume Data
 - Isosurface extraction
 - Triangles
 - Surface rendering
 - Rendered Image
- Volume Data
 - Standard graphics operations: shading, lighting, compositing
 - Volume rendering
 - Rendered Image
Computational Strategies

• How can the basic ingredients be combined:
 • Image Order (in screen coordinate)
 • Ray casting (many options)
 • Object Order (in world coordinate)
 • splatting, texture-mapping
 • Combination (neither)
 • Shear-warp, Fourier
Computational Strategies

• How can the basic ingredients be combined:
 • Image Order (in screen coordinate)
 • Ray casting (many options)
 • Object Order (in world coordinate)
 • splatting, texture-mapping
 • Combination (neither)
 • Shear-warp, Fourier
Image Order

- Render image **one pixel at a time**

For each pixel ...
- cast ray
- sampling along ray
- interpolate
- get colors/opacity
- composite
Raycasting

• Raycasting is historically the **first volume rendering technique**.

• It shares some similarity with raytracing:
 – image-space method: main loop is over pixels of output image
 – a view ray per pixel (or per sub-pixel) is traced **backward**
 – samples are taken along the ray and composited to a single color

• **Differences** are:
 – no secondary (reflected, shadow) rays
 – transmitted ray is not refracted
 – more elaborate compositing functions
 – samples are taken at intervals (not at object intersections) inside volume

Image source: wikipedia
Image Order

- Render image **one pixel at a time**

For each pixel ...
- cast ray
- sampling along ray
- interpolate
- get colors/opacity
- composite
Raycasting

Sampling interval can be fixed or adjusted to voxels:

- uniform sampling
- voxel-by-voxel traversal (faster)

Connectedness of "voxelized" rays:

- 6-connected (strongest)
- 18-connected
- 26-connected (weakest)

Image source: wikipedia
Ray Templates

A ray template (Yagel 1991) is a voxelized ray which by translating generates all view rays.

Ray templates speed up the sampling process, but are obviously restricted to orthographic views.

Algorithm:

- Rename volume axes such that z is the one "most orthogonal" to the image plane (without loss of generality).
- Create ray template with 3D version of line pixelized algorithm, giving 26-connected rays which are functional in z coordinate (have exactly one voxel per z-layer)
- Translate ray template in base plane, not in image plane
Ray Templates

Incorrect: translated in image plane

Correct: translated in base plane

Translate

Image plane

Base plane

Translate
Image Order

• Render image **one pixel at a time**

For each pixel ...
- cast ray
- sampling along ray
- interpolate
- get colors/opacity
- composite
Compositing

Two simple compositing functions can be used for previewing:

• **Maximum intensity projection (MIP):**
 – maximum of sampled values
 – result resembles X-ray image

• **Local maximum intensity projection (LMIP):**
 – first local maximum which is above a prescribed threshold
 – approximates occlusion
 – faster & better(!)
Compositing

Comparison of techniques (Y. Sato, dataset of a left kidney): Iso-surface vs. raycasting with MIP, LMIP, \(\alpha \)-compositing

<table>
<thead>
<tr>
<th></th>
<th>fast</th>
<th>fast</th>
<th>fast</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1 parameter)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lighting</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>occlusion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(transparency)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Compositing

Comparison of techniques (Y. Sato, dataset of a left kidney): Iso-surface vs. raycasting with **MIP, LMIP, α-compositing**

<table>
<thead>
<tr>
<th>fast (1 parameter)</th>
<th>fast parameter free full data range noise insensitive</th>
<th>fast (1 parameter) full data range noise insensitive</th>
<th>- full data range noise insensitive lighting occlusion transparency</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>lighting occlusion (transparency)</td>
<td>lighting occlusion (transparency)</td>
<td>lighting occlusion (transparency)</td>
<td>lighting occlusion (transparency)</td>
</tr>
</tbody>
</table>

-
α-compositing

Assume that each sample on a view ray has color and opacity:

\[(C_0, \alpha_0), \ldots, (C_N, \alpha_N)\] \quad C_i \in [0,1]^3, \alpha_i \in [0,1]

where the 0th sample is next to the camera

and the Nth one is a (fully opaque) background sample:

\[C_N = (r, g, b)_{\text{background}}\]

\[\alpha_N = 1\]

α-compositing can be defined recursively:

Let \(C_f^b\) denote the composite color of samples \(f, f+1, \ldots, b\)

Recursion formula for back-to-front compositing:

\[C_b = \alpha_b C_b\]

\[C_f^b = \alpha_f C_f + (1 - \alpha_f) C_{f+1}^b\]

\[\alpha_f^b = \alpha_f + (1 - \alpha_f) \alpha_{f+1}^b\]
α-compositing

The first few generations, written with transparency $T_i = 1 - \alpha_i$

\[
C_b^b = \alpha_b C_b
\]
\[
C_{b-1}^b = \alpha_{b-1} C_{b-1} + \alpha_b C_b T_{b-1}
\]
\[
C_{b-2}^b = \alpha_{b-2} C_{b-2} + \alpha_{b-1} C_{b-1} T_{b-2} + \alpha_b C_b T_{b-1} T_{b-2}
\]
\[
C_{b-3}^b = \alpha_{b-3} C_{b-3} + \alpha_{b-2} C_{b-2} T_{b-3} + \alpha_{b-1} C_{b-1} T_{b-2} T_{b-3} + \alpha_b C_b T_{b-1} T_{b-2} T_{b-3}
\]

reveal the closed formula for α-compositing:

\[
C_f^b = \sum_{i=f}^{b} \alpha_i C_i \prod_{j=f}^{i-1} T_j
\]
α-compositing

front-to-back compositing can be derived from the closed formula:

Let T_f^b denote the composite transparency of samples $f, f+1, \ldots, b$

$$T_f^b = \prod_{j=f}^{b} T_j$$

Then the simultaneous recursion for front-to-back compositing is:

$$C_f^f = \alpha_f C_f$$
$$T_f^f = 1 - \alpha_f$$
$$C_{f+1}^b = C_f^b + \alpha_{b+1} C_{b+1} T_f^b$$
$$T_{f+1}^b = (1 - \alpha_{b+1}) T_f^b$$

Advantage of front-to-back compositing: early ray termination when composite transparency falls below a threshold.
Compositing Example I

\[c_f = (0,1,0) \]
\[a_f = 0.4 \]

\[c_b = (1,0,0) \]
\[a_b = 0.9 \]

\[c = a_f*c_f + (1 - a_f)*a_b*c_b \]
\[a = a_f + (1 - a_f)*a_b \]

\[c_{\text{red}} = 0.4*0 + (1-0.4)*0.9*1 = 0.6*0.9 = 0.54 \]
\[c_{\text{green}} = 0.4*1 + (1-0.4)*0.9*0 = 0.4 \]
\[c_{\text{blue}} = 0.4*0 + (1-0.4)*0.9*0 = 0 \]
\[a = 0.4 + (1 - 0.4)*(0.9) = 0.4 + 0.6*0.9 \]

\[c = (0.54,0.4,0) \]
\[a = 0.94 \]
Compositing Example II

\[
c = a_f \cdot c_f + (1 - a_f) \cdot a_b \cdot c_b
\]

\[
a = a_f + (1 - a_f) \cdot a_b
\]

\[
c_f = (0,1,1)
\]

\[
a_f = 0.4
\]

\[
c = (0.3,0.23,0.4)
\]

\[
a = 0.964
\]

\[
c_f = (0,1,0)
\]

\[
a_f = 0.4
\]

\[
c_f = (0,1,1)
\]

\[
a_f = 0.4
\]

\[
c = (0.54,0.4,0)
\]

\[
a = 0.964
\]

\[
c_b = (1,0,0)
\]

\[
a_b = 0.9
\]

\[
c_b = (0.54,0.4,0)
\]

\[
a_b = 0.94
\]
Compositing Example II

\[c = a_f \cdot c_f + (1 - a_f) \cdot a_b \cdot c_b \]
\[a = a_f + (1 - a_f) \cdot a_b \]

- \(c_f = (0,1,0) \)
 - \(a_f = 0.4 \)
 - \(c_b = (0,0,1) \)
 - \(a_b = 0.9 \)
 - \(c_{red} = 0.4 \cdot 0 + (1-0.4) \cdot 0.9 \cdot 0.54 = 0.6 \cdot 0.9 = 0.54 \)
 - \(c_{green} = 0.4 \cdot 1 + (1-0.4) \cdot 0.9 \cdot 0 = 0.4 \)
 - \(c_{blue} = 0.4 \cdot 1 + (1-0.4) \cdot 0.9 \cdot 0 = 0.4 \)
 - \(a = 0.4 + (1 - 0.4) \cdot (0.9) = 0.4 + 0.6 \cdot 0.9 \)

\[c = (0.54, 0.4, 0.4) \]
\[a = 0.964 \]

- \(c_f = (0,1,1) \)
 - \(a_f = 0.4 \)
 - \(c_f = (0,1,0) \)
 - \(a_f = 0.4 \)
 - \(c_{red} = 0.4 \cdot 0 + (1-0.4) \cdot 0.94 \cdot 0.54 = 0.6 \cdot 0.94 \cdot 0.54 = 0.30 \)
 - \(c_{green} = 0.4 \cdot 1 + (1-0.4) \cdot 0.94 \cdot 0.4 = 0.6 \cdot 0.94 \cdot 0.4 = 0.23 \)
 - \(c_{blue} = 0.4 \cdot 1 + (1-0.4) \cdot 0.94 \cdot 0.4 = 0.23 \)
 - \(a = 0.4 + (1 - 0.4) \cdot (0.94) = 0.4 + 0.6 \cdot 0.94 \)

\[c = (0.3, 0.23, 0.23) \]
\[a = 0.964 \]
Compositing Orders

\[c = a_f \cdot c_f + (1 - a_f) \cdot a_b \cdot c_b \]
\[a = a_f + (1 - a_f) \cdot a_b \]

Order Matters!

\[c = (0.3, 0.23, 0.4) \]
\[a = 0.964 \]

\[c = (0.3, 0.23, 0.23) \]
\[a = 0.964 \]
The Emission-Absorption Model

How realistic is α-compositing?

The emission-absorption model (Sabella 1988)

Initial intensity at s_0 $I(s_0)$

Without absorption all the initial radiant energy would reach the point s. $I(s) = I(s_0)$
The Emission-Absorption Model

How realistic is α-compositing?

The emission-absorption model (Sabella 1988)

Initial intensity at s_0

\[
I(s) = I(s_0) e^{-\tau(s,s_0)}
\]

Optical depth τ

Absorption along the ray segment $s_0 - s$

Absorption κ

\[
\tau(s_1,s_2) = \int_{s_1}^{s_2} \kappa(s) ds
\]

viewing ray
The Emission-Absorption Model

How realistic is α-compositing?

The emission-absorption model (Sabella 1988)

\[I(s) = I(s_0)e^{-\tau(s_0,s)} + \int_{s_0}^{s} q(\tilde{s})e^{-\tau(\tilde{s},s)}d\tilde{s} \]
Numerical Solution

We need to first estimate the optical depth by taking into account the absorption property of the material that the ray is traveling through.

Optical depth: \(\tau(0, t) = \int_0^t \kappa(t) \, dt \)
Numerical Solution

Optical depth: $\tau(0, t) = \int_0^t \kappa(t) \, dt$

Approximate Integral by Riemann sum:

$\tau(0, t) \approx \sum_{i=0}^{[t/\Delta t]} \kappa(i \cdot \Delta t) \Delta t$
Numerical Solution

\[\tau(0, t) \approx \tilde{\tau}(0, t) = \sum_{i=0}^{[t/\Delta t]} \kappa(i \cdot \Delta t) \Delta t \]

\[e^{-\tilde{\tau}(0, t)} = \sum_{i=0}^{[t/\Delta t]} e^{-\kappa(i \cdot \Delta t) \Delta t} \]

\[e^{-\tilde{\tau}(0, t)} = \prod_{i=0}^{[t/\Delta t]} e^{-\kappa(i \cdot \Delta t) \Delta t} \]
Now we introduce opacity

\[1 - A_i = e^{-\kappa(i \cdot \Delta t) \Delta t} \]
Numerical Solution

Estimate of the radiant energy absorption

\[I(s) = \int_{s_0}^{s} q(\tilde{s})e^{-\tau(\tilde{s},s)} d\tilde{s} \]
Numerical Solution

\[e^{-\tilde{\tau}(0,t)} = \prod_{i=0}^{[t/\Delta t]} (1 - A_i) \]

\[q(t) \approx C_i = c(i \cdot \Delta t) \Delta t \]

\[\tilde{C} = \sum_{i=0}^{[T/\Delta t]} C_i e^{-\tilde{\tau}(0,t)} \]

\[I(s) = \int_{s_0}^{s} q(\tilde{s}) e^{-\tau(\tilde{s},s)} d\tilde{s} \]
Numerical Solution

\[q(t) \approx C_i = c(i \cdot \Delta t) \Delta t \]

\[e^{-\bar{\tau}(0,t)} = \prod_{i=0}^{[t/\Delta t]} (1 - A_i) \]

\[\bar{C} = \sum_{i=0}^{[T/\Delta t]} C_i \prod_{j=0}^{i-1} (1 - A_j) \]

can be computed recursively/iteratively!
Numerical Solution

Note: we just changed the convention from $i=0$ is at the front of the volume (previous slides) to $i=0$ is at the back of the volume!

can be computed recursively/iteratively:

$$C'_i = C_i + (1 - A_i)C'_{i-1}$$

$$C_i = A_i C_{\text{pure_color}}$$
Numerical Solution

can be computed recursively/iteratively:

\[C_i'' = C_i' + (1 - A_i)C_{i-1}' \]

- Radiant energy observed at position \(i \)
- Radiant energy emitted at position \(i \)
- Absorption at position \(i \)
- Radiant energy observed at position \(i-1 \)
Numerical Solution

Back-to-front compositing

\[C_i'' = C_i + (1 - A_i)C_{i-1}' \]

Iterate from \(i=0 \) (back) to \(i=\text{max} \) (front): \(i \) increases

Front-to-back compositing

\[C_i'' = C_{i+1}' + (1 - A_{i+1}')C_i \]

\[A_i' = A_{i+1}' + (1 - A_{i+1}')A_i \]

Iterate from \(i=\text{max} \) (front) to \(i=0 \) (back): \(i \) decreases
Other Compositing - Average

Intensity

Depth

Average

Synthetic Reprojection