
Discrete Vector Field Topology –

Morse Decomposition
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Differential Vector Field Topology

• Vector field topology provides 
qualitative (structural) information of 
the underlying dynamics

• It usually consists of certain critical 
features and their connectivity, 
which can be expressed as a graph, 
e.g. vector field skeleton [Helman and 

Hesselink 1989]

– Fixed points

– Periodic orbits

– Separatrices
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What is the problem?
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Instability of Differential Topology (1)

Case 1: different sampling
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Case 2: noise in the data
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Instability of Differential Topology (2)
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Case 3: different numerical integration

schemes
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Instability of Differential Topology (3)



2D Vector Field Topology

• Differential topology

– Topological skeleton [Helman and Hesselink 1989; CGA91]

– Entity connection graph [Chen et al. TVCG07]

• Discrete topology

– Morse decomposition [Conley 78] [Chen et al. TVCG08, TVCG11a]

– PC Morse decomposition [Szymczak EuroVis11] [Szymaczak and Zhang 

TVCG12][Szymaczak TVCG12]

• Combinatorial topology

– Combinatorial vector field [Forman 98]

– Combinatorial 2D vector field topology [Reininghaus et al. TopoInVis09, TVCG11]
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Morse Decomposition Results

• Stable
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Morse Decomposition Results

• Stable



10

Morse Decomposition Results

• Stable
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What is a Morse Decomposition?

• A Morse decomposition of 
surface X for the flow ϕ is a 
finite collection of disjoint 
compact invariant sets, called 
Morse sets. 

• The result of a Morse 
decomposition computation is a 
directed graph called Morse 
connection graph (MCG).
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MCG Definition

• An MCG

M(X,ϕ,P,>)={M(p)|p∈(P,>)}
– is an acyclic directed graph, whose nodes P

are Morse sets, the set of directed edges is a 

strict partial order  >

– such that for any x∉ ∪p∈P M(p),  there exist 

p>q in P and α(x) ⊂ M(p) and  ω(x) ⊂ M(q)



13

Flow 

combinatorialization

A Pipeline of Morse Decomposition
Vector field on a triangulation
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Flow 

combinatorialization

Strongly connected 

component extracting

Constructing a 

quotient graph

Computing MCG

A Pipeline of Morse Decomposition
Vector field on a triangulation



• A geometry-based method

Flow combinatorialization

(1) (2)
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• Flow combinatorialization encodes flow dynamics in a 

directed graph

Flow combinatorialization
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• Regions of recurrent flow correspond to the strongly-
connected components of the directed graph!

Extract Region of Recurrence
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• Morse decomposition is a family of Morse sets, i.e. 
disjoint compact sets such that:

1) Any trajectory that is NOT contained in the union of Morse sets connect two different 
Morse sets

2) No cycle exist in the ‘is connect to’ relation on the family of Morse sets

• Properties
1) Flow gradient like outside Morse sets

2) Morse sets capture all recurrent dynamics

3) Not unique (determined by a parameter τ)

• Coarse: more stable

• Fine: easier to understand

• Support of multi-scale analysis
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Properties of Morse Decomposition

coarse fine



Issue of Geometry Based Flow 

Combinatorialization
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How to achieve finer decomposition?
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Flow 

combinatorialization

Flow Combinatorialization

τ-map based method
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Why τ-map based method is better



Why the larger the τ is the finer the 

decomposition?
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Why Is MCG Stable?
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τ-Map Based Flow 

Combinatorialization Result
ττττ
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Morse Decomposition is Not Unique

with increasing τ

ECG

MCGs

They are all correct!

Small τ Large τ



In order to construct the MCG and visualize it, we need to classify 

the Morse sets and place them in the proper layers as ECG does
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Can Poincaré Indices be Used Here?

• Consider an isolated fixed point x0, there is a 
neighborhood N enclosing x0 such that there are no 
other fixed points in N or on the boundary curve ∂N
– if I(∂N, V) =1, x0 is either a source or a sink;

– if I(∂N, V) =-1, x0 is a saddle. 

• The Poincarè index of a fixed point free region is 0

• Poincaré Index of a periodic orbit is zero as well!!!
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Conley Index

• There is an index, called Conley index that we use to classify 

Morse sets.

• For an isolating block M, its Conley index is the homotopy type 

of the quotient space M/L where L is the exit set (the subset of 

the boundary of M consisting of all exit points).
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• For an isolating block M, its Conley index is computed as the Betti numbers 

(β0, β1, β2) of the quotient space M/L where L is the exit set (the subset of 

the boundary of M consisting of all exit points).

Conley Index

Saddle
Mod out exit set

(0,1,0)
M/L

Contract
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Conley Index Computation (β0 )

• β0 simply counts the number of connected components 

in M that do not attach with L.

• Since M is always connected in our cases, then β0 is 

zero if L ≠ Φ and 1 otherwise.

β0 = 1 β0 = 0 β0 = 0
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Conley Index Computation (β2 )

• β2 is equal to the number of connected components of 

M whose entire boundary is contained in L.

• Since M is connected, then β2 =1 if all boundaries are 

contained in L.

β2 = 0 β2 = 0 β2 = 1
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Conley Index Computation (β1 )

• Consider the Euler characteristic of M/L

X(M/L)=β0−β1+β2

Also, X(M/L) =X(M)−X(L)

Thus, β1 =β0+β2 − [X(M) −X(L)]

And, X(L)=β0 (L)−β1 (L) +β2 (L)

Where β0 (L) is the number of the connected 

components in exit set L

β1 (L) is the number of loops in exit set L

β2 (L) is always zero for 1D curve
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Conley Index Computation

Therefore,

β1 = 0 β1 = 1 β1 = 1

β0 = 1 β0 = 0 β0 = 0

β2 = 0 β2 = 0 β2 = 1

X(M) = 1 X(M) = 1 X(M) = 0
X(L) = 0 X(L) = 2 X(L) = 0

β1 =β0+β2 − [X(M) −X(L)]
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Basic Conley Indices in 2D

β0

β1

β2

(0,0,0)

(1,0,0)(0,0,1)

(0,1,0)

(0,1,1) (1,1,0)

A combinatorial computation

[Chen et al. TVCG11a]Regular flow

Sink-like

Saddle-like

Attracting orbit

Repelling orbit

Source-like



• Note that β0 and β2 are at most 1, and  CANNOT 

be both 1.

– If β0 =1, (A)ttractors

– If β2 =1, (R)epellers

– Otherwise, (S)addles

• Visualization

Classification of Morse Sets
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A More Complex Example

(0,2,0)
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Results – Analytic Data
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Results – Gas Engine

• Uniform ττττ
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Results – Diesel Engine

• Uniform ττττ



Results

• Performance

Dataset name Number of 
triangles

Number of 
Morse sets

Time for flow 
combinatorialization 
(seconds)

Time for 
computing MCG 
(seconds)

Gas engine (t=0.1) 26,298 50 27.8 7.9

Gas engine ( t=0.3) 26,298 57 75.4 1.2

Diesel engine (t=0.3) 221,574 200 1101.3 37.7

All the results are obtained in a 3.6 GHz PC with 3GB RAM.
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Issue (I) With Uniform τ

A1

A2

S1

R1

τ_1 τ_i τ_n

time_1 time_i time_n

… …
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Issue (II) With Uniform τ
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Recall an Important property of Morse 

decomposition

• The flow recurrent dynamics is only located within 

Morse sets!
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• Remove the inner edges

Refinement of A Morse Set
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• Replace them with edges computed using a larger τ value

Refinement of A Morse Set
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• The refined Morse sets

Refinement of A Morse Set
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The Hierarchical Refinement
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Questions

• Which Morse sets need to be refined? 

• How to determine their refinement order?
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Geometric Metric
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Topology Metric
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Priority Values
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is simply the number of triangles in the Morse set M

i.e. a geometry metric

Given a Morse set M, its priority value for refinement is computed as

measures the distance between the Conley index of the 

Morse set M to the basic indices, i.e. a topology metric

(1,2,0)



The Complete Hierarchical Framework

• Compute an MCG using a geometry based method

• Estimate the Conley index of each Morse set

• Compute a priority value for each Morse set and add it to 

a priority queue Q

• Iterative process:
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Results
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Gas engine

Diesel engine

Cooling jacket



Performance

• The performance gain at least depends on

• The complexity of the flow -> number of Morse sets that need refinement

• The curl of the flow -> the size of each Morse set that needs refinement

On a PC with Intel(R) Xeon(R) 2.33GHz dual processors and 8GB RAM

Dataset #polygon
s

Global method
τ1,τ2,τ3 time(s)

Hierarchical refinement
τ_max time(s)

Speed-up

Gas engine 26,298 0.1, 0.2, 0.4 436.7 0.4 65.97 6.62

Diesel engine 221,574 0.1, 0.2, 0.4 1589.3 0.4 96.30 16.50

Cooling jacket 227,868 0.1, 0.2, 0.4 2480.2 0.4 435.2 5.70
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Extension

The results without setting the maximum τ

213s 1012s 4524s
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Extension

Multi-level representation and visualization
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Additional Readings

• Guoning Chen, Konstantin Mischaikow, Robert S. Laramee, 

and Eugene Zhang. "Efficient Morse Decompositions of 

Vector Fields". IEEE Transactions on Visualization and 

Computer Graphics, Vol. 14, No. 4, 2008, pp. 848-862.

• Guoning Chen, Qingqing Deng, Andrzej Szymczak, Robert S. 

Laramee, and Eugene Zhang. "Morse Set Classification and 

Hierarchical Refinement using Conley Index", IEEE 

Transactions on Visualization and Computer Graphics, Vol 18 

(5): pp. 767-782, 2012.
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Extend Topology to 3D Steady Vector 

Field Analysis



Data Structure

Regular (uniform), rectilinear, and structured grids

Alternative:

tetrahedral volume elements:

unstructured



Streamlines and Streamsurfaces

• Streamlines
– Similar to the 2D definition

– Computation-wise, more expensive

– A common objects to visualize 3D flow

• Streamsurfaces
– A collection of streamlines seeded along 

a seeding curve in 3D

– The construction of the surface needs to 
consider the divergence and convergence 
of the flow.

– Typically provide some segmentation of 
the flow domain as the particles on either 
side of the streamsurface cannot cross 
the surface



• Similar to 2D case, 3D vector field topology 
aims to classify the behavior of different 
streamlines in the domain.

• There are also various flow recurrent dynamics 
which correspond to those special streamlines, 
but far more complex than their 2D 
counterparts

• 3D flow topology again consists of
– Fixed points

– Periodic orbits

– Their connections including separation structures 
which can now be both streamline and stream 
surfaces

3D Flow Topology



• Fixed points

• Can be characterized using 3D Poincaré

index

3D Flow Topology

saddle-
node

saddle-
spiral

spiral-
sink

node-
source



• Similar principle as in 2D

– Isolate closed cell chain in which streamline 

integration appears captured

– Start stream surface integration along boundary 

of cell-wise region

– Use flow continuity to exclude reentry cases

3D Cycles

Challenging to strange attractor

Source: http://www.stsci.edu/~lbradley/seminar/attractors.html



3D Cycles



3D Topology Extraction

• Cell-wise fixed point extraction:
– Compute root of linear / trilinear expression

• Poincaré index can be applied as well

– Compute Jacobian at found position

– If type is saddle compute eigenvectors 

• Extract closed streamlines

• Integrate line-type separatrices

• Integrate surface separatrices as stream surfaces

• Find out connection between cycles and fixed 
points



Saddle Connectors

Topological representations of the Benzene data set. 

(left) The topological skeleton looks visually cluttered due to the shown 

separation surfaces. 

(right) Visualization of the topological skeleton using saddle connectors.

Source: Weinkauf et al. VisSym 2004



3D Morse Decomposition

• Similarly, the discrete topology based on Morse 
decomposition can be directly extended to 3D setting.
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