


Topological Features

e Flow recurrence and their
connectivity

* Separation structure that __
classifies the particle |
advection




Vector Field Gradient Recall

e Consider a vector field

fx
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It is also called the Jacobian matrix of the vector field.
Many feature detection for flow data relies on Jacobian



Divergence and Curl

* Divergence- measures the magnitude of outward flux through
a small volume around a point
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e Curl- describes the infinitesimal rotation around a point
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Gauss Theorem

e Also known as divergence theorem, that relates
the vectors on the boundary 0V = A of a region
P to the divergence in the region

J, divVdv =[ V-ndA
N being the outward normal of the boundary

e This leads to a physical interpretation of the
divergence. Shrinking V to a point in the theorem
vields that the divergence at a point may be
treated as the material generated at that point



Stoke Theorem

e The rotation of vector field V on a surface A is
related to its boundary d.A = L. It says that

the curl on A equals the integrated field over
L.

fn-cuerdcfl=fV-dr

A L
e This theorem is limited to two dimensional
vector fields.



Another Useful Theorem about Curl

In the book of Borisenko [BT79]

Suppose V = V' X ¢ with ¢, an arbitrary but fixed vector, substituted
into the divergence theorem. Using div(V' X ¢) = ¢ curl V', one
gets

f curl V'dV = j nxVdA
% A

Stoke’s theorem says that the flow around a region determines the
curl.

The second theorem says: Shrinking the volume V to a point, the
curl vector indicates the axis and magnitude of the rotation of that
point.



2D Vector Field Recall

Assume a 2D vector field
dx; _ _7 _ fx):(ax+by+c)
/. =V = Fx,y) (fy tenss

Its Jacobian is

0fy 0fy
_|9x 0y| _r1a b
V=log, of, =l .
| dx 0Oy

* Divergenceisa + e
e Curlisb—d

Given a vector field defined on a discrete mesh, it is important
to compute the coefficients a, b, ¢, d, e, f for later analysis.



Examples of Divergence and Curve of
2D Vector Fields

Divergence and curl of a vector field



Potential or Irrotational Fields

e Avector field V is said to be a potential field if there exists
a scalar field ¢ with

V=gradgp =V
@ is called the scalar potential of the vector field V

e Avector field V living on a simply connected region is

irrotational, 1.e. curl V = O (i.e. curl-free), if and only if it is
a potential field.

e |tis worth noting that the potential defining the potential
field is not unique, because

grad(U+c) =grad U +gradc =grad U + 0 = grad U



Solenoidal Fields

Or divergence-free field
V=curl® =V x o

Solenoidal fields stem from potentials too, but this time from
vector potentials, .

These fields can describe incompressible fluid flow and are
therefore as important as potential fields.

A vector field Vis solenoidal, i.e. V =V X ® with & : R™" - R™, if
and only if the divergence of V vanishes.

The vector potential here is not unique as well
curl V+VU) =curl V+curl VU = curl V+ 0 = curl V



Laplacian Fields

e A vector field V which is both potential and solenoidal (i.e.

both curl-free and divergence-free), is called a Laplacian
field.

* |nasimply connected region, a Laplacian field is the
gradient of a scalar potential which satisfies Laplace
differential equation Ap = 0.

e Scalar function like @ whose Laplacian vanishes, are called
harmonic functions.
— They are completely determined by their boundary values.

— There exists one function satisfying Laplace’s equation for fixed
boundary values.



Helmholtz Decomposition

V=Vp+V XD

Curl (or rotation) free

Hodge decomposition
V=Vp+VXD+y

Curl (or Divergence
rotation) free free




Helmholtz Decomposition Example

curl-free neither divergence-free



General Feature Classifications

Points
— Fixed points, vortex centers

Lines
— Features that occupy a set of points forming a line
— 3D vortex cores, ridge lines, separation/attachment lines, cycles

Surfaces
— Features cover a set of points representing a surface
— Shock wave, iso-surfaces, separation surfaces in 3D

Volume
— Features cover a non-zero region in 3D
— Vortex region, 3D Morse sets, coherent structure



One important non-topological
features in vector fields is vortex



Applications




Vortex Definition

No rigorous and widely-accepted definition
Capturing some swirling behavior

Robinson 1991:

— “A vortex exists when instantaneous streamlines
mapped onto a plane normal to the vortex core
exhibit a roughly circular or spiral pattern, when
viewed from a reference frame moving with the
center of the vortex core”

Requires a priori detection

Not always Galilean invariant: varying by adding
constant vector fields



Different Definitions

e A vortex?
o [lugt'72]

— A vortex is the rotating motion of a multitude of
material particles around a common center

— Vorticity is sufficiently strong — not enough to
detect




Different Definitions

e A vortex?
e [Robinson’91]

— A vortex exists when its streamlines, mapped onto a plane
normal to its core, exhibit a circular or spiral pattern, under
an appropriate reference frame




Different Definitions

e Avortex?
e [Portela’97]

— A vortex is comprised of a central core region surrounded
by swirling streamlines




Vortex Structures

e Two main classes of vortex structures
— Region based methods: isosurfaces of scalar fields
— Line based methods: extract vortex core lines

region based line based



Region Based

 Threshold on pressure:
p < Pthresh

e |dea: centripetal force induces pressure
gradient

— Very easy to implement and compute
— Purely local criterion

 Problems:
— Arbitrary threshold
— Pressure can vary greatly along a vortex




Region Based

 Threshold on vorticity magnitude:
|V X V| = wepresn

* |dea: strong infinitessimal rotation
— Common in fluid dynamics community

— Very easy to implement and compute, purely
local

 Problems:
— Arbitrary threshold
— Vorticity often highest near boundaries
— Vortices can have vanishing vorticity




Region Based

Threshold on (normalized) helicity
magnitude

(‘7 X V) V= hthresh

|dea: use vorticity but exclude shear flow

— Still easy to implement and compute,
purely local

Problems:

— Arbitrary threshold

— Fails for curved shear layers

— Vortices can have vanishing vorticity




Region Based

e A,-criterion

1 T 1 T
=50+ Qi=30-J"
Shear contribution of J rotational contribution of J

— Define as the largest eigenvalues of S% + Q?

— Vortical motion where 4, < 0
e Precise threshold, nearly automatic
e \Very widely used in CFD
e Susceptible to high shear
e |nsufficient separation of close vortices




Region Based

Q-criterion (Jeong, Hussain 1995)
Positive 2" invariant of Jacobian

1
Q =5 (IRl ~ 1IsI?)

Idea: Q > 0 implies local pressure smaller than
surrounding pressure. Condition can be derived
from characteristic polynomial of the Jacobian.

— Common in CFD community

— Can be physically derived from kinematic vorticity
(Obrist, 1995)

— Need good quality derivatives, can be hard to
compute




Line Based

e Separation lines starting from focus saddle critical
points [Globus/Levit 92]




Line Based

e Banks-Singer (1994):

* |dea: Assume a point on a vortex core is known.
— Then, take a step in vorticity direction (predictor).

— Project the new location to the pressure minimum
perpendicular to the vorticity (corrector).

— Break if correction is too far from prediction

(1) (2) (3 61-0-1 (%) /
/ le p"l. \
p’/w: O ‘/s C Ot J .
Compute the vorticity ata  Step in the vorticity direction ~ Compute the vorticaty at Correct to the pressure min
point on the vortex core. to predict the next point. the predicted pomt. in the perpendicular plane.

Image from Banks, Singer, Vis 1994




Line Based

e Banks-Singer, continued

e Results in core lines that are roughly vorticity
lines and pressure valleys.

— Algorithmically tricky

— Seeding point set can be large (e.g. local pressure
minima)

— Requires additional logic to identify unique lines



Line Based

e [Sujudi, Haimes 95]

 In 3D, in areas of 2 imaginary eigenvalues of the Jacobian
matrix: the only real eigenvalue is parallel to VV

— In practice, standard method in CFD, has proven successful in a
number of applications

— Criterion is local per cell and readily parallelized

— Resulting line segments are disconnected (Jacobian is assumed
piecewise linear)

— Numerical derivative computation can cause noisy results

— Has problems with curved vortex core lines (sought-for pattern
is straight)



Line Based

e Eigenvector method [Sujudi
and Haimes 95] \

wx) = v(x) — (v(x) - e(x))e(x)
wx) =0
Reduced velocity

Although a point X on the core structure
is surrounded by spiraling integral curves,
the flow vector at X itself is solely
governed by the non-swirling part of the
flow.




Line Based

Sahner et al. 2005

|dea: construct a special vector field that allows to
model ridge/valley-lines as integral curves (“feature
flow field”).

Authors applied it to Q-criterion and A,—criterion.
— Works well in practice

— Feature flow field requires high-order partial derivatives
that are difficult to compute in certain data sets

— Seed point set required (usually minimal points)



Line Based

e Sahner et al., results

Images from Sahner et al., Eurovis 2005



Line Based

The parallel vector operator
[Roth and Peikert98]

Given: 3D vector field V

The curvature vector of vis
vXa

P

Dv . .
where a = Y is the acceleration of

Cc

D2
Let b = —:
Dt

Vortex core line: all locations in the domain where b is parallel to v,

Line structures



e Particular parallel vector approaches
Authors Type Description Basic Formula Additional Criteria Page
*)
Sujudi, Haimes Z zero curvature lines vil (Vv)v complex eigenvalues 80
of velocity
Miura, Kida ZE valley lines of pressure vil (Vv) v valley line 87
with v = Vp [(conditions on eigenvalues)
Strawn, E maximum lines wll (V W)l w maximum line 79
Kenwnght, Ahmad of vorticity with W = V X v |(conditions on eigenvalues)
Levy, Degam, velocity parallel vilVxvy rotation 74
Segier to vorticity (non-zero vorticity)
Banks, Singer vorticity parallel to gradi- | Vp Il VX v minimum of pressure 77
ent of pressure (condition on eigenvalues)

From M. Roth’s PhD thesis



Extend to Unsteady Flow

e Path lines: cores of swirling particle motion
[Weinkauf et al., Vis 2007]
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