


Tensor Data Analysis



A Simple Example of 2D Tensor

Illustration of a symmetric second-order tensor as linear operator. The 

tensor is uniquely determined by its action on all unit vectors, 

represented by the circle in the left image. The eigenvector directions 

are highlighted as black arrows. In this example one eigenvalue (e2) is 

negative. As a consequence all vectors are mirrored at the axis 

spanned by eigenvector e1. The eigenvectors are the directions with 

strongest normal deformation but no directional change.



Applications

• Tensors describe entities that scalars and 
vectors cannot describe sufficiently, for 
example, the stress at a point in a continuous 
medium under load.

– medicine, 

– geology,

– astrophysics, 

– continuum mechanics 

– and many more



Stress tensors describe internal forces or 

stresses that act within deformable 

bodies as reaction to external forces

(a) External forces f are applied to a 

deformable body. Reacting forces 

are described by a three-

dimensional stress tensor that is 

composed of three normal stresses s

and three shear stresses τ.

(b) Given a surface normal n of some 

cutting plane, the stress tensor maps n

to the traction vector t, which describes 

the internal forces that act on this plane 

(normal and shear stresses).

Tensors in Mechanical Engineering



Tensors in Mechanical Engineering

• Strain tensor - related to the 
deformation of a body due to 
stress by the material’s 
constitutive behavior.

• Deformation gradient tensor –
gradient of displacements of 
material points

• The strain tensor is a normalized 
measure based on the 
deformation gradient tensor

http://enpub.fulton.asu.edu/concrete/elasticity2_95/sld006.htm

http://en.wikipedia.org/wiki/Finite_strain_theory



Diffusion Tensor Imaging (DTI)

• For medical applications, diffusion tensors 
describe the anisotropic diffusion behavior of 
water molecules in tissue.

• Here, the molecule motion is driven by the 
Brownian motion and not the concentration 
gradient. 

• The tensor contains the following information 
about the diffusion: its strength depending on 
the direction and its anisotropy

• It is positive semi-definite and symmetric. 

Note that in practice the positive 

definiteness of diffusion tensors can be 

violated due to measurement noise.



Tensors in Medicine (II)

• Diffusion tensors are not the only type of 
tensor that occur in the medical context. 

• In the context of implant design, stress 
tensors result from simulations of an 
implant’s impact on the distribution of 
physiological stress inside a bone.

• An application related to strain tensors is 
used in elastography where MRI, CT or 
ultrasound is used to measure elastic 
properties of soft tissues. Changes in the 
elastic properties of tissues can be an 
important hint to cancer or other diseases

[DICK et al. Vis09]

[SOSA-CABRERA et al., 2009]



Tensors in Geometry

• Curvature tensors - change of surface normal in any given 

direction

• Metric tensors - relates a direction to distances and angles; 

defines  how angles and the lengths of vectors are measured 

independently of the chosen reference frame
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Gradient Tensor of Velocity Field



Tensors in Images

• Image analysis

• Computer vision [Zhang et al, TVCG2007]



Some Math of Tensors



Definition

• A second-order tensor T is defined as a bilinear 

function from two copies of a vector space V into the 

space of real numbers

�: 
⨂
 → 


• Or: a second-order tensor T as linear operator that 

maps any vector v ∈V onto another vector w ∈	V

�: 
 → 


• The definition of a tensor as a linear operator is 

prevalent in physics.



Definition

• Tensors are generally represented with respect to a 
specific Cartesian basis {��, … ��}of the vector space V.

• In this case, the tensor is uniquely defined by its 
components and is represented as a matrix.

• Considering definition (1), we have

� �,� � �� ∙ � ∙ �						∀�, � ∈ 


where � � ���� + ⋯+�� ��, w� ���� + ⋯+�� ��

• For(2), we have  � � � � ∙ �



Tensor Invariance

• Tensors are independent of specific reference frames, i.e. 
they are invariant under coordinate transformations.

• Invariance qualifies tensors to describe physical processes 
independent of the coordinate system. More precisely, the 
tensor components change according to the transformation 
into another basis; the characteristics of the tensor are 
preserved. Consequently, tensors can be analyzed using any 
convenient reference frame.

• Rotational invariant  

• Affine invariant



Tensor Diagonalization

• The tensor representation becomes especially simple if it can be 
diagonalized.

• The complete transformation of T from an arbitrary basis into the 
eigenvector basis, is given by

���� �

λ� 0 0

0 λ� 0

0 0 λ�

• The diagonal elements λ�, λ�, λ� are the eigenvalues and U is the 
orthogonal matrix that is composed of the eigenvectors, that is (��, 
��, ��)

• The diagonalization generally is computed numerically via singular 
value decomposition (SVD) or principal component analysis (PCA).



Tensor Properties

• Symmetric Tensors. A tensor S is called symmetric if it 
is invariant under permutations of its arguments

! �, � � ! �, � 			∀�, � ∈ 


• Antisymmetric Tensors. A tensor A is called 
antisymmetric or skew-symmetric if the sign flips when 
two adjacent arguments are exchanged

" �,� � −" �, � 			∀�, � ∈ 


• Traceless Tensors. Tensors T with zero trace, i.e. 
$%(�) 	� ∑ �''

�(�
')* , are called traceless.



Tensor Properties

• Positive (Semi-) Definite Tensors. A tensor T is called 
positive (semi-) definite if

� �, � > ≥ 0
Their eigenvalues and their determinant are greater than zero.

• Negative (Semi-) Definite Tensors. A tensor T is called 
negative (semi-) definite if

� �, � < ≤ 0
their determinants are smaller than (smaller than or equal to) zero.

• Indefinite Tensors. Each tensor that is neither positive 
definite nor negative definite is indefinite.



Tensor Decompositions

• Symmetric/Antisymmetric Part. For non-symmetric 
tensors T, the decomposition into a symmetric part S 
and an antisymmetric part A is a common practice:

� � ! + "

where ! �
�

�
(� + ��), " �

�

�
� − ��

• Physically, antisymmetric part contains rotational 
information and the symmetric part contains 
information about isotropic scaling and anisotropic 
shear.



Tensor Decompositions

• Isotropic/Anisotropic Part. Symmetric tensors 
can be decomposed into an isotropic �'/0 and an 
anisotropic (deviatoric) part D

� �
1

3
$% � 3 + � − �'/0

• From a physical point of view, the isotropic part 
represents a direction independent 
transformation (e.g., a uniform scaling or uniform 
pressure); the deviatoric part represents the 
distortion.



Tensor Decompositions

• Stretch/Rotation. Another useful decomposition 
of nonsymmetric, positive-definite tensors T (e.g. 
deformation gradient tensors) is the polar 
decomposition. It decomposes the 
transformation represented by T in a two-stage 
process: a rotation R and a right stretch U or a left 
stretch V

� � 
 ∙ � � 
 ∙ 


• A tensor is called stretch if it is symmetric and 
positive definite. A tensor is called rotation if it is 
orthogonal with determinant equal to one.



Tensor Decompositions

• Shape/Orientation. Via eigen analysis 

symmetric tensors are separated into shape 

and orientation.

– Here, shape refers to the eigenvalues and 

orientation to the eigenvectors.

– Note that the orientation field is not a vector field 

due to the bidirectionality of eigenvectors.



Second-order Tensor Fields

• In visualization, usually not only a single 

tensor but a whole tensor field is of interest. 

This gives rise to a tensor field.



Features?

• Scalar related

– Components

– Determinant 

– Trace

– Eigen-values 

• Vector related

– Eigen-vector fields



Tensor Interpolation

• Challenges
– Natural representation of the original data. 

• This includes the preservation of central tensor properties (e.g., 
positive definiteness) and/or important scalar tensor invariants 
(e.g., the determinant).

– Consistency. 
• consistent with the topology of the original data.

– Invariance. 
• The resulting interpolation scheme needs to be invariant with 

respect to orthogonal changes of the reference frame.

– Efficiency. 
• The challenge is to design an algorithm that represents a tradeoff 

between the above mentioned criteria and computational 
efficiency.



Tensor Interpolation

Comparison of component-wise tensor interpolation (a) and linear interpolation of eigenvectors 

and eigenvalues (b). Observing the tensors depicted by ellipses, the comparison reveals that the 

separate interpolation of direction and shape is much more shape-preserving (b).



Interpolations between two three-

dimensional positive-definite tensors T1 

and T2. The interpolation results are 

represented using superquadrics ((a)-(d)). 

The plots (e) show the behavior of four 

tensor invariants for the respective 

interpolations: det(T), K1 =tr(T), K2 = ||D|| 

and K3 = det(D/||D||), where D is the 

deviator of T and ||.|| is the Frobenius

norm. Image courtesy Kindlmann et al. 

2007.



Tensor Field Segmentation

• The goal of tensor segmentation algorithms is 
to aggregate regions that exhibit similar data 
characteristics to ease the analysis and 
interpretation of the data.

• Two classes

– Segmentation or clustering based on certain 
similarity (or dis-similarity) metric

– Topology-based



Tensor Field Segmentation

• Challenges
– Similarity measure

• Depending on the task or visualization goal, a first step 
comprises the choice of appropriate quantities (derived 
features or original tensor data). These in turn influence or 
even determine the choice of an appropriate similarity 
measure.

– Simplification of complex structures
• Topology-based segmentations may result in very complex 

structures, which are hard to interpret. Therefore, 
algorithms for simplification and tracking over time play a 
crucial role.

• Topology higher than 2D is not well understood



Tensor Field Segmentation

• Similarity-Measure-Based Segmentation

– Based on tensor components, considering the 

tensor segmentation as a multi-channel 

segmentation of scalar values

– Based on invariants or comprise the entire tensor 

data. Used metrics are the angular difference 

between principal eigenvector directions, or 

standard metrics considering the entire tensor, 

like the Euclidean or Frobenius distance



What about tensor field topology?



Tensor Field Segmentation

• Topology-Based Segmentation

[Tricoche et al. VisSym2001] [Zhang et al. TVCG 2007]



Hyperstreamlines

• Let T(x) be a (2nd order) symmetric tensor field
– real eigenvalues, orthogonal eigenvectors

• Hyperstreamline: by integrating along one of the 
eigenvectors

• Important: Eigenvector fields are not vector fields!
– eigenvectors have no magnitude and no orientation (are 

bidirectional)

– the choice of the eigenvector can be made consistently as long 
as eigenvalues are all different

– Hyperstreamlines can intersect only at points where two or 
more eigenvalues are equal, so-called degenerate points.



Compute One Hyperstreamline

• Choose integrator:
– Euler

– Runge-Kutta

• Choose step size (can be adaptive)

• Provide seed point position and determine starting direction

• Advance the front

• Note that the angle ambiguity. This is because the computation of 
the eigenvector at each sample point (i.e. vertex of the mesh) is 
independent of each other. Therefore, inconsistent directions may 
be chosen at neighboring vertices. 
– Additional step to remove angle ambiguity. A dot product between the 

current advancing direction and the eigenvector direction at current 
position is performed. A positive value indicates the consistent 
direction; otherwise, the inverse direction should be used!



Degenerate Points

• The topology for 2nd symmetric tensor fields is 
extracted by identifying their degenerate points 
and their connectivity that partitions the 
hyperstreamlines.

• A point p is a degenerate point of the tensor field 
T iff the two eigenvalues of T(p) are equal to each 
other. 
– There are infinite many eigenvectors at p.

– Hyperstreamlines cross each other at degenerate 
points



Degenerate Points



Degenerate Points in 2D

Three linear (first order) types exist

None of these patterns would be possible in vector fields!



Degenerate Points in 2D
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Degenerate Points in 2D

• Classifying tensor degenerate points

– Depending on the determinant of

• >0 wedge

• <0 trisector

• =0 higher-order degenerate points 
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A few degenerate points used in tensor field design

>0 wedge

<0 trisector

=0 higher-order degenerate points 
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[Delmarcelle and Hesselink, 1994]



Degenerate Points in 2D

• Tensor index: wedges



Degenerate Points in 2D

• Tensor index: trisectors



Separatrices

Hyperbolic sectors  89

Parabolic sectors 8:

Index 3 � 1 −
�;

�



Separatrices



Separatrices

• Separatrices
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Topological Skeleton in 2D

Image by Xavier Tricoche

We only consider the topology for 2nd symmetric tensor fields!



Image by Eugene Zhang



Compared With Vector Field Topology

Comparison between the 

vector-based image edge field 

(VIEF, left) and the tensor-based 

image edge field (TIEF, right) for 

painterly rendering of an image 

of a duck.

Notice that TIEF is much 

smoother than VIEF (top row), 

and their impact on the 

painterly results are clearly 

visible near the beak of the 

duck.

Image by Eugene Zhang



How about 3D topology?



Singularities in 3D



Finding Degenerate Lines



Finding Degenerate Lines



Topological Skeleton



Practical Issues (I)



Time-dependent tensor field topology?

General tensor field topology?

Higher-order tensor field topology?
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