
Graph Data



What is a Graph

• Graphs, denoted as � = (�, �), are structures 

formed by a set of vertices, � (also called 

nodes) and a set of edges, � = {	, 
},  that 

are connections between pairs of vertices.
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Graphs are everywhere



Basic Concepts

– The order of the graph G, �	 = 	 |�|
– The size of the graph G, � = �
– A graph is planar if it can be drawn in a plane 

without any of the edges crossing



Image source: http://people.seas.harvard.edu/~joshlee/

Image source: 

http://www.sagemath.org/doc/thematic_tutorials/linear_progra

mming.html/



Basic Concepts

– The order of the graph G, �	 = 	 |�|
– The size of the graph G, � = �
– A graph is planar if it can be drawn in a plane 

without any of the edges crossing

– The density of the graph G, 
�
�
�

– A graph of density 1 is called complete





Basic Concepts (II)

– The adjacency matrix �� of a given graph � = (�, �)	of order � is an � × � matrix 

�� = (��,�) where ��,� = �1, 	if{�, 	} ∈ �
0, 			otherwise

– The number of edges incident on a given vertex 	 is the degree of 	, denoted by deg	(	).
– A graph is regular if all of the vertices have the 

same degree

– Degree matrix ) =
deg	(	*) ⋯ 0

⋮ ⋱ ⋮
0 ⋯ deg	(	�./)
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Basic Concepts (III)

• A partition of the vertices V of a graph �	 = 	 (�, �) into two nonempty sets 0 and �\S is called a cut and is denoted by 0, �\S .

– A cut is uniquely identified by defining a set 0; 
therefore, any subset of � can be called a cut.

• Typically 0 3 �
�

– The cut size is the number of edges that 
connect vertices in 0 to vertices in �\S.

– If the edges have weights, the cut size is re-
defined as the sum of the weights of the edges 
crossing the cut.

– The sum of degrees in a cut S is defined as

deg 0 = 4deg	(	)
�∈5

Image source: 

http://www.sciencedirect.com/science/article/pii/S003132

0312004219



Basic Concepts (IV)

– A path from 	 to � in a graph � = (�, �)	is a sequence of 

edges in � starting at vertex 	* = 	 and ending at vertex 

	67/ = �.

– The path is simple if no vertex is repeated
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Basic Concepts (IV)

– The length of the path is the number of edges on it

– The distance between is the shortest path connecting them

– A graph is connected if there exist paths between all pairs of 
vertices; otherwise, it is disconnected.

– The minimum number of edges that would need to be removed 
from G in order to make the graph disconnected is the edge-

connectivity of the graph.
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Basic Concepts (V)

– A cycle is a simple path that begins and ends at the same 

vertex.

– A graph that contains on cycle is acyclic and is also called 

forest.

– A connected forest is called a tree.
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Basic Concepts (VI)

– A subgraph �8 = (0, �5) of � = (�, �)	is 

composed of a set of vertices 0 ⊆ � and a set of 

edges �5 ⊆ �. � is then a supergraph of �8.
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Basic Concepts (VI)

– A connected acyclic subgraph that includes all 

vertices in � is called a spanning tree of �.

• A spanning tree has exactly � : 1 edges

• If the edges have weights, the spanning tree with 

smallest total weights is called the minimum spanning 

tree (there may exist several of them)

http://www.i-cherubini.it/mauro/blog/2006/04/06/minimum-spanning-tree-of-

urban-tapestries-messages/



Basic Concepts (VII)

– An induced subgraph of a graph � = (�, �)	is the graph with the 

vertex set 0 ⊆ � with an edge set �(0) that includes all such edges 

{	, �} in � with both of the vertices 	 and � included in the set 0
– The subgraph induced by the vertex subset 0 is denoted by �(0).
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Basic Concepts (VII)

– An induced subgraph of a graph � = (�, �)	is the graph with the 

vertex set 0 ⊆ � with an edge set �(0) that includes all such edges 

{	, �} in � with both of the vertices 	 and � included in the set 0
– The subgraph induced by the vertex subset 0 is denoted by �(0).
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Basic Concepts (VII)

– An induced subgraph that is a complete graph is called a clique.

– The local density of an induced subgraph in � = (�, �)	is defined as

; � 0 = |�(0)|
|0|
2
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Basic Concepts (VIII)

• Two graphs �= and	�> are isomorphic if there exists a bijective

(one-to-one) mapping ?:	�= → �> (called an isomorphism) 

such that {	, 
} ∈ �= if and only if {?(	), ?(
)} ∈ �>

Image source: 

http://www.flashandmath.com/mathlets/discrete/graphtheory/graph4.html



Basic Concepts (IX)

– The spectrum of a graph � = (�, �)	is defined as the list 

of eigenvalues (together with their multiplicities) of its 

adjacency matrix �� .

– Laplacian matrix B = ) : ��
– The normalized Laplacian is defined as

C = )./�B)./� = D : )./���)./�
) is the degree matrix



Basic Concepts (X)

– The entry of the normalized Laplacian matrix

C�� =
	1, 																														if	� = 		��E	deg	(	) > 0,
	 1
deg � ∙ deg 	 , H?	� ∈ Γ 	 ,

0, 																																	otherwise.

– Using normalized Laplacian is convenient as the eigenvalues of it 
all fall within the interval [0,2].

– This makes the comparison of the spectra of two graphs easier.
• Graphs that have the same spectrum are called cospectral.

– The smallest eigenvalue is always 0, its corresponding 
eigenvector is simply a vector with each element being the 
square-root of the degree of the corresponding vertex.



Example Tasks of Graph Processing

• Conventional graph processing (graph model, laws, 

graph dynamics, visualization, summarization, graph 

clustering, link analysis, social network analysis, …)

• Graph Pattern Mining

• Frequent graph patterns

• Pattern summarization

• Optimal graph patterns

• Graph patterns with constraints

• Approximate graph patterns

• Graph Classification

• Pattern-based approach

• Decision tree

• Decision stumps

• Graph Compression
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Graph Clustering

• Formally, given a data set, the goal of clustering is to 
divide the data set into clusters such that the elements 
assigned to a particular cluster are similar or connected 
in some predefined sense.

• A clustering algorithm outputs a clustering for any input 
graph.

• If the structure of the graph is completely uniform, with 
the edges evenly distributed over the set of vertices, the 
clustering computed by any algorithm will be rather 
arbitrary.

• Quality measures – and if feasible, visualizations – will 
help to determine whether there are significant clusters 
present in the graph and whether a given clustering 
reveals them or not.

http://khorshid.ut.ac.ir/~s.tabrizi/



An Example

• Matrix diagonalization in itself is an important 

application

• of clustering algorithms

The adjacency matrix of a 210-vertex graph with 1505 edges composed of 17 dense 

clusters. On the left, the vertices are ordered randomly and the graph structure can hardly 

be observed. On the right, the vertex ordering is by cluster and the 17-cluster structure is 

evident. Each black dot corresponds to an element of the adjacency matrix that has the 

value one, the white areas correspond to elements with the value zero.

Matrix diagonalization in itself is an important application of clustering algorithms.

Such computations in turn enable efficient algorithms for graph partitioning, as the

graph partitioning problem can be written in the form of a set of linear equations



Graph Clustering

• Graph clustering is the task of grouping the 

vertices of the graph into clusters taking into 
consideration the edge structure of the graph 
in such a way that there should be many 
edges within each cluster and relatively few 
between the clusters.

• Unfortunately, no single definition of a cluster 

in graphs is universally accepted.



Notion of a cluster can be ambiguous



Generation Models for Clustered Graphs

• Uniform random graphs (Gilbert model)

– With � vertices, each of the 
�
2 possible edges is included in the 

graph with probability M
– No dense clusters



Generation Models for Clustered Graphs

• Uniform random graphs (Gilbert model)

– With � vertices, each of the 
�
2 possible edges is included in the 

graph with probability M
– No dense clusters

• Planted N-partition model
– A graph is generated with � = N ∙ O vertices that are partitioned 

into N groups each with O vertices. Two probability parameters M
and P < M are used to construct the edge set: each pair of 
vertices that are in the same group share an edge with the 
higher probability p, whereas each pair of vertices in different 
groups shares an edge with the lower probability r.



Generation Models for Clustered Graphs

• Relaxed caveman graph

– In social sciences to capture the clustering 

properties of social network.

– Each “cave” is a small complete graph.

– Caves are linked by moving one of the edges in 

each cave to point to another cave.

– With clear cluster structure, possibly with 

hierarchy



An Example

Two graphs both of which have 84 vertices and 358 edges. The graph on 

the left is a uniform random graph of the R�,� model and the graph on 

the right has a relaxed caveman structure. Both graphs were drawn with 

spring-force visualization.



Desirable Cluster Properties

• A cluster should be at least a connected subgraph. 
Preferably more paths (dense) within the subgraph.

• We classify the edges incident on 	 ∈ S into two groups
– Internal edges that connect 	 to other vertices also in S.

deg=�T 	, S = |Γ(	) ∩ S|
– External edges that connect 	 to vertices outside of S

degVWT 	, S = |Γ(	) ∩ (�\S)|
deg 	 = deg=�T 	, S + degVWT 	, S

– Therefore, deg=�T 	, S =0 implies S	is a good cluster.



• One measure that helps to evaluate the sparsity of 

connections from the cluster to the rest of the graph 

is  the cut size Y(S, �\S). The smaller the cut size, 

the better “isolated” the cluster.

• Determining when a cluster is dense is naturally 

achieved by computing the graph density.



• Local density of cluster S, or intra-cluster density

;=�T S = �, 	 		 		� ∈ S, 	 ∈ S|
|S|( S : 1)

• The inter-cluster density of a given clustering of a 
graph � into O clusters is the average of the intra-
cluster densities of the included clusters

;=�T �|S/, … , S6 = 1
O4;=�T(S=)

6

=[/
The external density is

;=�T �|S/, … , S6 = �, 	 	 � ∈ S= , 	 ∈ S> , H ≠ ]|
� � : 1 : ∑ (|S_|(|S_| : 1))6_[/



Challenges of Clustering

• Globally speaking, the internal density of a good clustering should be 
notably higher than the density of the graph G and the inter-cluster 
density of the clustering should be lower.

• Therefore, the loosest possible definition of a graph cluster is that of a 
connected component, and the strictest definition is that each cluster 
should be a maximal clique. Connected components are easily computed 
in O(n + m)-time with a breadth-first search, whereas maximal clique 
detection is NP-complete.

• In most occasions, the semantically useful clusters lie somewhere in 
between these two extremes.

• When the input graph is very large, such as the Internet at router level or 
the Web graph, it is highly infeasible to rely on algorithms with 
exponential running time, as even linear-time computation gets tedious.



Challenges of Clustering (II)

• Deterministic or probabilistic.

– It is not always clear whether each vertex should be assigned 
fully to a cluster or could it instead have different “levels of 
membership” in several clusters? 

– In document clustering, such a situation is easily imaginable: a 
document can be mainly about fishing, for example, but also 
addresses sailing-related issues, and hence could be clustered 
into “fishing” with 0.9 membership, for example, and to 
“sailing” with a level of 0.3. Another solution would be creating 
a super-cluster to include all documents related to fishing and 
sailing, but the downside is that there can be documents on 
fishing that have no relation to sailing whatsoever.



Representations of Clusters for 

Different Classes of Graphs
• Bipartite graphs

– A bipartite graph is a graph where the vertex set V can 

be split in two sets A and B such that all edges lie 

between those two sets: if {	, 
} 	∈ 	�, either 		 ∈
	�	and 
	 ∈ 	`	or 		 ∈ 	`	and 
	 ∈ 	�.

– Such graphs are natural for many application areas 

where the vertices represent two distinct classes of 

objects, such as customers and products; an edge 

could signify for example that a certain customer has 

bought a certain product. Possible clustering tasks 

could be grouping the customers by the types of 

products they purchase or grouping products 

purchased by the same people — the motivation 

could be targeted marketing, for instance. Carrasco et 

al. study a graph of advertisers and keywords used in 

advertisements to identify submarkets by clustering.



• Directed graphs

– Web graphs are directed graphs formed 
by web pages as vertices and hyperlinks 
as edges. A clustering of a higher-level 
web graph formed by all Chilean 
domains was presented by Virtanen. 
Clustering of web pages can help 
identify topics and group similar pages. 
This opens applications in search-
engine technology; building artificial 
clusters is known to be a popular trick 
among websites of adult content to try 
to fool the PageRank algorithm used by 
Google to rate the quality of websites.

Image: http://cfinder.org/



Measures for Identifying Clusters

• There are two main approaches for identifying a 

good cluster: one may either compute some values 

for the vertices and then classify the vertices into 

clusters based on the values obtained, or compute a 

fitness measure over the set of possible clusters and 

then choose among the set of cluster candidates that 

optimize the measure used.



• Vertex similarity metric

– Graph distance

– Adjacent-based measures

– Connectivity measures

– If a similarity measure has been defined for the 

vertices, the cluster should contain vertices with 

close-by values



• Cluster fitness measures

– Density measures

• ;=�T S = �,� 		 		�∈S,�∈S|
|S|( S ./)

– Cut-based measures

• ;=�T �|S/, … , S6 = �,� 	 �∈Sa,�∈Sb,=c>|
� �./ .∑ (|Sd|(|Sd|./))edfg



Hierarchical Clustering



Example Tasks of Graph Processing

• Conventional graph processing (graph model, laws, 

graph dynamics, visualization, summarization, graph 

clustering, link analysis, social network analysis, …)

• Graph Pattern Mining

• Frequent graph patterns

• Pattern summarization

• Optimal graph patterns

• Graph patterns with constraints

• Approximate graph patterns

• Graph Classification

• Pattern-based approach

• Decision tree

• Decision stumps

• Graph Compression



Applications of Graph Patterns

• Mining biochemical structures

• Finding biological conserved sub-networks

• Finding functional modules

• Program control flow analysis

• Intrusion network analysis

• Mining communication networks

• Anomaly detection

• Mining XML structures

• Building blocks for graph classification, clustering, 

compression,

• Comparison, correlation analysis, and indexing



Frequent Graph Pattern

Given a graph dataset D, find subgraphs h, such that

where ?ijP(h)	is the percentage of graphs in D that 

contain h.

?ijP(h) ≥ l



Frequent Subgraphs



Frequent Subgraphs



Graph Mining Algorithms

• Inductive Logic Programming (WARMR, King et al. 2001)
– Graphs are represented by Datalog facts

• Graph Based Approaches
– Apriori-based approach

– AGM/AcGM: Inokuchi, et al. (PKDD’00)

– FSG: Kuramochi and Karypis (ICDM’01)

– PATH#: Vanetik and Gudes (ICDM’02, ICDM’04)

– FFSM: Huan, et al. (ICDM’03) and SPIN: Huan et al. (KDD’04)

– FTOSM: Horvath et al. (KDD’06)

• Pattern growth approach
– Subdue: Holder et al. (KDD’94)

– MoFa: Borgelt and Berthold (ICDM’02)

– gSpan: Yan and Han (ICDM’02)

– Gaston: Nijssen and Kok (KDD’04)

– CMTreeMiner: Chi et al. (TKDE’05)

– LEAP: Yan et al. (SIGMOD’08)



Aprior Property

• If a graph is frequent, all of its subgraphs are frequent.



Generation of Candidate Patterns



Discovery Order: Free Extension



Discovery Order: Right-Most Extension
(Yan and Han ICDM’02)



Duplicates Elimination

Existing patterns           h/, h�, … , h�
Newly discovered pattern   h
• Option 1

– Check graph isomorphism of  h with each graph (slow)

• Option 2
– Transform each graph to a canonical label, create a hash 

value for this canonical label, and check if there is a match 
with h (faster)

• Option 3
– Build a canonical order and generate graph patterns in that 

order (fastest)



Graph Pattern Explosion Problem

• If a graph is frequent, all of its subgraphs are frequent ─ the Apriori
property

• An n-edge frequent graph may have 2� subgraphs!

• In the AIDS antiviral screen dataset with 400+ compounds, at the support 
level 5%, there are > 1M frequent graph patterns

• Conclusions: Many enumeration algorithms are available AGM, FSG, 
gSpan, Path-Join, MoFa, FFSM, SPIN, Gaston, and so on, but two significant 
problems exist



Pattern Summarization
(Xin et al., KDD’06, Chen et al. CIKM’08)

• Too many patterns may not lead to more explicit 
knowledge

• It can confuse users as well as further discovery (e.g., 
clustering, classification, indexing, etc.)

• A small set of “representative” patterns that preserve 
most of the information



Pattern Distance



Closed and Maximal Graph Pattern

• Closed Frequent Graph
– A frequent graph G is closed if there exists no 

supergraph of G that carries the same support as G

– If some of G’s subgraphs have the same support, it is 
unnecessary to output these subgraphs (nonclosed
graphs)

– Lossless compression: still ensures that the mining 
result is complete

• Maximal Frequent Graph
– A frequent graph G is maximal if there exists no 

supergraph of G that is frequent



Frequent Pattern Based Mining



Many other recent techniques and applications ….
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