
Sub-Topics

• Compute bounding box

• Compute Euler Characteristic

• Estimate surface curvature

• Line description for conveying surface shape

• Morse function and surface topology--Reeb

graph

• Scalar field topology--Morse-Smale complex



Surface Curvature Estimation

By Prof. Eugene Zhang



Shape Visualization

• How to convey shape with a few lines? What 

lines should be drawn?



Shape Visualization

• Placing lines along the principle curvature 

direction is best at illustrating the shape of 

an object



Curvature

• Curve

• Surface



Curvature of a Planar Curve



A Planar Curve

• Given a 2D curve

– The unit tangent vector is defined as

– The unit normal vector is

– counterclockwise cross product
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Arc Length

• The arc length of                              is

• and
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Arc Length Based Re-parameterization

• The curve                             becomes

• and we have
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Arc Length Based Re-parameterization
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Arc Length Based Re-parameterization

• The unit tangent vector is 
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Curvature

• The curvature is )(sTTTT
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Signed Curvature



Topology of Curves



Topology of Curves

Gauss Circle
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Conclusion

• Recall         measures how fast unit tangent vectors 

change directions.

• Therefore, it also measures how fast unit normal 

vectors change directions, counting orientation

• The total curvature along a closed curve is 

• This shows that the total curvature of a curve is a 

topological quantity
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Curvature of a Surface



Surface Curvature

• Use curvature of curves to define curvature of 
a surface

• For a point P on the surface

– For every unit tangent vector V at P

• Construct the plane that contains P and is parallel to V 
and N

• Find the intersection of the surface and this plane

• Compute the curvature of the intersection curve (called 
normal curvature)



Surface Curvature

Image credit: http://www.lsus.edu/sc/math/rmabry/math223/quadricsurfaces/Images/index_gr_62.gif



Surface Curvature

• Let                  be a unit tangent vector

• The normal curvature in the direction t is:
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Tangent Space

• Classifying curves of a surface through a point 

p

Image credit: www.peroxide.dk/.../tut10/pxdtut10.html



Tangent Space

• Two curves are equivalent if they are tangent 

to each other at p.

Image credit: www.peroxide.dk/.../tut10/pxdtut10.html



Tangent Space

• All different equivalent classes of curves form 

a line space: tangent space.

Image credit: http://cache.eb.com/eb/image?id=70820&rendTypeId=4



Tangent Space

• Each element in the tangent space, a vector, 

represents a class of equivalent curves.

Image credit: http://cache.eb.com/eb/image?id=70820&rendTypeId=4



Tangent Space and Curvature

Image credit: www.peroxide.dk/.../tut10/pxdtut10.html

• All curves belonging to the same class have 

the same curvature at point p.



Tangent Space and Curvature

Image credit: www.peroxide.dk/.../tut10/pxdtut10.html

• Curvature depends only on the tangent vector.



Tangent Space and Curvature

Image credit: www.peroxide.dk/.../tut10/pxdtut10.html

• A tangent vector can be represented by

where

• The curvature  
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Curvature

• The curvature function is a quadratic function

• Where 
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Surface Curvature

• The quadric form has a maximum      and a 
minimum      , which are the eigenvalues of the 
matrix.

• The corresponding eigenvectors are principle 
curvature directions.
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Discrete Principle Curvatures

• and     satisfy

• So

• Principle directions are found by finding the 

eigenvectors of the curvature tensor
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Curvature Tensor

Isotropic

spherical planar

Anisotropic

2 principal directions

elliptic parabolic hyperbolic

kmax > 0

kmin > 0

kmin = 0

kmax > 0

kmin < 0

kmax > 0

Image credit: Alliez et al.

kmin = 0kmax = 0
kmin > 0kmax > 0



Surface Curvature

• Some special numbers about the curvature tensor:

– Normal curvature 
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Surface Curvature

• Some special numbers about the curvature tensor:

– Mean curvature

– Gaussian curvature
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Curvature Tensor

Isotropic

spherical planar

k > 0
k = 0

Anisotropic

2 principal directions

elliptic parabolic hyperbolic

kmax > 0

kmin > 0

k = 0

kmax > 0

kmin < 0

kmax > 0

Image credit: Alliez et al.



How to Compute Curvature Tensor 

on a Mesh?

• Triangle:

– Normal (well-defined, not continuous)

– Curvature (zero inside a triangle)

• Vertex:

– Normal (the average of the normal of the incident 

triangles)

– Curvature 



Local Frame

• Triangle
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Local Frame

• Vertex

– Find a 3D vector w

– How do you find w?

• Anyway is fine so long 

w is not co-linear with N

u
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Discrete Gaussian Curvature

• Discrete Gaussian curvature for a vertex:
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Discrete Gaussian Curvature

• But now the Gaussian curvature is not smooth.

• Treat the curvature at a vertex as a spatial average 

of its surrounding space
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Voronoi Area Computation

• Non-obtuse (<π/2)
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Voronoi Area Computation

• Obtuse (>π/2)
– Voronoi region is outside of the triangle 



The algorithm for Voronoi Area 

Computation



Discrete Mean Curvature

• Discrete mean curvature:

• where
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Normal Curvature Along an Edge

• Discrete normal curvature for a vertex u along an 

edge (u, v) is:
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Mean Curvature and Normal Curvatures

• Discrete mean curvature at a vertex v is the 

weighted sum of the normal curvatures for edges 

incident to v: 
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Discrete Curvature Tensor

• We know that:

• Need to compute l, m, and n.

• For each edge (u, v), we also know

• Now we have a set of equations based on each 

edge:
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Discrete Curvature Tensor

• Solve the following system of linear equations:

• or equivalently
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Discrete Curvature Tensor

• Solve the following system of linear equations:

• or equivalently

• The a’s and b’s are the 2D coordinates of tangent vectors.
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Discrete Curvature Tensor

• How to solve it efficiently?
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Discrete Curvature Tensor

• How to solve it efficiently?

• Least-square fitting (SVD)
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Discrete Curvature Tensor

• How to solve it efficiently?

• Another way:



















=




































nnnnn

n

m

l

bbaa

bbaa

bbaa

κ

κ
κ

MMMM

2

1

22

2
211

2
2

2
111

2
1

2

2

2









































=
























































n

T

nnnnnnnn

T

nnnn bbaa

bbaa

bbaa

n

m

l

bbaa

bbaa

bbaa

bbaa

bbaa

bbaa

κ

κ
κ

MMMMMMMMMM

2

1

22

2
211

2
2

2
111

2
1

22

2
211

2
2

2
111

2
1

22

2
211

2
2

2
111

2
1

2

2

2

2

2

2

2

2

2



What Next?

• Put l,m,n into a 2x2 matrix and solve for 

eigenvalues (principle curvatures) and 

eigenvectors (principle directions)



Examples

mean Gaussian minimum maximum

Image credit: Mark Meyer et al.



Examples

Image credit: Alleiz et al.



Hatch Drawing

Praun et al.



A Comparison

Hertzmann and Zorin



Rendering



Tracing Streamlines



Tracing Streamlines



Corner Tables

• What is a corner?

• Why is it useful?

– Angles

– Other corner-related properties



Corner Tables

• Operations

– .p, .n, .o

– .v

– .e

– .t

– Can cascade:

– What is c.o.t, c.o.p, c.o.n?

– c.o.p=c.p.o?

– c.o=NULL?



Corner Tables

• Go around a vertex

• Where is c.p.o.n?

• Where is c.p.o.p?

• Where is (c.p.o.p).p.o.p?



Constructing Corner Tables

• Index

• .o, .p, .n, .v, .e, .t



Constructing Corner Tables

• Read in all vertices and triangles

• Set num_corners = 3*num_tris

• For i=0 to num_tris

– T=tlist[i]

– T has three corners

• c0=clist[3*i]

• c1=clist[3*i+1]

• c2=clist[3*i+2]

– Such that ci.v=T.verts[i]



Constructing Corner Tables

• Construct the following table:

– corner index, min(c.p.v.index, c.n.v.index), 

max(c.p.v.index, c.n.v.index)



Constructing This Table



Sort According to Min/Max



Look for Pairs and Set Up Links


