Sub-Topics

Compute bounding box

Compute Euler Characteristic

Estimate surface curvature

Line description for conveying surface shape

Morse function and surface topology--Reeb
graph

Scalar field topology--Morse-Smale complex
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Shape Visualization

* How to convey shape with a few lines? What
lines should be drawn?
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Curvature

e Curve
e Surface



Curvature of a Planar Curve



A Planar Curve

e Given a 2D curve r(t) =(x(t), y(t))

— The unit tangent vector is defined as
T =L ® o XO y®)
r O Jx®)+(y 1)

— The unit normal vector is

— counterclockwise cross product

N(t)
| T(t)

X=t




Arc Length

 The arc length of r(t) = (x(t), y(t)) is

s)=[_[r®ldt =" JX®)* +(y'©)t
* and

s () =|'(t)
N(t)

| T(t)

X=t




Arc Length Based Re-parameterization

 The curve r(t) = (x(t), y(t)) becomes r(s) =(x(s), y(s))
e and we hav‘e ‘ ‘ ‘
r ()| _|r'(t)
' — — =1
"0 7o)

y




Arc Length Based Re-parameterization




Arc Length Based Re-parameterization

 The unit tangent vector is

T(s)= ) =)

r'(s)

y

4

N(s)

| T(9

X=t



Curvature

 The curvature is T(s)
k(s)=T'(s)* N(s)



Signed Curvature
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Topology of Curves
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Conclusion

Recall K(S) measures how fast unit tangent vectors
change directions.

Therefore, it also measures how fast unit normal
vectors change directions, counting orientation

The total curvature along a closed curve is 271

This shows that the total curvature of a curve is a
topological quantity



Curvature of a Surface



Surface Curvature

e Use curvature of curves to define curvature of
a surface

 For a point P on the surface

— For every unit tangent vector V at P

e Construct the plane that contains P and is parallel to V
and N

e Find the intersection of the surface and this plane

e Compute the curvature of the intersection curve (called
normal curvature)



Surface Curvature

Image credit: http://www.Isus.edu/sc/math/rmabry/math223/quadracsfimages/index_gr_62.gif



Surface Curvature

 Let t=aS, +bS, be a unit tangent vector

e The normal curvature in the direction t is:

A S




Tangent Space

e Classifying curves of a surface through a point
P

Image credit WWW.PElr oxide.dk/.../tut 10/DthUt 10.html




Tangent Space

 Two curves are equivalent if they are tangent
to each other at p.

Image credit WWW.PElr oxide.dk/.../tut 10/DthUt 10.html




Tangent Space

o All different equivalent classes of curves form
a line space: tangent space.

tangent planes

sphere

cylinder
© 2002 Encyclopadia Britannica, Inc. y

Image credithttp://cache.eb.com/eb/image?d=70820& rendTypel d=4



Tangent Space

 Each element in the tangent space, a vector,
represents a class of equivalent curves.

normal tangent planes

sphere

cylinder
© 2002 Encyclopadia Britannica, Inc. y

Image credithttp://cache.eb.com/eb/image?d=70820& rendTypel d=4



Tangent Space and Curvature

e All curves belonging to the same class have
the same curvature at point p.

Image credit WWW.PElr oxide.dk/.../tut 10/DthUt 10.html




Tangent Space and Curvature

e Curvature depends only on the tangent vector.

Image credit WWW.PElr oxide.dk/.../tut 10/DthUt 10.html




Tangent Space and Curvature

* A tangent vector can be represented by
t=aS, +bS, where

_(0ox oy 0z
SJ_(au ou auj

_(0ox oy o0z
S”_(av ov avj

e The curvature
k(a,b)

Image credit WWW.PElr oxide.dk/.../tut 10/DthUt 10.html




Curvature

 The curvature function is a quadratic function

k(a,b) =1a® + 2mab + nb’

| m| a
m nib

=la b]

e Where

|:SJUON m:SNoN n:SNoN



Surface Curvature

k(a,b) =la’ + 2mab + nb’

| m| a
_mn_b

=la b]

 The quadric form has a maximum K; and a

minimum K5, which are the eigenvalues of the
matrix.

 The corresponding eigenvectors are principle
curvature directions.



Discrete Principle Curvatures

e KiandK,satisfy X°—2Hx+K =0
* Sok,,=H=xyJH?-K

* Principle directions are found by finding the
eigenvectors of the curvature tensor



Curvature Tensor

kmax > 0 kmin> 0 Kmax = 0 Kmin = O

Isotropic

spherical planar

T (v)

kmin< 0

kmin = 0 !
kmax >

elliptic parabolic hyperbolic

Anisotropic

2 principal directions

Image credit: Alliez et al.



Surface Curvature

e Some special numbers about the curvature tensor:

— Normal curvature




Surface Curvature

e Some special numbers about the curvature tensor:

— Mean curvature
H — Kl +K2
2

— @Gaussian curvature

K =KK,




Curvature Tensor

k>0

Isotropic

spherical planar

T (v)

kmin< 0

vk= 0 y
kmax >

elliptic parabolic hyperbolic

Anisotropic

2 principal directions

Image credit: Alliez et al.



How to Compute Curvature Tensor
on a Mesh?

e Triangle:
— Normal (well-defined, not continuous)
— Curvature (zero inside a triangle)

e \ertex:

— Normal (the average of the normal of the incident
triangles)

— Curvature



* Triangle

Local Frame

Y=NxX




Local Frame

e \ertex

— Find a 3D vector w
X=Nxw
Y=NxX

— How do you find w?

e Anyway is fine so long
W is not co-linear with N




Discrete Gaussian Curvature

e Discrete Gaussian curvature for a vertex:
K(v) =2m- ) a(t,)

tOo(v)




Discrete Gaussian Curvature

e But now the Gaussian curvature is not smooth.

* Treat the curvature at a vertex as a spatial average
of its surrounding space

2ir- > a(t,)

K (V) — tho (v)
Area(V)




Voronoi Area Computation

* Non-obtuse (<n/2)

1
Ayoronoi = g(lPR|2COt91 + |PQ|2C0t92)



Voronoi Area Computation

e Obtuse (>n/2)

— Voronoi region is outside of the triangle




The algorithm for Voronoi Area
Computation

AMixed =0
For each triangle 1" from the 1-ring neighborhood of x
If T is non-obtuse, // Voronoi safe
// Add Voronoi formula (see Section 3.3)
Anixea+ = Voronoi region of x in T
Else // Voronoi inappropriate
// Add either area(7')/4 or area(1)/2
If the angle of T" at x is obtuse
Antixea+ = area(T') /2
Else
Antixea+ = area(T') /4




Discrete Mean Curvature

 Discrete mean curvature:

> Bu,)

2H (u)N, =+
Area(u)

e where

B(u,) = (cotf, ; coté,)

(u-v)




Normal Curvature Along an Edge

e Discrete normal curvature for a vertex U along an
edge (U, V) is:

N _ 2(Uu—Vv)e N,

2

u,v

lu-v




Mean Curvature and Normal Curvatures

e Discrete mean curvature at a vertex v is the
weighted sum of the normal curvatures for edges
incident to v:

1 2 Bu,)e N,
- ° — vio (u)
HW) =5 (@HIINY* N =
B(u,)* N, = (cotg, +cotd,) (U-v)* N,
_ (cotg, +cotd,) ‘U_V‘Z (U=v)e N,
2 Ju-y

_ (cotg, +cotf,)ju-v i 2(u—-v)* N,

2

4 lu-v
_ (cotg, +cotd,)|ju—-v : o N
4 uv




Discrete Curvature Tensor

We know that:

k(a,b) =1a’ + 2mab + nb*
Need to compute |, m, and n.

Ve

N
For each edge (u, v), we also know K, vy

Now we have a set of equations based on each
edge:

Ki =K n) = la” +2mah +nb°



Discrete Curvature Tensor

e Solve the following system of linear equations:

Ki =Kan) ~ la” +2mah +nh*

(1)

m

e or equivalently
(a’ 2ab b
a, 2ab b’
\a, 2ab, b’

N

(K,
K2

KKB/




Discrete Curvature Tensor

e Solve the following system of linear equations:

Ki =Kan) ~ la” +2mah +nh*

e or equivalently

(a’ 2ab b’
w2 b

(1)

m

\a, 2ab, b’

e The a’sand b’s are the 2D coordinates of tangent vectors.

N

(K,
K2

KKB/

Vs




Discrete Curvature Tensor

e How to solve it efficiently?

(a’ 2ab b)), (&

S LT

N

kanz 2a'nbn bn2) KKH/



Discrete Curvature Tensor

e How to solve it efficiently?

(a’ 2ab b)), (&

S LT

N

kanz 2a'nbn bnz) KK“)
e Least-square fitting (SVD) e

!



Discrete Curvature Tensor

e How to solve it efficiently?

(a® 2ab b’
w2ah b

\a, 2ab, b’
 Another way:
a’ 2ab b’
a, 2ab b’

T

a,” 2ab, b’

(K,
K2

(1)

m

N
KKB/

a’ 2ab b’
a,” 2ab b’

a,” 2ab, b’

a” 2ab b’
a,” 2ab b’

a,” 2ab, b’




What Next?

e Putl,mninto a 2x2 matrix and solve for
eigenvalues (principle curvatures) and
eigenvectors (principle directions)



Examples

mean Gaussian minimum maximum

Image credit: Mark Meyer et al.
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Image credit: Alleiz et al.
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Rendering




Tracing Streamlines




Tracing Streamlines




Corner Tables

e What is a corner?

e Why is it useful?
— Angles
— Other corner-related properties

C.V

c.t



Corner Tables

 Operations

— Can cascade:

— Whatis c.o.t, c.0.p, c.0.n?
— C.0.p=C.p.0"”

— c.0o=NULL?




Corner Tables

Go around a vertex

W
W
W

nere is €.p.o.n?

nere is €.p.o.p?

nere is (c.p.o.p).p.o.p?




Constructing Corner Tables

e |ndex

e .0,.p,.N,.V,.e,.t

class Corner{

public:
unsigned char Edge count; //special variable for edges search 1/21/05
int index;
int v; //the ID of the vertex of the corner
int n; //the next corner according to the orientation
int p; //the previous corner according to the orientation
int t: //the triangle the corner belongs to
int ot; //the index of its opposite triangle for traversal
int o; //the index of its opposite corner
Edge *e; //the opposite edge of the corner
float angle: //the angle of the corner
float BeginAng, EndAng: //for correct angle allocation of the corner around vertex v
float r:

bool orient;

// ,“ & S Ay b T T A B B AV B T S T A Sy T BTy ),

/* Optional variables */

Edge *edge[2]; //two edges associated with this corner
Corner ()
{

= = NUBEE

edge[0] = edge[1] = NULL;

double get Angle() ;




Constructing Corner Tables

 Read in all vertices and triangles
e Set num_corners = 3*num_tris
 Fori=0to num_tris
— T=tlist[i]
— T has three corners
e cO=clist[3%*i]
e cl=clist[3*i+1]
o c2=clist[3*i+2]
— Such that ci.v=T.verts]i]




Constructing Corner Tables

e Construct the following table:

— corner index, min(c.p.v.index, c.n.v.index),
max(c.p.v.index, c.n.v.index)




Constructing This Table

c.index | Min(c.p.v.index, | Max(c.p.v.index, | c.o.index
¢.n.v.index) ¢.n.v.index)
0 0 1
1 1 2
2 0 2
3 0 3
4 1 3
5 0 1

t0=(v2, v0, vl)
tl=(vl, v0, v3)



Sort According to Min/Max

c.index | Min(c.p.v.index, | Max(c.p.v.index, | c.o.index
¢.n.v.index) ¢.n.v.index)
0 0 1
S 0 1
2 0 2
3 0 3
1 1 2
4 1 3

v0

v3

t0=(v2, v0, v1)
t1=(vl, v0, v3)




Look for Pairs and Set Up Links

c.index | Min(c.p.v.index, | Max(c.p.v.index, | c.o.index
c.n.v.index) ¢.n.v.index)

0 0 1 5
5 0 1 0
2 0 P NULL
3 0 3 NULL
1 ] 2 NULL
4 1 3 NULL

t0=(v2, v0, v1)
tl=(vl, v0, v3)



