Sub-Topics

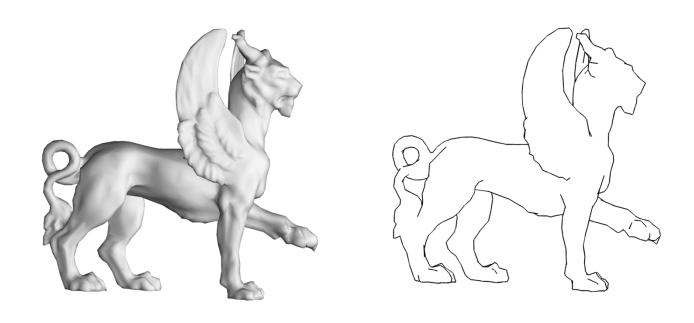
- Compute bounding box
- Compute Euler Characteristic
- Estimate surface curvature
- Line description for conveying surface shape
- Morse function and surface topology--Reeb graph
- Scalar field topology--Morse-Smale complex

Surface Curvature Estimation

By Prof. Eugene Zhang

Shape Visualization

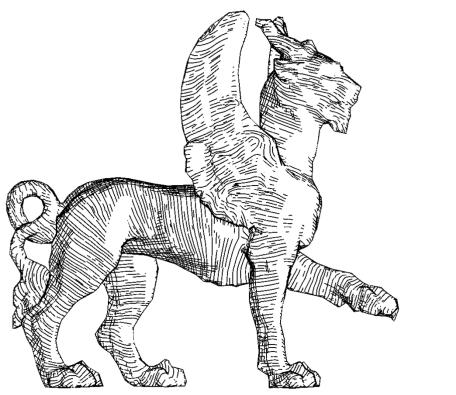
 How to convey shape with a few lines? What lines should be drawn?



Shape Visualization

 Placing lines along the principle curvature direction is best at illustrating the shape of

an object



Curvature

- Curve
- Surface

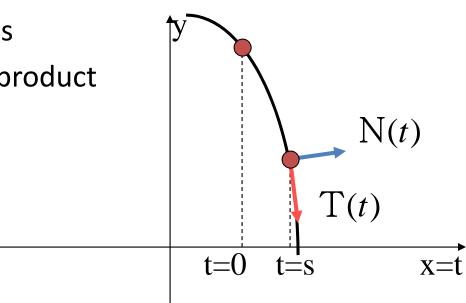
Curvature of a Planar Curve

A Planar Curve

- Given a 2D curve r(t) = (x(t), y(t))
 - The unit tangent vector is defined as

$$T(t) = \frac{r(t)}{|r(t)|} = \frac{(x'(t) \ y'(t))}{\sqrt{(x'(t))^2 + (y'(t))^2}}$$

- The unit normal vector is
- counterclockwise cross product



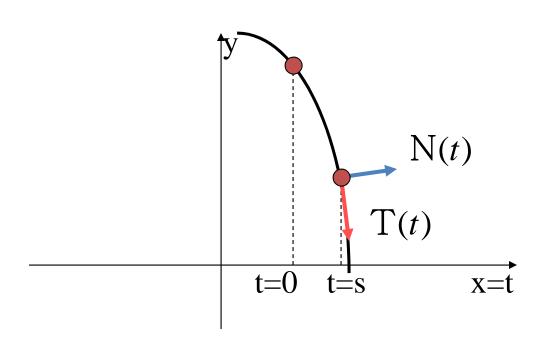
Arc Length

• The arc length of r(t) = (x(t), y(t)) is

$$S(u) = \int_{t=0}^{u} |r'(t)| dt = \int_{t=0}^{u} \sqrt{(x'(t))^2 + (y'(t))^2} dt$$

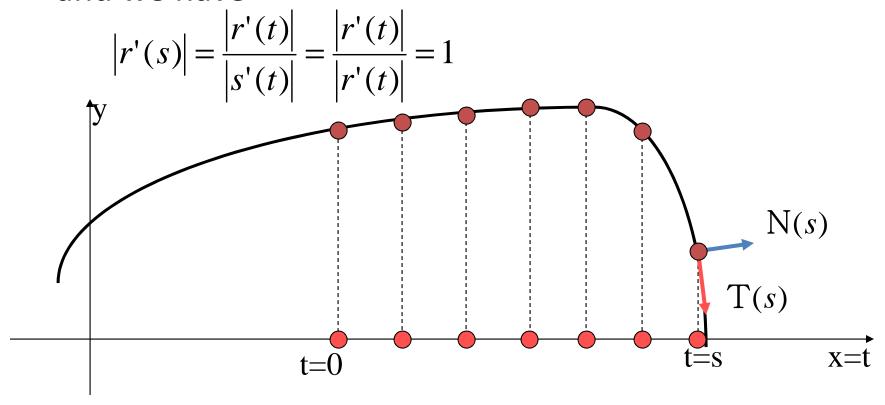
and

$$\mathbf{S}(t) = \left| \mathbf{\Gamma}'(t) \right|$$

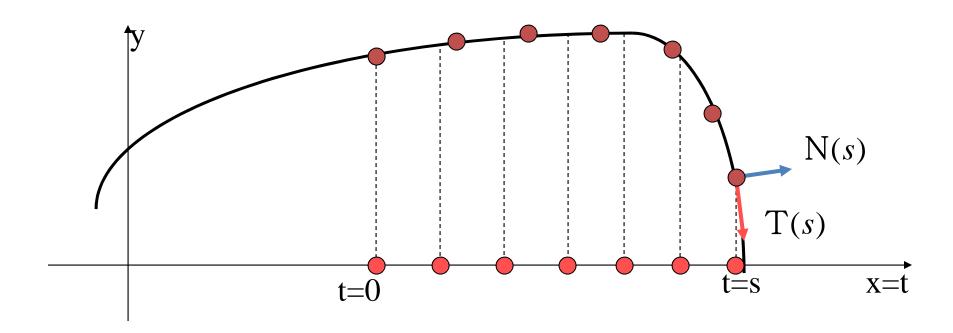


Arc Length Based Re-parameterization

- The curve r(t) = (x(t), y(t)) becomes r(s) = (x(s), y(s))
- and we have



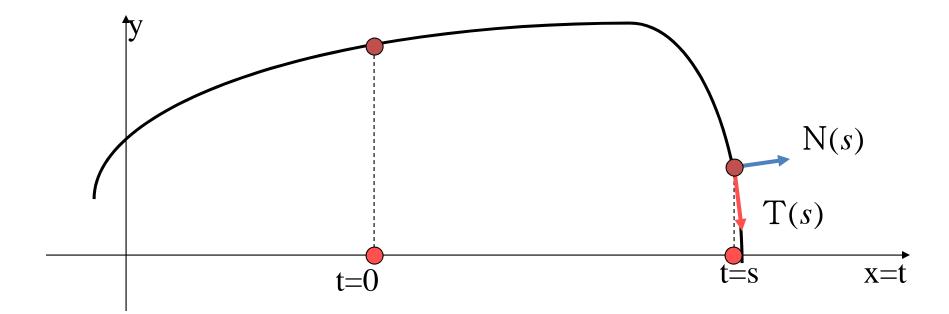
Arc Length Based Re-parameterization



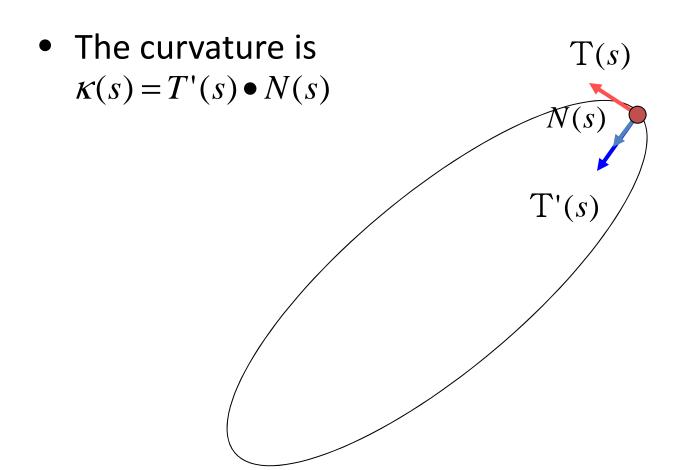
Arc Length Based Re-parameterization

The unit tangent vector is

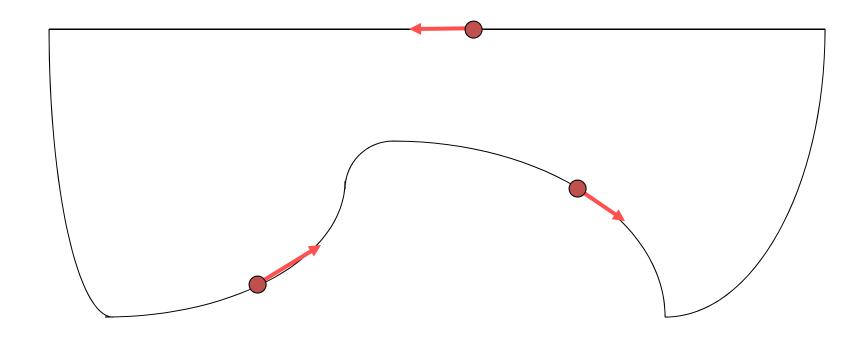
$$T(s) = \frac{r'(s)}{|r'(s)|} = r'(s)$$

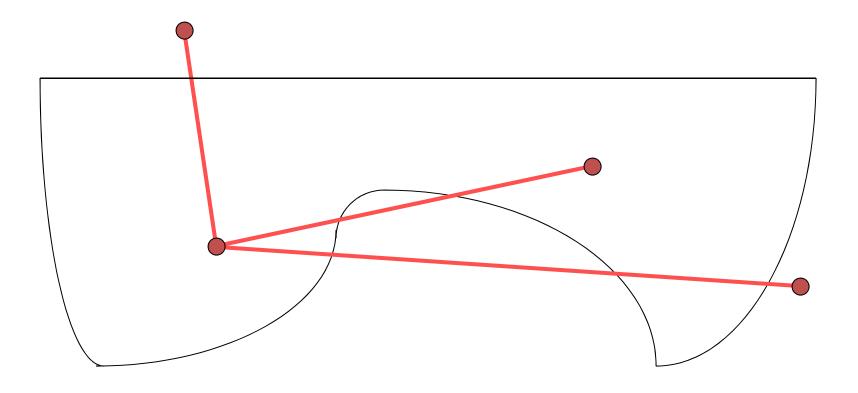


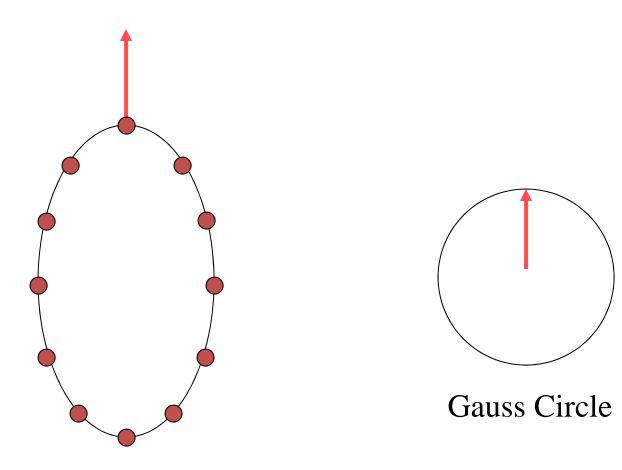
Curvature

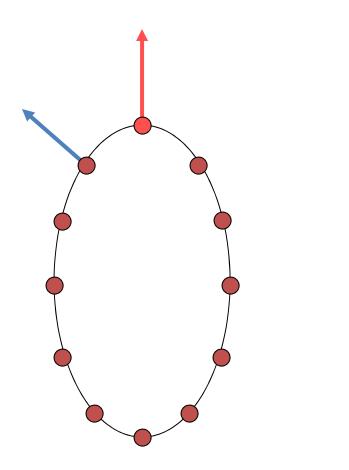


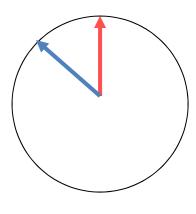
Signed Curvature



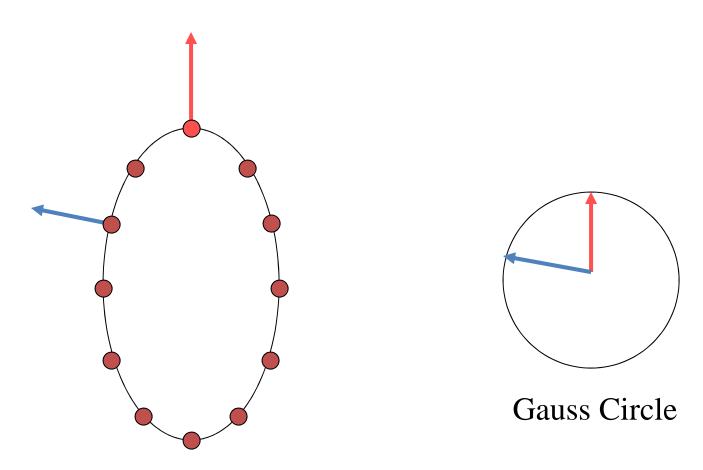


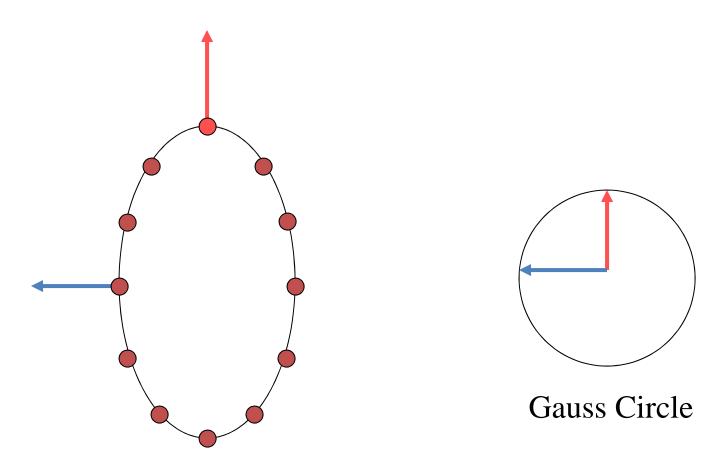


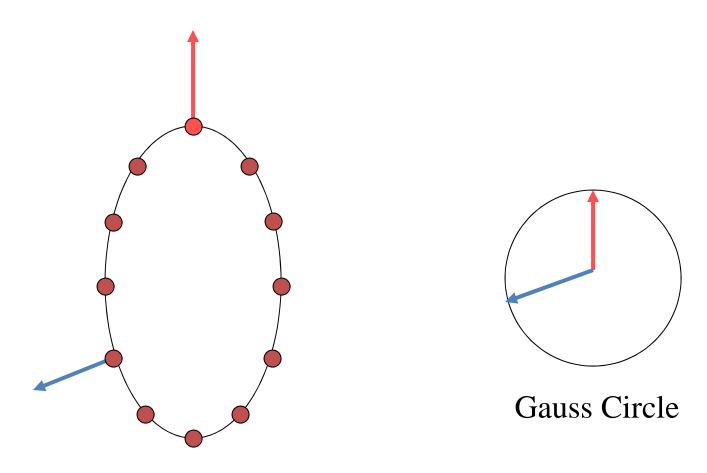


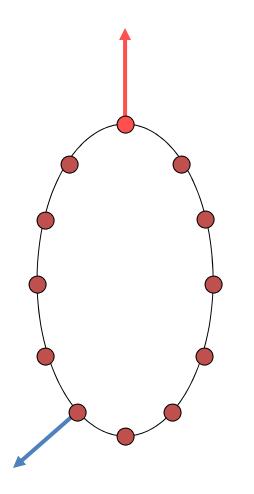


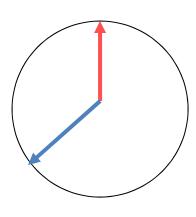
Gauss Circle



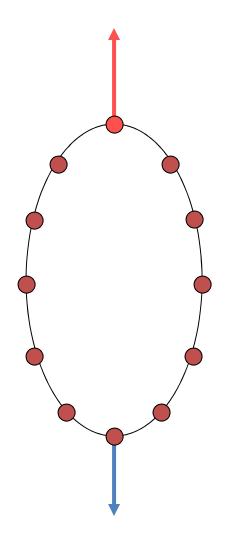


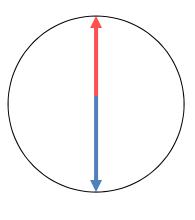




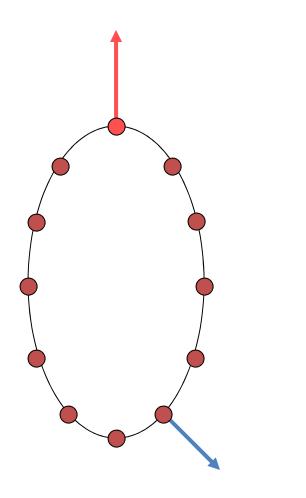


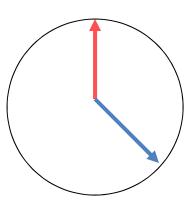
Gauss Circle



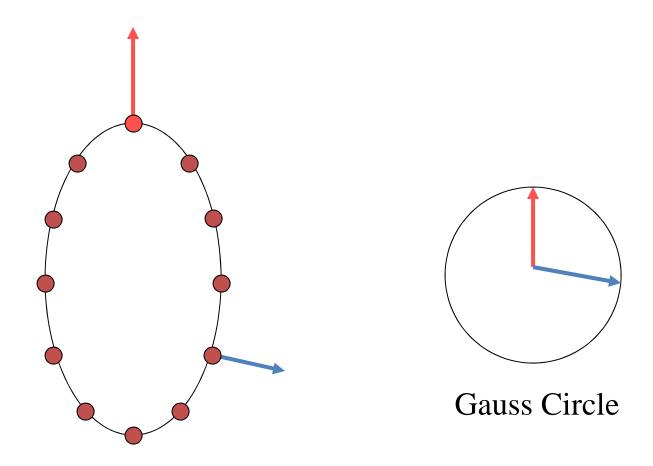


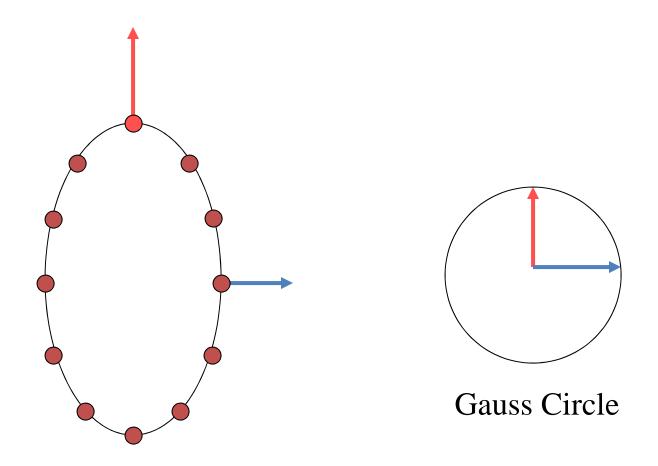
Gauss Circle

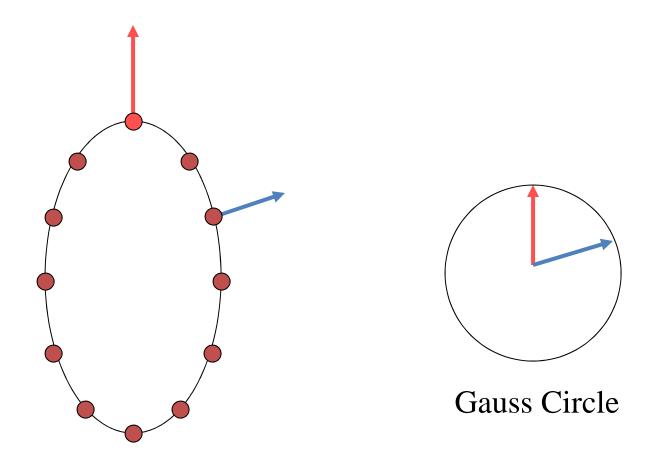


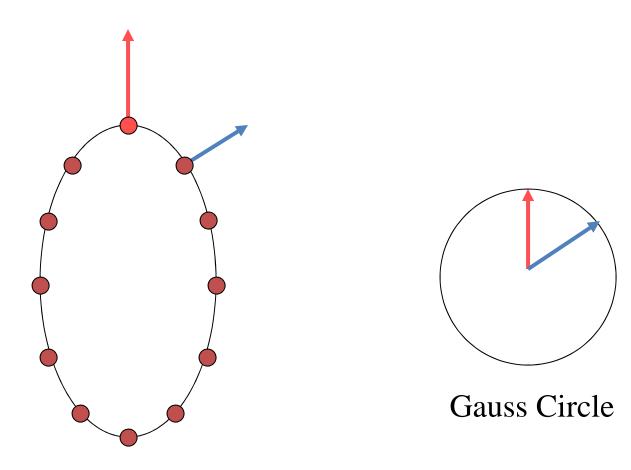


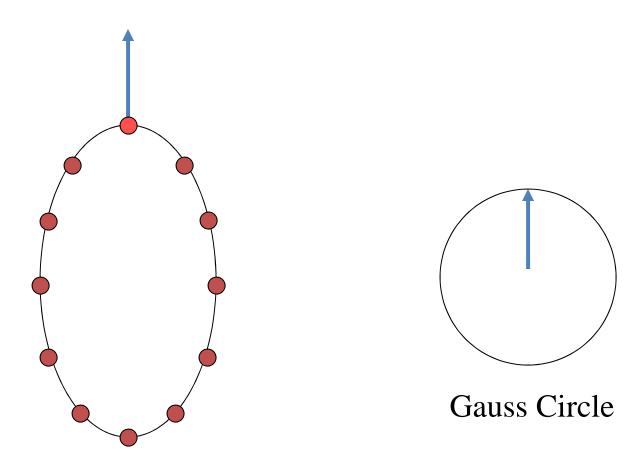
Gauss Circle

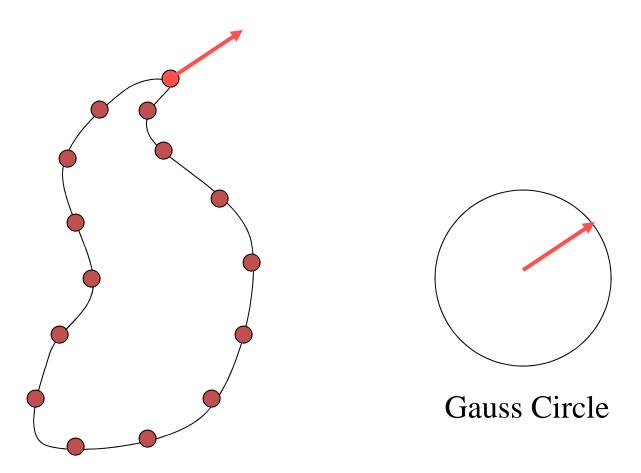


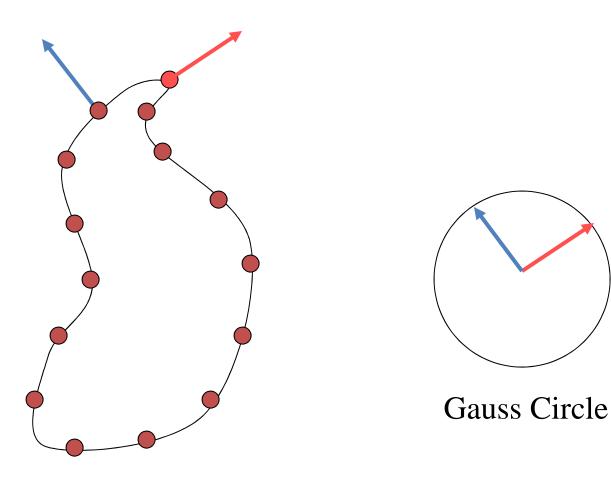


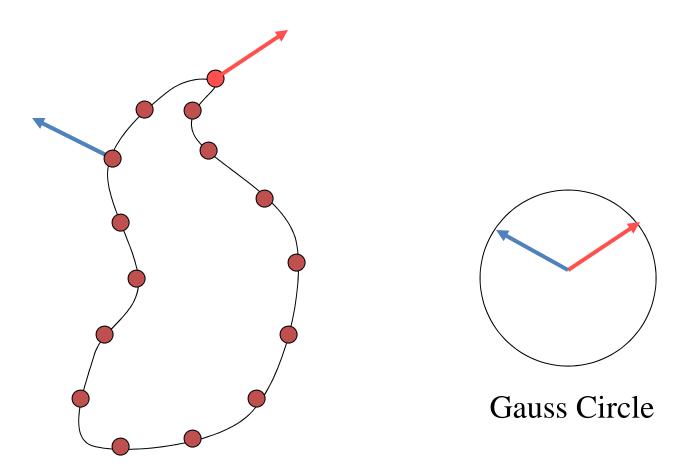


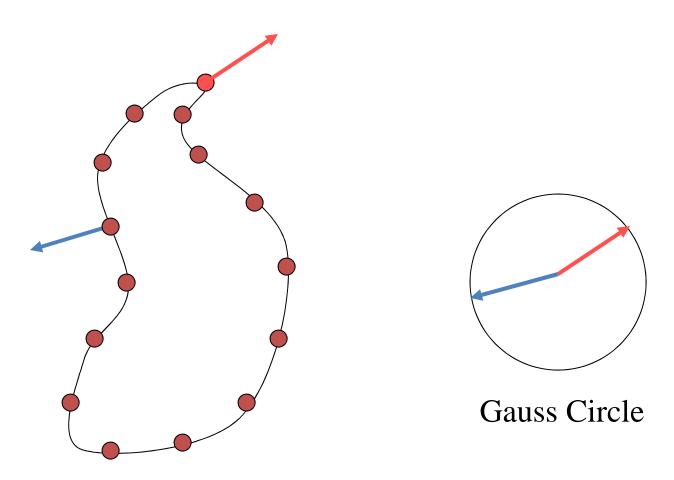


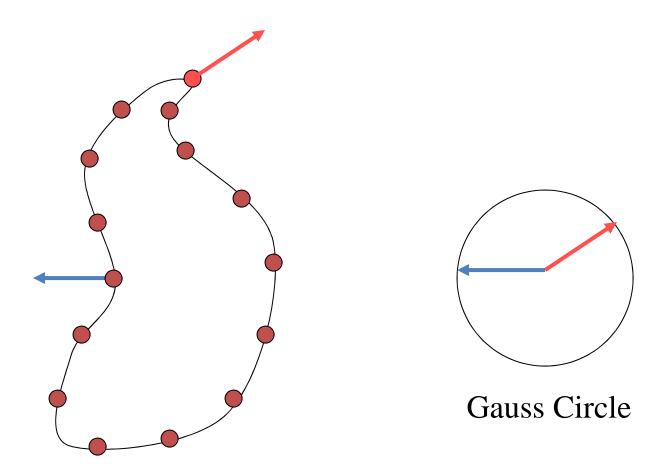


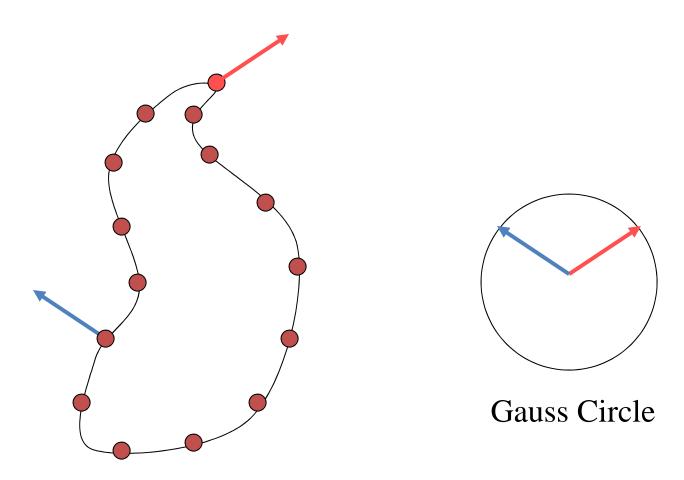


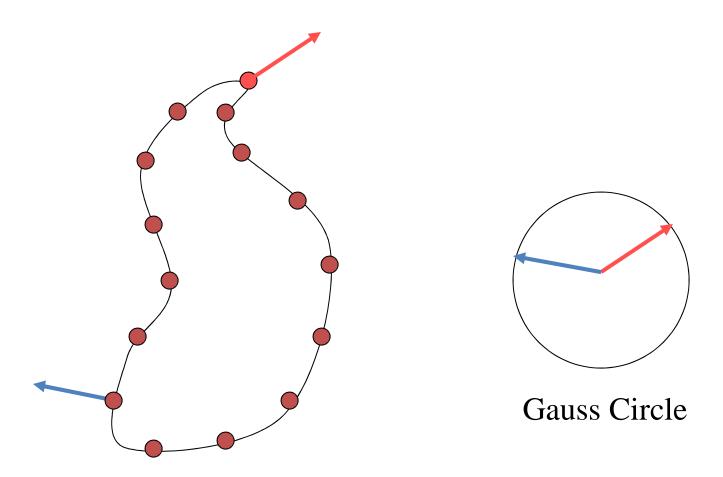


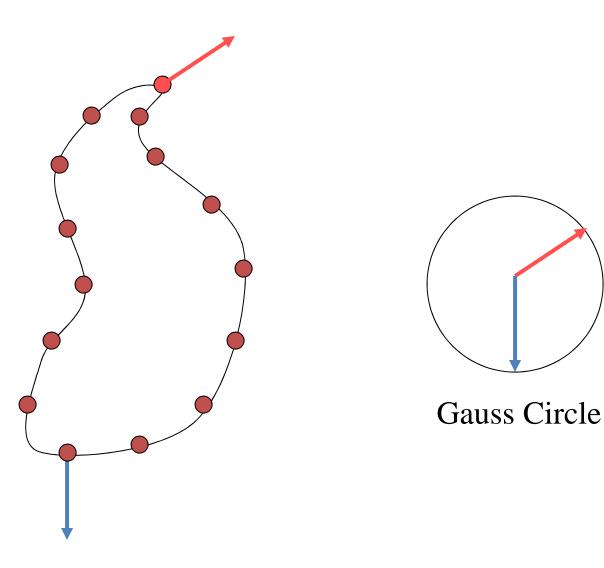


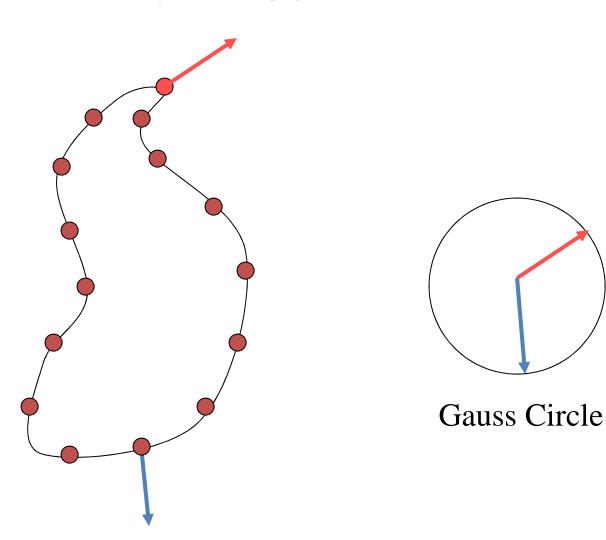


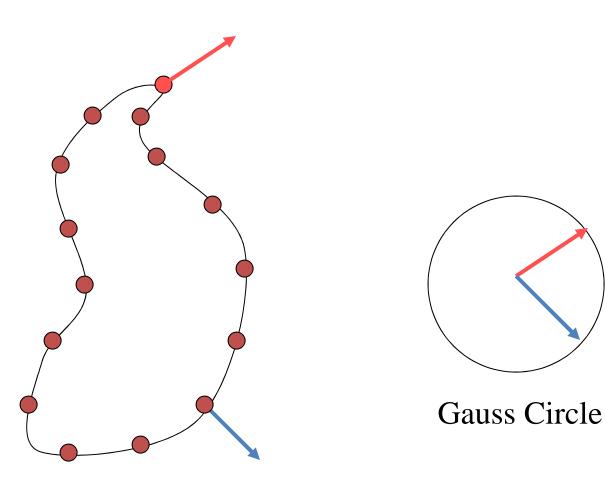


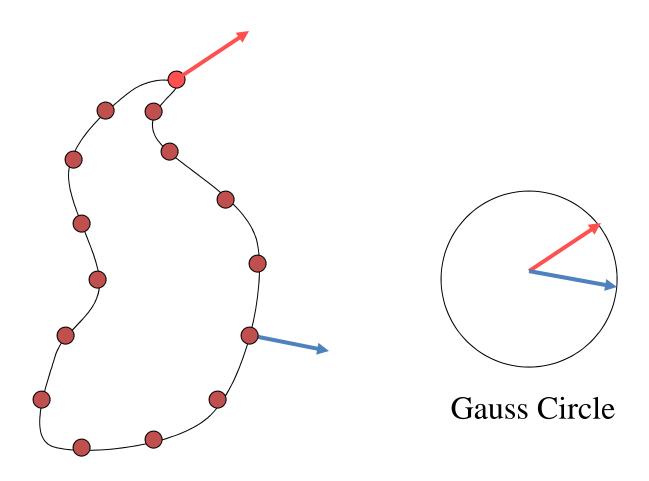


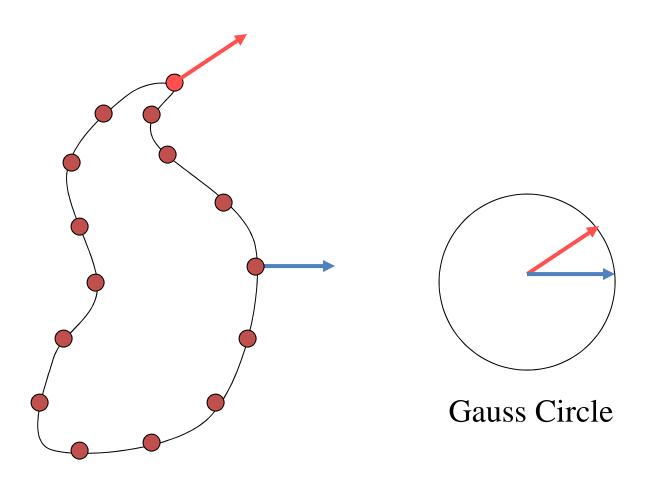


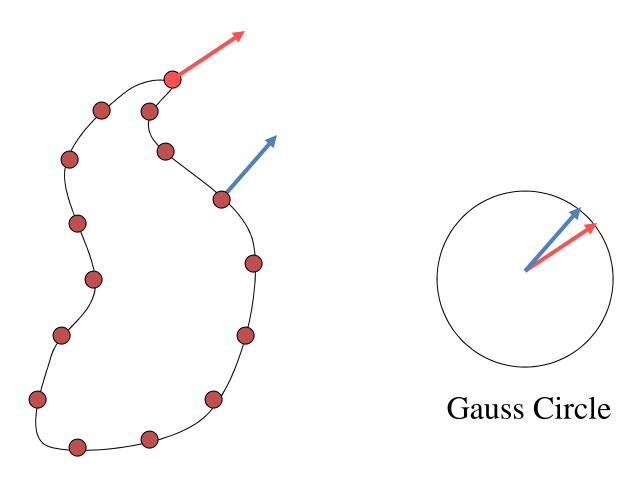


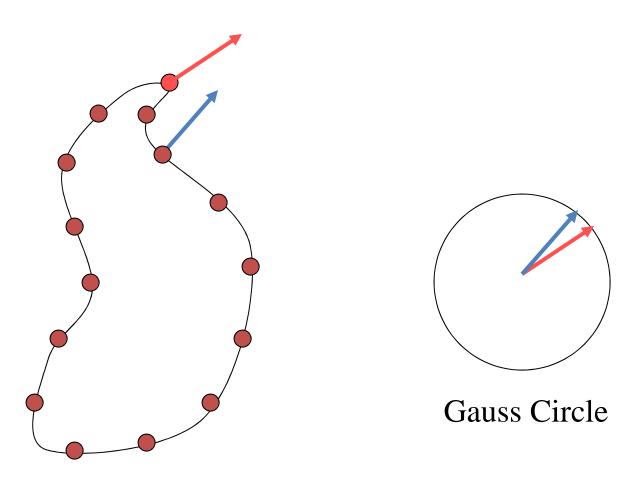


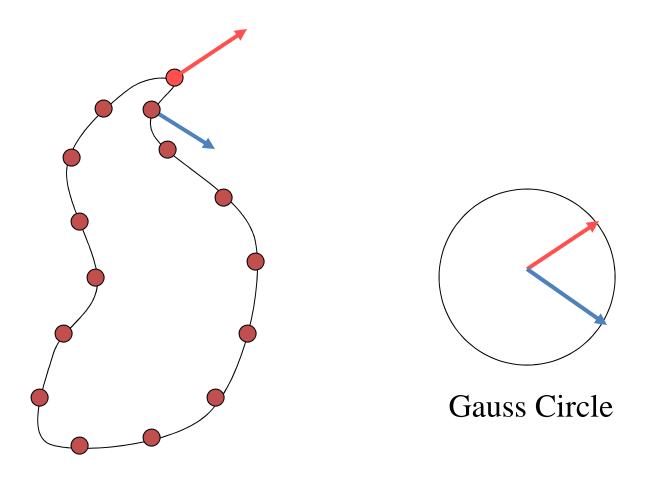


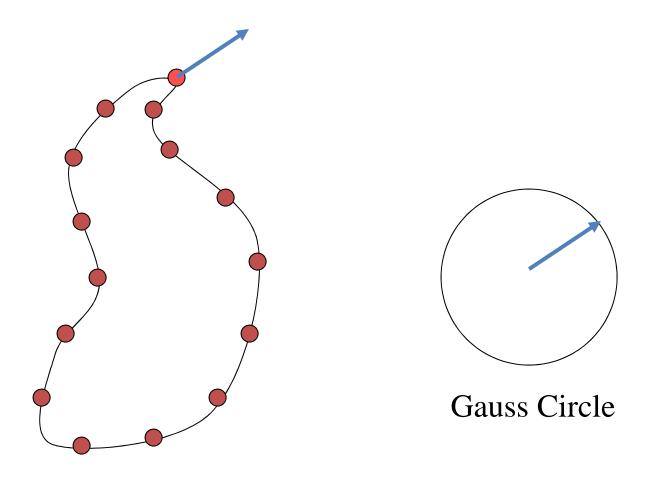












Conclusion

- Recall K(s) measures how fast unit tangent vectors change directions.
- Therefore, it also measures how fast unit normal vectors change directions, counting orientation
- The total curvature along a closed curve is 2π
- This shows that the total curvature of a curve is a topological quantity

Curvature of a Surface

- Use curvature of curves to define curvature of a surface
- For a point P on the surface
 - For every unit tangent vector V at P
 - Construct the plane that contains P and is parallel to V and N
 - Find the intersection of the surface and this plane
 - Compute the curvature of the intersection curve (called normal curvature)

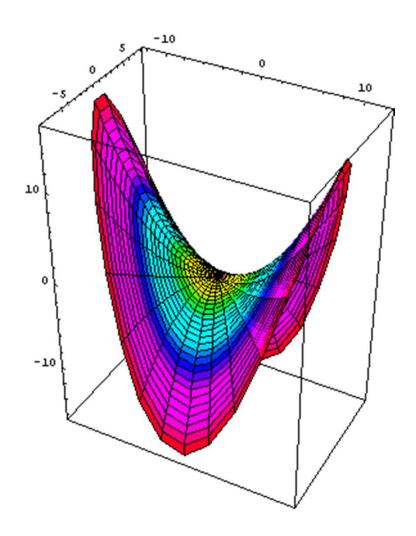


Image credit: http://www.lsus.edu/sc/math/rmabry/math223/quadricsurfaces/Images/index_gr_62.gif

- Let $t = aS_u + bS_v$ be a unit tangent vector
- The normal curvature in the direction *t* is:

$$S_{tt} \bullet N = \begin{pmatrix} a & b \end{pmatrix} \begin{pmatrix} S_{uu} \bullet N & S_{uv} \bullet N \\ S_{vu} \bullet N & S_{vv} \bullet N \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} a & b \end{pmatrix} \begin{pmatrix} l & m \\ m & n \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix}$$

Classifying curves of a surface through a point
 p

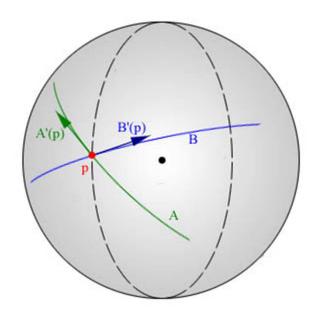
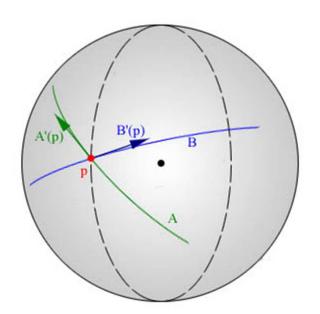


Image credit: www.peroxide.dk/.../tut10/pxdtut10.html

 Two curves are equivalent if they are tangent to each other at p.



 All different equivalent classes of curves form a line space: tangent space.

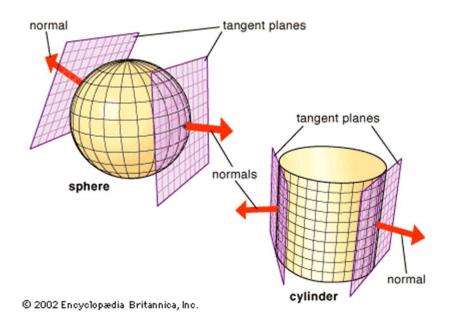


Image credit: http://cache.eb.com/eb/image?id=70820&rendTypeId=4

 Each element in the tangent space, a vector, represents a class of equivalent curves.

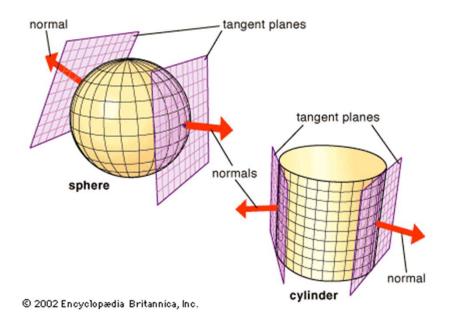
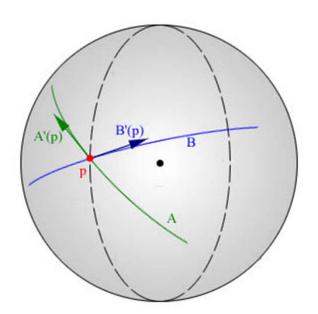


Image credit: http://cache.eb.com/eb/image?id=70820&rendTypeId=4

Tangent Space and Curvature

 All curves belonging to the same class have the same curvature at point p.



Tangent Space and Curvature

Curvature depends only on the tangent vector.

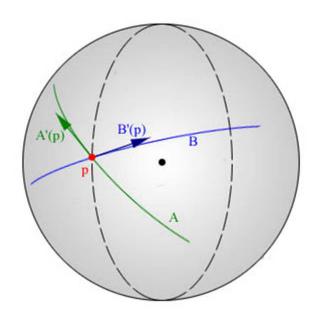


Image credit: www.peroxide.dk/.../tut10/pxdtut10.html

Tangent Space and Curvature

A tangent vector can be represented by

$$t = aS_u + bS_v$$
 where

$$S_u = \begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} & \frac{\partial z}{\partial u} \end{pmatrix}$$

$$S_{v} = \begin{pmatrix} \frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} & \frac{\partial z}{\partial v} \end{pmatrix}$$

The curvature

$$\kappa(a,b)$$

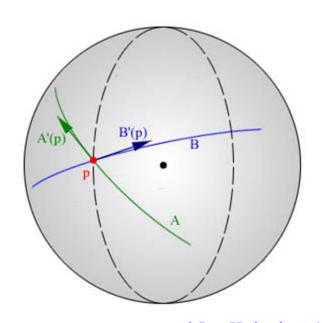


Image credit: www.peroxide.dk/.../tut10/pxdtut10.html

Curvature

The curvature function is a quadratic function

$$\kappa(a,b) = la^{2} + 2mab + nb^{2}$$

$$= \begin{bmatrix} a & b \end{bmatrix} \begin{bmatrix} l & m \\ m & n \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}$$

Where

$$l = S_{uu} \bullet N$$
 $m = S_{uv} \bullet N$ $n = S_{vv} \bullet N$

$$\kappa(a,b) = la^{2} + 2mab + nb^{2}$$

$$= \begin{bmatrix} a & b \end{bmatrix} \begin{bmatrix} l & m \\ m & n \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}$$

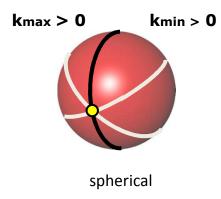
- The quadric form has a maximum K_1 and a minimum K_2 , which are the eigenvalues of the matrix.
- The corresponding eigenvectors are principle curvature directions.

Discrete Principle Curvatures

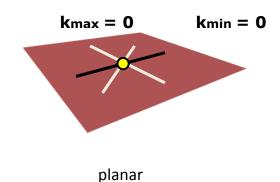
- K_1 and K_2 satisfy $x^2 2Hx + K = 0$
- So $\kappa_{1,2} = H \pm \sqrt{H^2 K}$
- Principle directions are found by finding the eigenvectors of the curvature tensor

Curvature Tensor

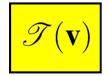
Isotropic



elliptic

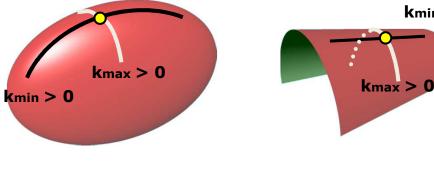


kmin = 0



Anisotropic

2 principal directions



parabolic

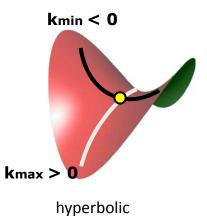
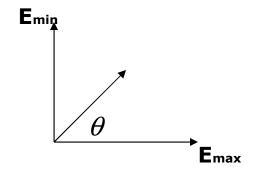
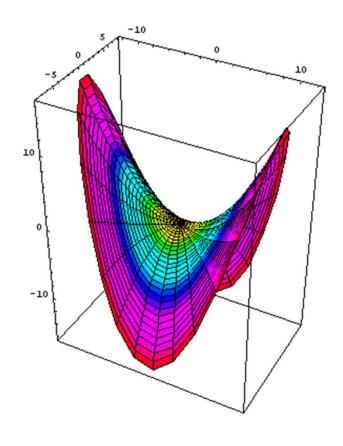


Image credit: Alliez et al.

- Some special numbers about the curvature tensor:
 - Normal curvature

$$\kappa_{\theta} = \kappa_1 \cos^2 \theta + \kappa_2 \sin^2 \theta$$



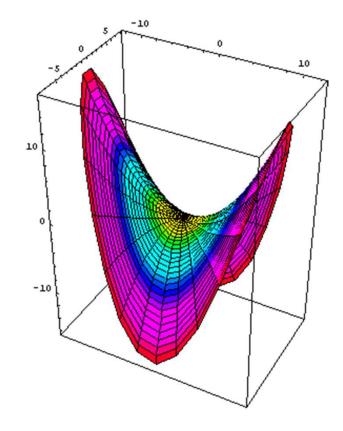


- Some special numbers about the curvature tensor:
 - Mean curvature

$$H = \frac{\kappa_1 + \kappa_2}{2}$$

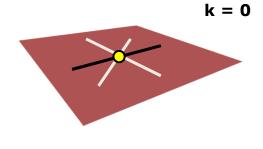
Gaussian curvature

$$K = \kappa_1 \kappa_2$$



Curvature Tensor

Isotropic



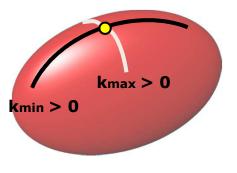
spherical

planar

 $k_{max} > 0$

Anisotropic

2 principal directions



elliptic

parabolic

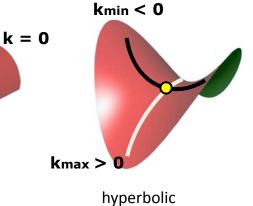


Image credit: Alliez et al.

How to Compute Curvature Tensor on a Mesh?

Triangle:

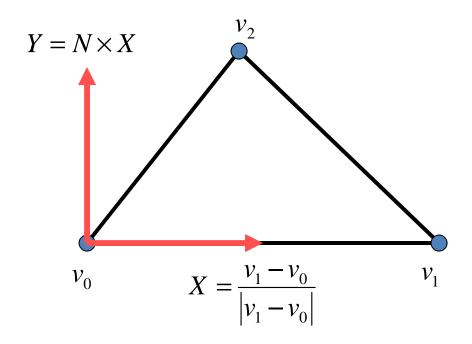
- Normal (well-defined, not continuous)
- Curvature (zero inside a triangle)

• Vertex:

- Normal (the average of the normal of the incident triangles)
- Curvature

Local Frame

• Triangle



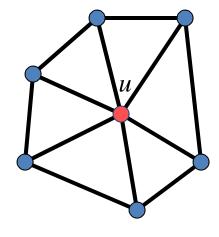
Local Frame

- Vertex
 - Find a 3D vector w

$$X=N\times w$$

 $Y=N\times X$

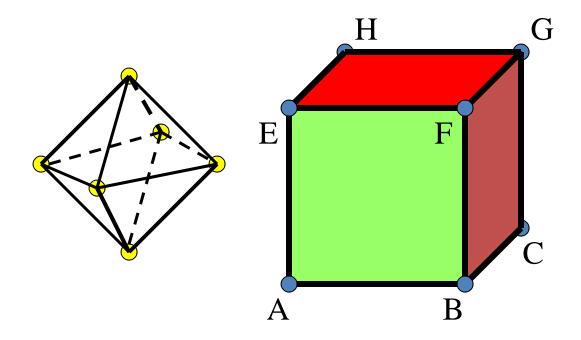
- How do you find w?
 - Anyway is fine so long
 w is not co-linear with N



Discrete Gaussian Curvature

• Discrete Gaussian curvature for a vertex:

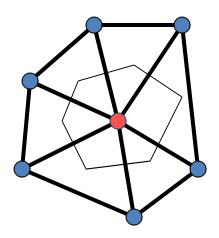
$$K(v) = 2\pi - \sum_{t \in \sigma(v)} \alpha(t_v)$$



Discrete Gaussian Curvature

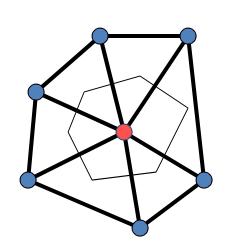
- But now the Gaussian curvature is not smooth.
- Treat the curvature at a vertex as a spatial average of its surrounding space

$$K(v) = \frac{2\pi - \sum_{t \in \sigma(v)} \alpha(t_v)}{Area(v)}$$

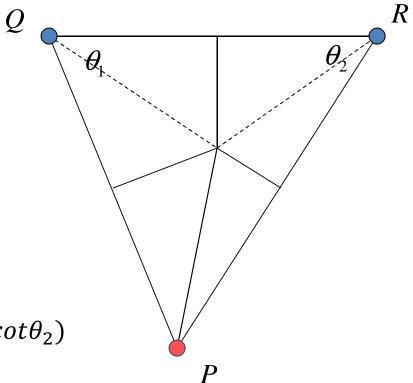


Voronoi Area Computation

• Non-obtuse $(<\pi/2)$

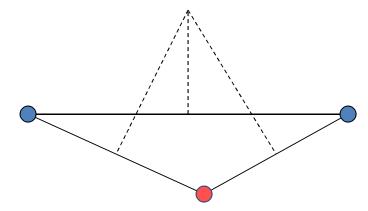


$$A_{Voronoi} = \frac{1}{8}(|PR|^2 cot\theta_1 + |PQ|^2 cot\theta_2)$$



Voronoi Area Computation

- Obtuse $(>\pi/2)$
 - Voronoi region is outside of the triangle



The algorithm for Voronoi Area Computation

```
For each triangle T from the 1-ring neighborhood of \mathbf{x}

If T is non-obtuse, // Voronoi safe

// Add Voronoi formula (see Section 3.3)

\mathcal{A}_{\mathrm{Mixed}} + = \mathrm{Voronoi} region of \mathbf{x} in T

Else // Voronoi inappropriate

// Add either area(T)/4 or area(T)/2

If the angle of T at \mathbf{x} is obtuse

\mathcal{A}_{\mathrm{Mixed}} + = \mathrm{area}(T)/2

Else

\mathcal{A}_{\mathrm{Mixed}} + = \mathrm{area}(T)/4
```

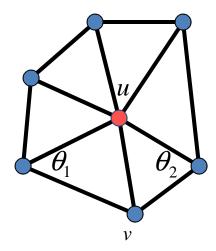
Discrete Mean Curvature

Discrete mean curvature:

$$2H(u)N_{u} = \frac{\sum_{v \in \sigma(u)} \beta(u_{v})}{Area(u)}$$

where

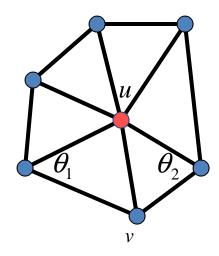
$$\beta(u_v) = \frac{(\cot \theta_1 + \cot \theta_2)}{2} (u - v)$$



Normal Curvature Along an Edge

Discrete normal curvature for a vertex u along an edge (u, v) is:

$$\kappa_{u,v}^{N} = \frac{2(u-v) \bullet N_{u}}{\|u-v\|^{2}}$$



Mean Curvature and Normal Curvatures

 Discrete mean curvature at a vertex v is the weighted sum of the normal curvatures for edges incident to v:

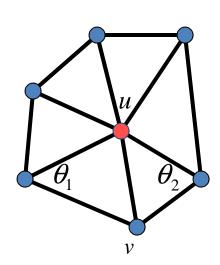
$$H(u) = \frac{1}{2} ((2H(u)N_u) \bullet N_u) = \frac{\sum_{v \in \sigma(u)} \beta(u_v) \bullet N_u}{2Area(u)}$$

$$\beta(u_v) \bullet N_u = \frac{(\cot \theta_1 + \cot \theta_2)}{2} (u - v) \bullet N_u$$

$$= \frac{(\cot \theta_1 + \cot \theta_2)}{2} \frac{\|u - v\|^2}{\|u - v\|^2} (u - v) \bullet N_u$$

$$= \frac{(\cot \theta_1 + \cot \theta_2) \|u - v\|^2}{4} \frac{2(u - v) \bullet N_u}{\|u - v\|^2}$$

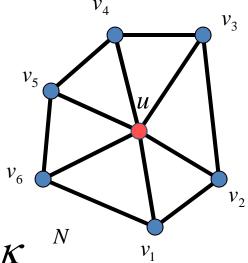
$$= \frac{(\cot \theta_1 + \cot \theta_2) \|u - v\|^2}{4} \kappa_{u,v}^{N}$$



• We know that:

$$\kappa(a,b) = la^2 + 2mab + nb^2$$

• Need to compute *l*, *m*, and *n*.



- For each edge (u, v), we also know $\mathcal{K}_{u,v}^{I}$
- Now we have a set of equations based on each edge:

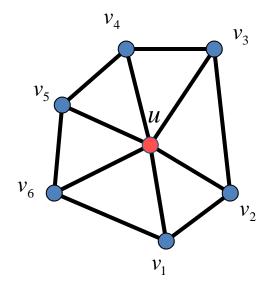
$$\kappa_{i}^{2} = \kappa_{(a_{i},b_{i})} = la_{i}^{2} + 2ma_{i}b_{i} + nb_{i}^{2}$$

Solve the following system of linear equations:

$$\kappa_i = \kappa_{(a_i,b_i)} = la_i^2 + 2ma_ib_i + nb_i^2$$

or equivalently

$$\begin{pmatrix} a_1^2 & 2a_1b_1 & b_1^2 \\ a_2^2 & 2a_1b_1 & b_2^2 \\ \vdots & \vdots & \vdots \\ a_n^2 & 2a_nb_n & b_n^2 \end{pmatrix} \begin{pmatrix} l \\ m \\ n \end{pmatrix} = \begin{pmatrix} \kappa_1 \\ \kappa_2 \\ \vdots \\ \kappa_n \end{pmatrix}$$

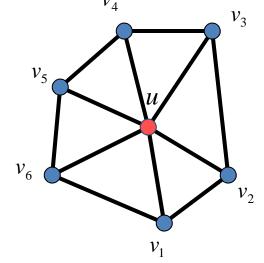


Solve the following system of linear equations:

$$\kappa_i = \kappa_{(a_i,b_i)} = la_i^2 + 2ma_ib_i + nb_i^2$$

or equivalently

$$\begin{pmatrix} a_1^2 & 2a_1b_1 & b_1^2 \\ a_2^2 & 2a_1b_1 & b_2^2 \\ \vdots & \vdots & \vdots \\ a_n^2 & 2a_nb_n & b_n^2 \end{pmatrix} \begin{pmatrix} l \\ m \\ n \end{pmatrix} = \begin{pmatrix} \kappa_1 \\ \kappa_2 \\ \vdots \\ \kappa_n \end{pmatrix}$$



The a's and b's are the 2D coordinates of tangent vectors.

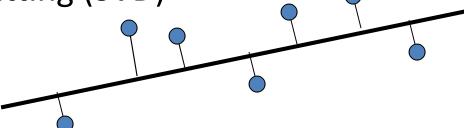
How to solve it efficiently?

$$\begin{pmatrix} a_1^2 & 2a_1b_1 & b_1^2 \\ a_2^2 & 2a_1b_1 & b_2^2 \\ \vdots & \vdots & \vdots \\ a_n^2 & 2a_nb_n & b_n^2 \end{pmatrix} \begin{pmatrix} l \\ m \\ n \end{pmatrix} = \begin{pmatrix} \kappa_1 \\ \kappa_2 \\ \vdots \\ \kappa_n \end{pmatrix}$$

How to solve it efficiently?

$$\begin{pmatrix} a_1^2 & 2a_1b_1 & b_1^2 \\ a_2^2 & 2a_1b_1 & b_2^2 \\ \vdots & \vdots & \vdots \\ a_n^2 & 2a_nb_n & b_n^2 \end{pmatrix} \begin{pmatrix} l \\ m \\ n \end{pmatrix} = \begin{pmatrix} \kappa_1 \\ \kappa_2 \\ \vdots \\ \kappa_n \end{pmatrix}$$

Least-square fitting (SVD)



How to solve it efficiently?

$$\begin{pmatrix} a_1^2 & 2a_1b_1 & b_1^2 \\ a_2^2 & 2a_1b_1 & b_2^2 \\ \vdots & \vdots & \vdots \\ a_n^2 & 2a_nb_n & b_n^2 \end{pmatrix} \begin{pmatrix} l \\ m \\ n \end{pmatrix} = \begin{pmatrix} \kappa_1 \\ \kappa_2 \\ \vdots \\ \kappa_n \end{pmatrix}$$

Another way:

$$\begin{pmatrix} a_1^2 & 2a_1b_1 & b_1^2 \\ a_2^2 & 2a_1b_1 & b_2^2 \\ \vdots & \vdots & \vdots \\ a_n^2 & 2a_nb_n & b_n^2 \end{pmatrix}^T \begin{pmatrix} a_1^2 & 2a_1b_1 & b_1^2 \\ a_2^2 & 2a_1b_1 & b_2^2 \\ \vdots & \vdots & \vdots \\ a_n^2 & 2a_nb_n & b_n^2 \end{pmatrix}^T \begin{pmatrix} \kappa_1 \\ \kappa_2 \\ \vdots \\ \kappa_n \end{pmatrix} = \begin{pmatrix} a_1^2 & 2a_1b_1 & b_1^2 \\ a_2^2 & 2a_1b_1 & b_2^2 \\ \vdots & \vdots & \vdots \\ a_n^2 & 2a_nb_n & b_n^2 \end{pmatrix}^T \begin{pmatrix} \kappa_1 \\ \kappa_2 \\ \vdots \\ \kappa_n \end{pmatrix}$$

What Next?

 Put l,m,n into a 2x2 matrix and solve for eigenvalues (principle curvatures) and eigenvectors (principle directions)

Examples

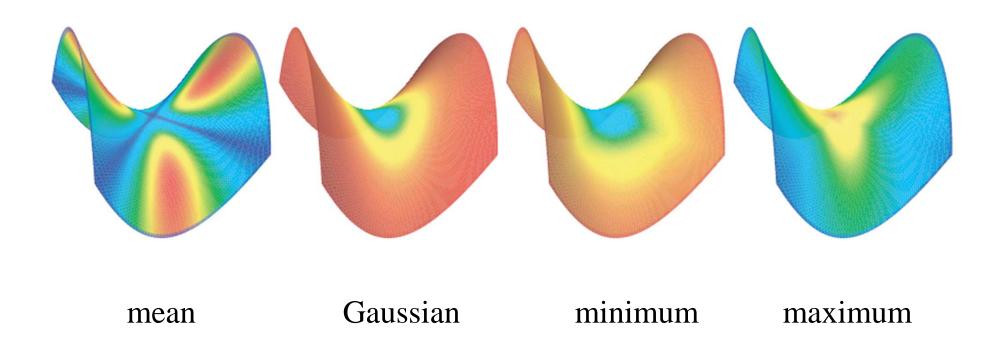
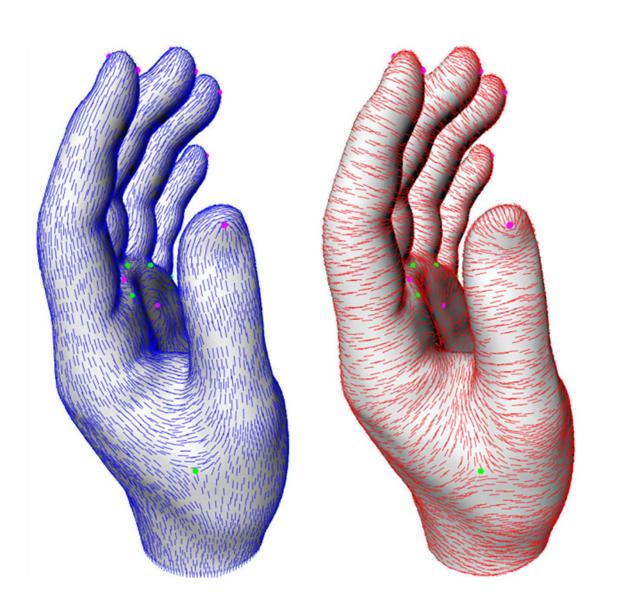


Image credit: Mark Meyer et al.

Examples



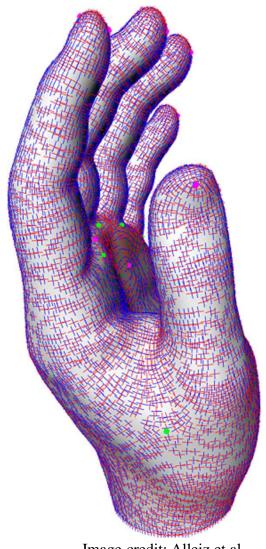
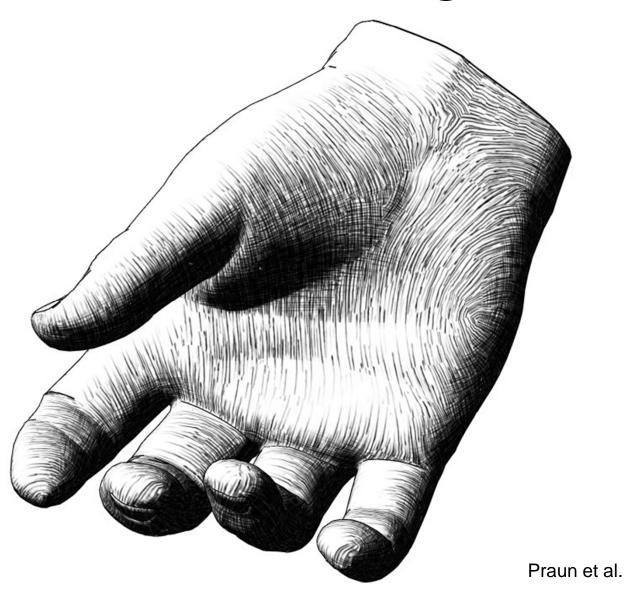
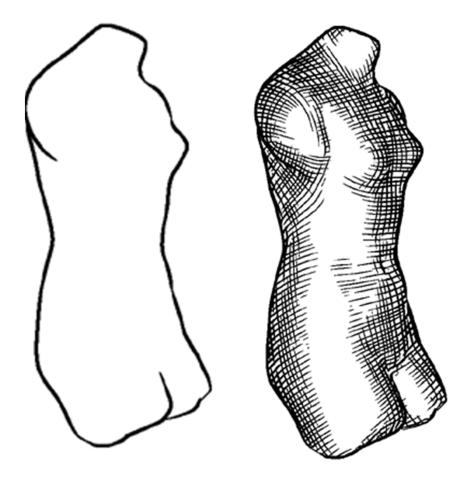


Image credit: Alleiz et al.

Hatch Drawing

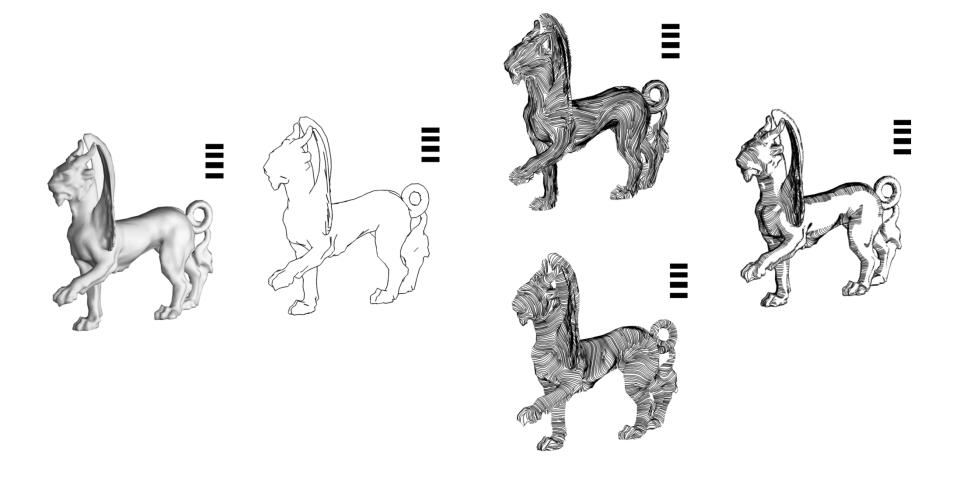


A Comparison

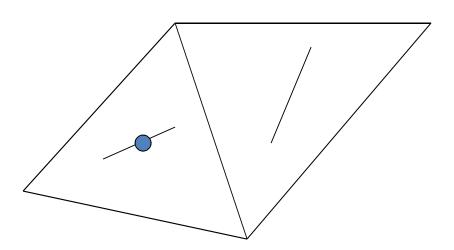


Hertzmann and Zorin

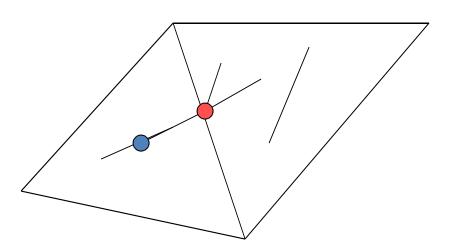
Rendering



Tracing Streamlines

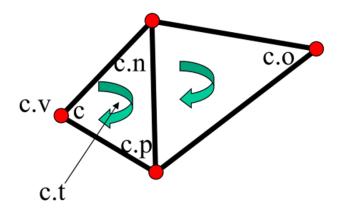


Tracing Streamlines



Corner Tables

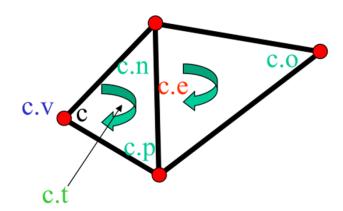
- What is a corner?
- Why is it useful?
 - Angles
 - Other corner-related properties



Corner Tables

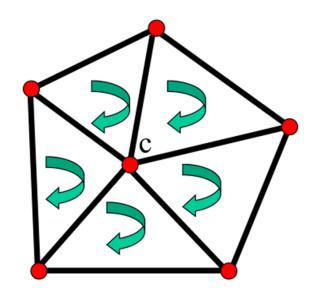
Operations

- -.p, .n, .o
- **-** .v
- **–** .e
- .t
- Can cascade:
- What is c.o.t, c.o.p, c.o.n?
- c.o.p=c.p.o?
- c.o=NULL?



Corner Tables

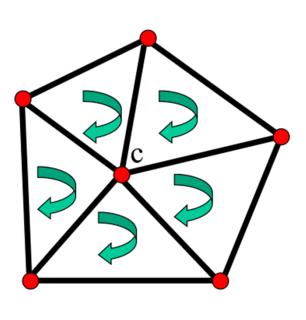
- Go around a vertex
- Where is c.p.o.n?
- Where is c.p.o.p?
- Where is (c.p.o.p).p.o.p?



Constructing Corner Tables

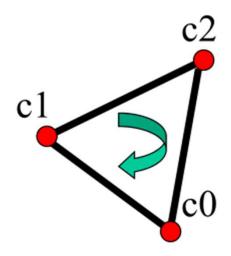
- Index
- .o, .p, .n, .v, .e, .t

```
class Corner {
public:
       unsigned char Edge_count; //special variable for edges search 1/21/05
                         //the ID of the vertex of the corner
       int v:
       int n:
                         //the next corner according to the orientation
                         //the previous corner according to the orientation
       int p;
                         //the triangle the corner belongs to
       int t:
                         //the index of its opposite triangle for traversal
       int ot:
       int o:
                         //the index of its opposite corner
                         //the opposite edge of the corner
       Edge *e:
                         //the angle of the corner
       float angle:
       float BeginAng, EndAng; //for correct angle allocation of the corner around vertex v
       float r;
       bool orient;
       /* Optional variables */
       Edge *edge[2]; //two edges associated with this corner
       Corner()
               e = NULL:
              edge[0] = edge[1] = NULL;
       double get_Angle();
```



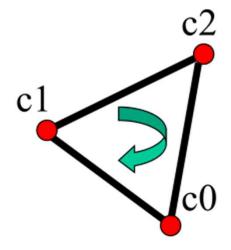
Constructing Corner Tables

- Read in all vertices and triangles
- Set num_corners = 3*num_tris
- For i=0 to num_tris
 - T=tlist[i]
 - T has three corners
 - c0=clist[3*i]
 - c1=clist[3*i+1]
 - c2=clist[3*i+2]
 - Such that ci.v=T.verts[i]



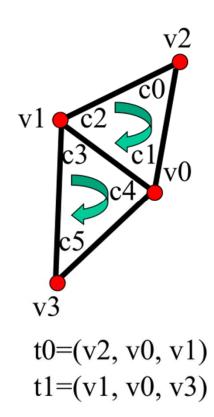
Constructing Corner Tables

- Construct the following table:
 - corner index, min(c.p.v.index, c.n.v.index), max(c.p.v.index, c.n.v.index)



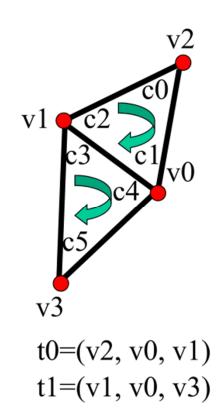
Constructing This Table

c.index	Min(c.p.v.index, c.n.v.index)	Max(c.p.v.index, c.n.v.index)	c.o.index
0	0	1	
1	1	2	
2	0	2	
3	0	3	
4	1	3	
5	0	1	



Sort According to Min/Max

c.index	Min(c.p.v.index, c.n.v.index)	Max(c.p.v.index, c.n.v.index)	c.o.index
0	0	1	
5	0	1	
2	0	2	
3	0	3	
1	1	2	
4	1	3	



Look for Pairs and Set Up Links

c.index	Min(c.p.v.index, c.n.v.index)	Max(c.p.v.index, c.n.v.index)	c.o.index
0	0	1	5
5	0	1	0
2	0	2	NULL
3	0	3	NULL
1	1	2	NULL
4	1	3	NULL

