Sub-Topics

- Compute bounding box
- Compute Euler Characteristic
- Estimate surface curvature
- Line description for conveying surface shape
- Extract skeletal representation of shapes
- Morse function and surface topology--Reeb graph
- Scalar field topology--Morse-Smale complex

Surface Topology - Reeb Graph

What is Topology?

Topology studies the connectedness of spaces

For us: how shapes/surfaces are connected

What is Topology

- The study of property of a shape that does not change under *deformation*
 - Rules of deformation
 - 1-1 and onto
 - Bicontinuous (continuous both ways)
 - Cannot tear, join, poke or seal holes
 - A is homeomorphic to B

Why is Topology Important?

- What is the **boundary** of an object?
- Are there holes in the object?
- Is the object hollow?
- If the object is transformed in some way, are the changes **continuous** or abrupt?
- Is the object bounded, or does it extend infinitely far?

Why is Topology Important?

- Inherent and basic properties of a shape
- We want to accurately represent and preserve these properties in different applications
 - Surface reconstruction
 - Morphing
 - Texturing
 - Simplification
 - Compression

Image source: http://www.utdallas.edu/~xxg06 1000/physicsmorphing.htm

n-manifold

- Set of points $M \subset R^m$
- Each point has a neighborhood homeomorphic to an open set of \mathbb{R}^n
- An **n-manifold** is a topological space that "locally looks like" the Euclidian space \mathbb{R}^n

Holes/genus

 Genus of a surface is the maximal number of nonintersecting simple closed curves that can be cut on the surface without disconnecting it.

Boundaries

• Euler's characteristic function χ

$$-\chi(M) = V - E + F$$

- V = #vertices, E = #edges, F = #faces
- $-\chi(M)$ is independent of the polygonization
- Specifically, $\chi(M) = 2c 2g h$
 - What are c, g, and h?

- Orientability
 - Any surface has a triangulation
 - Orient all triangles CW or CCW

Can distinguish in and out of the surface

Morse Theory

• Investigates the topology of a surface by looking at *critical points* of a function on that surface. $\nabla f(p) = \left(\frac{\partial f}{\partial x}(p) \quad \frac{\partial f}{\partial y}(p)\right) = 0$

Morse Functions

- A function f is a Morse function if
 - -f is smooth
 - All critical points are isolated
 - All critical points are non-degenerate $det(Hessian(p)) \neq 0$

Hessian
$$f(\mathbf{p}) = \begin{bmatrix} \frac{\partial^2 f}{\partial x^2}(\mathbf{p}) & \frac{\partial^2 f}{\partial x \partial y}(\mathbf{p}) \\ \frac{\partial^2 f}{\partial y \partial x}(\mathbf{p}) & \frac{\partial^2 f}{\partial y^2}(\mathbf{p}) \end{bmatrix}$$

 A non-Morse function can be made Morse by adding small but random noise

- Points where ∇f vanishes
 - Minima, maxima, and saddles
 - Correspond to places where the topology of the function changes
 - The function behavior can be illustrated by isolines/level sets on the domain
 - Level set of a given value i $f^{-1}(i) = \{ p \in M \mid f(p) = i \}$

• f(p) = z (height function)

Shape analysis is a special case of scalar field analysis

- Points where ∇f vanishes
 - Minima, maxim, and saddles
 - Topological changes
 - Piecewise linear interpolation
 - Barycentric coordinates on triangles
 - Only exist at vertices

- Combinatorial identification
 - One-ring neighborhood (or a star) of a vertex v
 - ullet Triangles and edges that adjacent to v

- Combinatorial identification
 - One-ring neighborhood (or a star) of a vertex v
 - ullet Triangles and edges that adjacent to v
 - Link of a vertex
 - ullet Edges of the star that do not adjacent to v

- Combinatorial identification
 - Lower link of v
 - Edges of the link of v whose function values are strictly smaller than f(v)

- Combinatorial identification
 - Lower link of v
 - Edges of the link of v whose function values are strictly smaller than f(v)
 - Upper link of v
 - Edges of the link of v whose function values are strictly larger than f(v)

- Combinatorial identification
 - Minima
 - Empty lower link

- Combinatorial identification
 - Minima
 - Empty lower link
 - Maxima
 - Empty upper link

- Combinatorial identification
 - Minima
 - Empty lower link
 - Maxima
 - Empty upper link
 - Regular point
 - Lower and upper links both simply connected

- Combinatorial identification
 - Everything else
 - Saddle
 - Multiple connected lower and upper links
 - Works in arbitrary dimension if replace triangles, edges, and vertices with simplices

- Combinatorial identification
 - Everything else
 - Saddle
 - Multiple connected lower and upper links
 - Works in arbitrary dimension if replace triangles, edges, and vertices with simplices
 - Value of a critical point critical value

How Does it Work?

Morse function is defined as the height function (i.e. z coordinates) Level sets obtaining by sweeping along Z direction

Review of Level Sets

- Given a domain M of dimension d
 - Level set of a given value i, $f^{-1}(i) = \{p \in M \mid f(p) = i\}$
- If i is not a critical value
 - $-f^{-1}(i)$ is a (d-1) manifold
- If M is closed, $f^{-1}(i)$ is closed. Otherwise it may be open

Level Set Extraction

- Given a triangular mesh X and a scalar function f, the level set of a given value s^* is compute as follows
 - First, determine the intersections of the level set $f^{-1}(s^*)$ with the edges of X
 - Second, traverse through all triangles and connect the obtained intersections

Which Edges Intersect with $f^{-1}(s^*)$?

Determine Intersections with Edges

Does $f^{-1}(s^*)$ cross any edges of this square?

Linearly interpolating the scalar value from node 0 to node 1 gives:

$$S = (1-t)S_0 + tS_1 = S_0 + t(S_1 - S_0)$$
 where $0 \le t \le 1$.

Setting this interpolated S equal to S* and solving for t gives:

$$t^* = \frac{S^* - S_0}{S_1 - S_0}$$

Determine Intersections with Edges

If $0. \le t^* \le 1.$, then S^* crosses this edge. You can compute where S^* crosses the edge by using the same linear interpolation equation you used to compute S^* . You will need that for later visualization.

$$x^* = (1 - t^*)x_0 + t^*x_1$$
$$y^* = (1 - t^*)y_0 + t^*y_1$$

Connect Intersections

No intersection

Connect Intersections

Connect Intersections

Connect Intersections

$$-f:M\to R$$

$$-f:M\to R$$

$$-f:M\to R$$

Given a Morse function

 $-f:M\to R$

Given a Morse function

 $-f:M\to R$

Given a Morse function

 $-f:M\to R$

$$-f:M\to R$$

$$-f:M\to R$$

$$-f:M\to R$$

$$-f:M\to R$$

$$-f:M\to R$$

$$-f:M\to R$$

- Reeb graph R(f)
 - Contour retraction of M under f

- Vertices of the graph are critical points
- Arcs of the graph are connected components (cylinders in domain) of the level sets of f, contracted to points

Reeb Graph Properties

- Continuous 1-dimensional simplical complex
- Extrema: valence 1
- Saddles in 2D: valence 3 or 4 (boundary)
- Saddles in nD: valence 2 or 3
- In practice:
 - Arcs: collection of vertices
 - Simply connected domains:
 Carr00
 - Otherwise: Pascucci07, Tierny09, Parsa12

Reeb graphs and genus

- The number of loops in the Reeb graph is equal to the surface genus
- To count the loops, simplify the graph by contracting degree-1 vertices and removing degree-2 vertices

Compute Reeb Graph Using Cylinder Maps

- Cylinders in domain map to arcs in Reeb graph
- Two step algorithm
 - Step I: Locate critical points
 - Sort the critical points based on their scalar value
 - compute the critical level set
 corresponding to each critical point

[Natarajan 2011]

Step II - Connect Critical Points

- Cylinder represents evolution of one level set component
- Trace all level set components within a cylinder in an iteration

Step II - Connect Critical Points

- Is-graph: stores adjacencies between triangles
- For each component
 - Start with a triangle in the component attaching to the upper link of a critical point
 - Traverse the edges until a triangle in a critical level set is reached
 - Insert corresponding arc in the Reeb graph

Reeb Graph Visualization

Embedded layout

[Natarajan 2011]

Some More Reeb Graph Examples

Discretized Reeb Graph

- Take the critical points and "samples" in between
- Robust because we know that nothing happens between consecutive critical points

Reeb graphs for Shape Matching

- Reeb graph encodes the behavior of a Morse function on the shape
- Also tells us about the topology of the shape
- Take a meaningful function and use its Reeb graph to compare between shapes!

Choose the right Morse function

- The height function $f(\mathbf{p}) = z$ is not good enough not rotational invariant
- Not always a Morse function

Average geodesic distance

 The idea of [Hilaga et al. 01]: use geodesic distance for the Morse function!

$$g(\mathbf{p}) = \int_{M} \text{geodist}(\mathbf{p}, \mathbf{q}) dS$$

$$f(\mathbf{p}) = \frac{g(\mathbf{p}) - \min_{\mathbf{q} \in M} g(\mathbf{q})}{\max_{\mathbf{q} \in M} g(\mathbf{q})}$$

Multi-res Reeb graphs

 Hilaga et al. use multiresolutional Reeb graphs to compare between shapes

Multiresolution hierarchy – by gradual

contraction of vertices

Flexible isosurfaces
[Carr et al., IEEE VIS 2004]

Topology controlled volume rendering
[Weber et al., TVCG 2007]

Seed sets for isosurfaces
[van Kreveld et al., SoCG 1997]

Surface parameterization [Zhang et al., TOG 2005]

Topological simplification and cleaning

[Wood et al., TOG 2004; Pascucci et al., SIGGRAPH 2007]

Mesh segmentation [Zhang et al. 2003]

Topology-based shape matching

[Hilaga et al., SIGGRAPH 2001]

Additional Reading for Reeb Graph

- V. Pascucci, G. Scorzelli, P.-T. Bremer, and A. Mascarenhas, "Robust On-line Computation of Reeb Graphs: Simplicity and Speed", *ACM Transactions on graphics*, pp. 58.1-58.9, Proceedings of SIGGRAPH 2007.
- S. Biasotti, D. Giorgi, M. Spagnuolo, and B. Falcidieno, "Reeb graphs for shape analysis and applications", <u>Theor. Comput. Sci. 392</u>(1-3): 5-22, 2008.
- J. Tierny, A. Gyulassy, E. Simon, and V. Pascucci, "Loop surgery for volumetric meshes: Reeb graphs reduced to contour trees". IEEE TVCG, Vol. 15 (6): 1177-1184, 2009.
- H. Doraiswamy and V. Natarajan. "Output-sensitive construction of Reeb graphs", IEEE Transactions on Visualization and Computer Graphics, 18(1), 2012, 146-159

Acknowledgment

- Part of the materials in this lecture notes are from
 - Prof. Eugene Zhang
 - Prof. Vijay Natarajan
 - Dr. Julien Tierny