
Vector Field Data: Introduction



What is a Vector Field?

Its solution gives rise to a “flow”. 



Why Is It Important?



Vector Fields in Engineering and Science 

Automotive design 
[Chen et al. TVCG07,TVCG08]

Weather study [Bhatia and Chen et al. TVCG11]

4Oil spill trajectories [Tao et al. EMI2010]
Aerodynamics around missiles [Kelly et al. Vis06]



Vector Field Design in Computer Graphics
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Parameterization

[Ray et al. TOG2006]

River simulation [Chenney SCA2004]

Painterly Rendering [Zhang et al. TOG2006]

Smoke simulation [Shi and Yu TOG2005]

Shape Deformation 
[von Funck et al. 2006]

Texture Synthesis [Chen et al. TVCG11b]



Flow Data

Data sources:

• flow simulation:
• airplane- / ship- / car-design

• weather simulation (air-, sea-flows)

• medicine (blood flows, etc.)

• flow measurement:
• wind tunnels, water channels

• optical measurement techniques

• flow models (analytic):
• differential equation systems 

(dynamic systems)

Source: simtk.org

Source: speedhunter.com

Source: zfm.ethz.ch



Flow Data

Simulation:

• flow: estimate (partial) differential equation systems (i.e. a model)

• set of samples (n-dims. of data), e.g., given on a curvilinear grid

• most important primitive: tetrahedron and hexahedron (cell)

• could be adaptive grids

Analytic:

• flow: analytic formula, differential equation systems ��/��
(dynamical system)

• evaluated where ever needed

Measurement:

• vectors: taken from instruments, often computed on a uniform grid

• optical methods + image recognition, e.g.: PIV (particle image 
velocimetry)



Flow Data Via Measurement

• Injection of dye, smoke, 
particles

• Optical methods:
• transparent object with 

complex distribution of light 
refraction index

• Streaks, shadows



Large Scale Dying

Source: weathergraphics.com

Source: ishtarsgate.com



Flow Data Via Simulations

• We often analyze Computational Fluid 

Dynamics (CFD) simulation data

• CFD is the discipline of predicting flow 

behavior, quantitatively

• data is (often) the result of a 

simulation of flow through or 

around an object of interest

some characteristics of CFD data:

• large, often gigabytes

• Unsteady, i.e. time-dependent

• unstructured, adaptive resolution grids

• Smooth field



Comparison with Reality

Experiment

Simulation



Dimensions: 2D vs. 2.5D/Surfaces vs. 3D

• 2D flow
• �:	�	 → �	, i.e. �� = (��, ��) in a plane

• analytic, flow layers (2D section through 3D)

• 2.5D, i.e. surface flow (embedded in 3D)
• 3D flows around obstacles (i.e. on the surface of obstacles)

• �:� → ��, i.e. �� = (��, ��, ��) confined on the tangent 
plane

• locally 2D

• Simulation, synthetic

• 3D flow visualization
• �:	�� → ��, i.e. �� = (��, ��, ��) in a volume
• simulations, 3D models



2D/Surfaces/3D – Examples

2D

Surface

3D



Steady vs. Time-dependent

Steady (time-independent) flows:

• flow itself constant over time

• v(x), e.g., laminar flows

• well understood behaviors

• simpler case for visualization and analysis

Time-dependent (unsteady) flows:

• flow itself changes over time

• v(x,t), e.g., combustion flow, turbulent flow

• more complex cases

• no uniform theory to characterize them yet!



Time-

independent 

(steady) Data

• Dataset sizes over years:



Time-

dependent 

(unsteady) 

Data

• Dataset sizes over time:
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http://cs.swan.ac.uk/~csbob/te

aching/csM07-vis/

Standard Visualization Techniques for Flow Data

Textures: 
2D-filling

• Arrows vs. Streamlines vs. Textures
– Streamlines: selective

– Arrows: simple

– Texture: desnse coverage



Some Feature Geometry of Vector Fields



Some Feature Geometry of Vector Fields

Let us focus on steady flow at this moment



Streamlines – Theory
Correlations:

• flow data V: derivative information

• ��/��	 = 	�(�);	
spatial points � ∈ ��, time � ∈ �, flow vectors � ∈ ��

• streamline �: integration over time, also called trajectory, solution, 
integral curve

• �(�) 	= 	�0	 + 	� �(�(�))	��
� ! "

;
seed point �0, integration variable �

• Property:

• uniqueness 

• difficulty: result s also in the integral→analytical solution usually 
impossible.



Streamlines – Computation

Basic approach:

• theory: �(�) 	= 	�0	 + 	� �(�(�))	��
� ! "

• practice: numerical integration

• idea: 

(very) locally, the solution is (approx.) linear

• Euler integration: 

follow the current flow vector �(�#) from the current streamline point si

for a very small time (��) and therefore distance

Euler integration: �# + 1 = �#	 + 	�(�#) 	 · 	��,
integration of small steps (��	very small)



Euler Integration – Example

2D analytic field (no need of grid and interpolation):

vx = dx/dt = −y

vy = dy/dt = x/2

Sample arrows:

Ground truth
flows form 
ellipses.

0 1 2 3 4

0

1

2



Euler Integration – Example

�Seed point s0 = (0 | -1 )T;
current flow vector v(s0) = (1 |0 )T;
dt = ½
vx = dx/dt = −y

vy = dy/dt = x/2

0 1 2 3 4

0

1

2



Euler Integration – Example

�New point s1 = s0 + v(s0) · dt = (1/2 | -1 )T;
current flow vector v(s1) = (1 |1/4 )T;
vx = dx/dt = −y

vy = dy/dt = x/2

0 1 2 3 4

0

1

2



Euler Integration – Example

�New point s2 = s1 + v(s1) · dt = (1 | -7/8 )T;
current flow vector v(s2) = (7/8 |1/2 )T;
vx = dx/dt = −y

vy = dy/dt = x/2

0 1 2 3 4

0

1

2



Euler Integration – Example

�s3 = (23/16| -5/8 )T ≈ (1.44 | -0.63)T;
v(s3) = (5/8 |23/32)T ≈ (0.63 |0.72)T;
vx = dx/dt = −y

vy = dy/dt = x/2

0 1 2 3 4

0

1

2



Euler Integration – Example

�s4 = (7/4 | -17/64)T ≈ (1.75 | -0.27)T;
v(s4) = (17/64|7/8 )T ≈ (0.27 |0.88)T;

0 1 2 3 4

0

1

2



Euler Integration – Example

�s9 ≈ (0.20 |1.69)T;
v(s9) ≈ ( -1.69 |0.10)T;

0 1 2 3 4

0

1

2



Euler Integration – Example

�s14 ≈ ( -3.22 | -0.10)T;
v(s14) ≈ (0.10 | -1.61)T;

0 1 2 3 4

0

1

2



Euler Integration – Example

�s19 ≈ (0.75 | -3.02)T; v(s19) ≈ (3.02 |0.37)T;
clearly: large integration error, dt too large,
19 steps

0 1 2 3 4

0

1

2



Euler Integration – Example

�dt smaller (1/4): more steps, more exact. 
s36 ≈ (0.04 | -1.74)T; v(s36) ≈ (1.74 |0.02)T;

�36 steps

0 1 2 3 4

0

1

2



Comparison Euler, Step Sizes

Euler
quality is 
proportional
to dt



Euler Example – Error Table

dt #steps error

1/2 19 ~200%
1/4 36 ~75%
1/10 89 ~25%
1/100 889 ~2%
1/1000 8889 ~0.2%

�



RK-2 – A Quick Round

RK-2: even with dt = 1 (9 steps) 
better 
than Euler 
with dt = 1/8
(72 steps)



RK-4 vs. Euler, RK-2

Even better: fourth order RK:

• four vectors a, b, c, d

• one step is a convex combination:
si+1 = si + (a + 2·b + 2·c + d)/6

• vectors:
a = dt·v(si) … original vector
b = dt·v(si+a/2) … RK-2 vector
c = dt·v(si+b/2) … use RK-2 …
d = dt·v(si+c) … and again

Image source: http://cinet.chim.pagesperso-

orange.fr/ex_sa/int_num.html



Euler vs. Runge-Kutta
RK-4: pays off only with complex flows

Here 
approx.
like 
RK-2



Integration Schemes

Summary:

• analytic determination of streamlines usually not possible

• hence: numerical integration

• various methods available

(Euler, Runge-Kutta, etc.)

• Euler: simple, imprecise, esp. with small dt

• RK: more accurate in higher orders

• furthermore: adaptive methods, implicit methods, etc.



Streamline Tracing Under Discrete Samples

• Important components

– Interpolation

– Local frame

– Interior verification

– Neighborhood information



Local Frame

• Triangle
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Assume a piecewise linear vector field

Streamline Tracing Under Discrete Samples

Trace streamline locally within each triangle

Need to explicitly handle the transition between 

different triangles
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Assume a piecewise linear vector field

Streamline Tracing Under Discrete Samples

What is the vector value at (�, �)?

(�, �)
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Assume a piecewise linear vector field

Streamline Tracing Under Discrete Samples

What is the vector value at (�, �)?

(�, �)

Interpolating the vector values at three vertices



Compute Barycentric Coordinates

�./ �, � = �. 0 �/ � + �/ 0 �. � 0 �.�/ + �/�.

For *, + ∈ 10,1,23, i.e. the index of the vertices of a triangle.

We then have,

4 =
567((,))

567((8,)8)
β =

578((,))

578((6,)6)
γ =

586((,))

586((7,)7)

• (4, ;, <): barycentric coordinates of a point (�, �)
• 4 + ; + < = 1
• Only if  0 = 4, ;, < = 1,  (�, �)	is inside the triangle

From wiki
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Assume a piecewise linear vector field

Interpolating Vector Values

What is the vector value at (�, �)?

(�, �)

Interpolating the vector values at three vertices
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Assume a piecewise linear vector field

We have

Solve for a linear system to get the coefficients

Interpolating Vector Values
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Given the linear form above, you can compute the vector value 

at any point within the triangle.
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Assume a piecewise linear vector field

Streamline Tracing Under Discrete Samples

Trace streamline locally within each triangle

How can I determine which triangle I am going to 

enter?

(�&, �&)
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Assume a piecewise linear vector field

Streamline Tracing Under Discrete Samples

Trace streamline locally within each triangle

How can I determine which triangle I am going to 

enter?

Using the barycentric coordinate and the help with corner table.

Recall: only if  0 = 4, ;, < = 1,  (�, �)	is inside the triangle
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Assume a piecewise linear vector field

Streamline Tracing Under Discrete Samples

Trace streamline locally within each triangle

What if the streamline passes through a vertex?

v
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Assume a piecewise linear vector field

Streamline Tracing Under Discrete Samples

Trace streamline locally within each triangle

What if the streamline passes through a vertex?

v

Use sorted corners around � to determine which 

one contains the vector defined at �



Summary of The Algorithm

Note that this framework can be extended to surface flow tracing with additional care

Input: seed (x,y) and triangle T

Output: a point list P that forms the streamline

for (i=0; i<max_triangles; i++)

{

if (T < 0) return;  // we reach a boundary

//compute streamline within current triangle T

convert (x, y) to local coordinates; 

for (step = 0;  step < max_steps; step++)

{    advance to next position using (Euler|RK2|RK4) integrator

if we reach a fixed point, return;

if the next position is still inside T

store this new position to point list P and continue

else

determine next triangle it will enter, let T be the next triangle

}

}    
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