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Abstract In today’s scaled out systems, co-scheduling data
analytics work with high priority user workloads is common
as it utilizes better the vast hardware availability. User work-
loads are dominated by periodic patterns, with alternating
periods of high and low utilization, creating promising con-
ditions to schedule data analytics work during low activity
periods. To this end, we show the effectiveness of machine
learningmodels in accurately predicting userworkload inten-
sities, essentially by suggesting the most opportune time
to co-schedule data analytics work. Yet, machine learning
models cannot predict the effects of performance interfer-
ence when co-scheduling is employed, as this constitutes a
“new” observation. Specifically, in tiered storage systems,
their hierarchical design makes performance interference
even more complex, thus accurate performance predic-
tion is more challenging. Here, we quantify the unknown
performance effects of workload co-scheduling by enhanc-
ing machine learning models with queuing theory ones to
develop a hybrid approach that can accurately predict per-
formance and guide scheduling decisions in a tiered storage
system. Using traces from commercial systems we illus-
trate that queuing theory and machine learning models can
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be used in synergy to surpass their respective weaknesses
and deliver robust co-scheduling solutions that achieve high
performance.
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1 Introduction

High utilization of resources is a design target of scaled-out
systems. Often in such systems, data analytics workloads
co-exist with high priority user workloads that operate
within strict service level objectives (SLOs). Data analytics
workloads, e.g., personalized advertising, sentiment analy-
sis, product recommendation, database replication, dominate
many systems today. Different than traditional internal work
(e.g., garbage collection, snapshots, upgrades), data analyt-
ics work requires faster reaction in order to provide timely
information [1–3], e.g., a delayed advertisement event update
could cause reduced income or a product recommendation
should occur before the user leaves the site. Since data analyt-
ics to enhance user experience and regular user traffic share
the same hardware, their effective resource management can
greatly enhance business value and user satisfaction.

Scheduling user traffic and data analyticswork in the same
system is a challenging task. Scheduling data analytics too
aggressively may cause user traffic to suffer from SLO vio-
lations. If scheduled too conservatively, data analytics work
could not finish in time, thus could loose its value. With user
workload traffic that is repeatable and periodic across differ-
ent time scales [3–5], it is natural to interleave data analytics
work with user workload at periods of low user demands.
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Key to the effective deployment of any policy that inter-
leaves data analytics with SLO-bound user level work, is
the prediction of fluctuations in the user workload and espe-
cially identifying a priori heavy or spiky loads. Here, we
propose NeuQ, a neural network/queuing hybrid solution:
the queueing model that is the basis of co-scheduling deci-
sions is significantly enhanced by neural networks to improve
its accuracy. The queueing models that we use predict the
magnitude of the potential performance interference of co-
scheduling user and data analytics workloads. An important
parameter of the queueing model that greatly affects its pre-
diction accuracy is a priori knowledgeof the upcoming arrival
intensity, this is successfully provided by the neural net-
work.

To illustrate the effectiveness of NeuQ, we consider
tiered storage systems as a use case. In storage systems
flash-based technologies (e.g., DRAM, SSD) are widely
integrated into data centers and scaled-out cloud storage
systems [6–8]. Despite their performance advantages over
the traditional disk- or tape-based storage technologies (e.g.,
HDD), their much higher cost per byte prevents flash-based
storage technologies to completely replace traditional disk or
tape based storage devices. Hybrid, tiered architectures that
integrate flash with various disk technologies are common
alternatives.

Tiered storage systems adopt a hierarchical design: fast
tiers using flash storage devices aiming at boosting perfor-
mance and slow tiers using HDD devices for the purpose of
balancing capacity and cost, as well as for improving reli-
ability [9,10]. Their efficiency is based on moving data to
the right tier based on statistics of data access frequencies.
Data moving, i.e.,what portion of data ought to be transfered
and when this should take place, affect greatly performance
as access times and capacities across different tiers differ by
orders ofmagnitude.This greatly depends onhow theupcom-
ing workload intensity is known in advance and is vital for
NeuQ’s success in offering co-scheduling decisions, as the
effects of tier warming greatly depend on timely information
on this measure.

NeuQ guarantees user SLOs while maximizing data ana-
lytics throughput. To this end, we do not treat data analytics
simply as a best effort workload. Instead, our aim is to sched-
ule it as aggressively as the system allows without violating
user SLOs. We stress that the above performance targets are
by nomeans a limitation of the proposed hybridmodel. Incor-
porating different targets (e.g., deadlines) for completion of
data-analytics workload are also easily handled, as we show
here.

The proposed approach is fully automatic and robust. We
validate its correctness and efficiency via trace-driven sim-
ulation using two case studies: (1) enterprise traces from
Wikipedia [4] and (2) arrival traces in a scaled-out storage
back-end of a mid-size web service provider that we have

also used in prior work.1 Our extensive experimental eval-
uation shows that the prediction of the user traffic arrival
intensity and data analytics completion time is remarkably
accurate. More importantly, compared to other state-of-the-
art scheduling approaches, the proposed solution strictly
meets user SLOs while serving aggressively data analytics
workloads. In addition, our approach also supports different
scheduling objectives.

This paper is organized as follows. Section 2 presents
experimental numbers of a multi-tiered storage system that
motivate this work. Section 3 presents the hybrid model:
the machine learning model for traffic intensity prediction
and the queueing model. Section 4 presents extensive exper-
imental evaluation via trace driven simulations to verify the
correctness and effectiveness of the proposed methodology.
Section 5 discusses related work. We conclude in Sect. 6.

2 Motivation

We showcase the challenges of performance interference by
presenting some results from an experimental testbed that
consists of a server with a disk enclosure attached to it, pro-
viding data services to a host. Its memory is 12 GB and the
disk enclosure has 12 SATA 7200RPM HDDs of 3TB each.
In our experiments the system memory emulates the fast tier
and the disk enclosure is used as the slow tier where the bulk
of the data resides. The workload is generated and measured
at the hostmachine.We usefio [11] as the IOworkload gen-
erator and generate two types of IO workloads, user and data
analytics, which differ on the active working set size rather
than on their access patterns. Theworking set size for the user
workload is 1 GB such that it always fits into the memory of
the server that emulates the fast tier. The data analytics work
has an active working set of 24 GB, i.e., it does not fit fully
into the fast tier and the large slow tier is accessed to retrieve
the data. The access pattern for both user and data analytics
workload is 100% small random reads to emulate common
enterprise workloads that benefit from prefetching (warm-
up) only if the working set can fully (or almost) fit in the
high performing tier (i.e., the SSD). We also assume that the
system is provisioned in such away that the fast tier can fit the
entire (or themajority of) the active userworking set. The fast
tier iswarmed up via a sequential read of the userworking set.

Using fio, we generate a random reads workload access-
ing data stored in our server. The intensity of user IO requests
is shown in Fig. 1 and it emulates very closely the load pattern
of user requests of the Wikipedia and the storage workloads
that we use to drive our experiments in Sect. 3. Note that

1 TheWikipedia tracesare publicly available [4]. Due of confidentiality
agreements, the storage system trace or provider details can not bemade
publicly available.
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Fig. 1 User and data analytics IOPS (throughput) and user response
time over time

without any data analytics work, the response time of user
IO requests remains in the same range of about 150ms. All
IOs are served from the fast tier. The user throughput however
does increase by one order of magnitude as the arrival inten-
sity increases. This confirms that the storage system does not
suffer from queuing delays and it has the capacity to sustain
more user load.

We add on the same experiment some data analytics work.
Since the user workload pattern has a clear periodicity, we
contend that this can be easily captured by amachine learning
model (indeed, we show the effectiveness of machine learn-
ing models for predicting such periodic patterns in Sect. 4.)
Having observed the time pattern of the first 60min, we co-
schedule a data analytics workload at around the 65th min,
i.e., when the user traffic subsides significantly. While the
data analytics workload immediately gains a lot of through-
put, the performance effect of co-scheduling on the userwork
is huge: response times increase by two orders of magnitude.
Data analytics work is stopped around the 70th min, but we
observe that poor user RTs are sustained for about 6min. This
is because the data analytics work has evicted part of the user
working set from the fast tier/cache.

What could have made the difference in user performance
is the timely fast-tier warm up. Figure 2 captures this effect.
In this experiment, we use a small data set of 1 GB. We per-
form two experiments: one with explicit cache warm up (via
a sequential read to the user working set) and the other one
that brings the workload to cache when needed (no explicit
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Fig. 2 Response time with warm up and without warm up across the
experiment time

warm up). While it takes only about 2min to bring 1 GB of
data into our fast tier by reading it sequentially, it takes about
10min to fullywarmup the cache by the userworkload alone.
This number is longer than what we observe in Fig. 1, this is
because in Fig. 1 the cache is not completely cold. These
experiments demonstrate the importance of incorporating
the effects of workload interference and tier warming into
any scheduling methodology. The point here is that naively
scheduling data analytics during the low period (whose tim-
ing can be predicted) does not reach optimized performance.
What we need here is a methodology that incorporates tier-
warming and accurately predicts when this should start. We
address these issues in the following sections.

3 Methodology

In this section, we start with the description of the user work-
loads used in thiswork. Thenwe illustrate how to use a neural
network to build a traffic prediction model. Finally, we intro-
duce in details of the NeuQ scheduler that is powered by a
queueing model.

3.1 Workload

Data center workloads often follow periodic patterns across
time [5,12–14]. InFig. 3,wedemonstrate the arrival intensity
of the storage system workload during 1month period [5].
In Fig. 4, we present the arrival intensity of requests to
Wikipedia during October 2007 [4].

Intuitively, the workload of Fig. 4 shows a distinctive
day/night pattern as well as weekday/weekend pattern. To
capture this, we carry out some statistical analysis by cal-
culating the autocorrelation of the time series of the arrival
process. Autocorrelation is the cross-correlation of a signal
with itself [15]. Intuitively, it captures the similarity between
observations as a function of the lag between them. Auto-
correlation values are in the [−1, 1] range, the closer the lag
autocorrelation to 1, the closer the twoobservations. Zero val-
ues indicate no relationship among the observations, while
negative values indicate that the range of values of the two
observations is diametrically different.

The autocorrelation of user arrival intensity for the
Wikipedia workload at varying time lags is shown in Fig. 5a,
b, that report on autocorrelations at the minute lag (10-min
granularity) and day lag, respectively. The figures verify clear
daily and weekly patterns, as also observed in Fig. 4. Auto-
correlation reaches a maximum value per day across all lags
illustrating a clear daily pattern, ditto for Fig. 5b that illus-
trates a clear weekly pattern. Similar autocorrelation patterns
are also observed for the storage workload. In the following
section, we use these properties to train a neural network that
can model user arrival intensity.

123



852 Cluster Comput (2016) 19:849–864

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
0

30

60

90

120

Time: Day

A
rr

iv
al

 In
te

ns
ity

(a
rr

iv
al

s/
m

in
)

Fig. 3 User request arrival intensity of storage workload over 1month
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Fig. 4 User request arrival intensity to Wikipedia over 1month in 2007
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Fig. 5 Autocorrelation of arrivals for different granularities. Note for
a, the points are at 10-min granularity, the ticks in x-axis is multiplied
by 1440, e.g., 2 represents 2 × 1440min or 2days, so the lag is up to
14days

3.2 Neural network model

Neural networks are a class of machine learning models that
can capture periodicity within different time scales. Tradi-
tional time series models such as ARMA/ARIMA [16] and
Holt-Winters exponential smoothing [17] are usually limited
by the linear basis function. Neural networks can instead
model non-linear functions of the input, which makes them

effective for time seriesmodeling [18]. A time series analysis
consists of two steps: first building a model that represents
a time series, and then using the model to forecast future
values. If a time series has a regular pattern, then a value of
the series should be a function of previous values. If X is the
target variable for prediction, and Xt is the value of X at time
t , then the goal is to create a model of the form:

Xt = f (Xt−1, Xt−2, Xt−3, . . . , Xt−n) + εt , (1)

where εt is an error term. An artificial neural network con-
sists of multiple nodes, or neurons, which are interconnected
to mimic a biological neural network [19]. These neurons
have adaptive weights, tuned by a learning algorithm, which
enables neural networks to approximate non-linear functions
of their inputs. The adaptive weights describe the connec-
tion strengths between neurons, activated during training and
prediction.

To build a neural networkmodel for a time series, selecting
the most relevant input that can describe the trend, season,
and noise isutterly important. To take care of trend and sea-
son, or in other words, to capture the long-term pattern, we
make use of the correlogram in Fig. 5b. The figure shows that
when the lag equals to 7days, the user traffic is highly and
positively correlated. Therefore, as input to our trafficmodel,
we choose the user arrival intensities of exactly oneweek ago.
To capture the temporal change or noise, which can be seen as
a short-term pattern, we look into Fig. 5a and see that for lag
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= 10min the arrival intensities have the highest correlation
value. This suggests to consider the user arrival intensities
of 10min ago as another input to the model. With the above
inputs as features and current observations, we can train a
neural network. When training a neural network, the data are
divided into three distinct subsets [20]: the training set, that
is used to train the weights (model parameters) of neural net-
work; the validation set, which is used tominimize overfitting
thus ensure a generalized solution; and the test set, which is
used for evaluating the accuracy of the trained neural network
model. Here we use the neural network toolbox provided by
MATLAB [21] to train our traffic prediction models.

When training a neural network, even with the same data,
the trained model can have different accuracy depending on
the configured parameters, e.g., different initial weight val-
ues, different divisions of data used for training, validation,
and test samples. Our primary attempt to avoid using badly-
behaved neural networks (that result in poor prediction), was
to train several neural networks on the same data set and
select the one with the smallest mean squared error. How-
ever, since the future largely remains unknown, it is possible
that the “best” neural network fails to do a good predic-
tion in the future. To mitigate this potential problem, we
use an ensemble method [22], which averages predictions
from different neural networks. Even though the ensemble
method may not always provide the optimal prediction,it
consistently produces accurate predictions without requiring
manual checking.

Last but not least, the computational complexity of the
neural network training is not significant, as the prediction
model can forecast upcoming traffic for up to a week ahead,
suggesting that it is sufficient to update the neural network
model as often as once per week for the data in hand. The fre-
quency of training can be adjusted based on different needs.

3.3 Co-scheduling

As Fig. 4 shows, user traffic demonstrates peaks and valleys,
suggesting that one could aggressively co-schedule data ana-
lytics work during the “low” user periods. Our intention is to
quantify how much additional work one could co-schedule
such that overall systemutilization increaseswhile user SLOs
are respected. Because we are aiming to provide a schedul-
ing approach that is easy to deploy and integrate with other
management tools, we refrain from making scheduling deci-
sions for user requests too frequently, as this could result in
significant overhead. Therefore, our framework divides the
time into small windows tw and makes scheduling decisions
only at the beginning of each window2

2 We assume tw = 1min in our experimental evaluation, but this could
be adjusted according to the specific system requirement.

3.3.1 Performance model for user traffic in a tiered storage
system

To simplify presentation, we assume that the time window
that the user SLO is computed is the same as the scheduling
window size tw.

Arrival process: Although in large time windows the arrival
process shows a periodical pattern, within each small time
window tw, the arrival process can be viewed as a Poisson
process [15].

Service process: In a 2-tiered storage system3, if the working
set of the coming IO request is in the fast-tier (e.g., SSD),
the request is served in fast tier. Otherwise, the coming IO
request is served in the slow-tier (e.g., disk). Here we assume
the service process for each tier follows an exponential dis-
tribution. The service process for the 2-tiered system can
be described by a hyper-exponential model [23] with mean
service time:

E[s] = h × E[s1] + (1 − h) × E[s2], (2)

where E[s1] and E[s2] are the mean service times for the fast
tier (tier 1) and slow tier (tier 2), respectively. h is the fast
tier hit rate defined as the probability that a request is served
from the fast tier. The maximum value of the fast tier hit rate
hmax is determined by the workload characteristics and the
capacity of the fast tier, e.g., if the entire working set can
loaded into the fast tier, then the maximum hit rate is 1, in
which case all the requests are served in the fast tier. Based
on Eq. 2, the expectation of the squared service time can be
computed as follows [23]:

E[s2] = 2! × (h × E[s1]2 + (1 − h) × E[s2]2), (3)

where E[s1]2 and E[s2]2 are the square ofmean service times
for the fast tier (tier 1) and slow tier (tier 2), respectively.

Queuing model: Based on the above assumptions, the 2-tired
storage system can be modeled by a M/H2/1 queue for
each small time window. We use the Pollaczek–Khinchine
formula [24] to compute the average response time of an
M/H2/1 queue:

RT = E[s] + λ × E[s2]
2(1 − ρ)

, (4)

where E[s] is the mean service time, E[s2] is the mean of
squared service time, λ is average arrival intensity, and ρ is
the system utilization

3 For presentation reasons, we use a 2-tiered storage system to explain
our methodology, but it could be easily extended to storage systems
with more tiers. This discussion also applies to caching.
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ρ = λ × E[s]. (5)

Combining Eqs. 2, 3, and 5 into Eq. 4, we have:

RT = h × E[s1] + (1 − h) × E[s2]
+ λ × (

h × E[s1]2 + (1 − h) × E[s2]2
)

1 − λ × (
h × E[s1] + (1 − h) × E[s2]

) . (6)

From Eq. 6, it is clear that within each time window tw, the
average user response time RT is a function of the average
arrival intensity of user requests λ, the mean service time for
each tier (E[s1] and E[s2]), and the fast tier hit rate h.

3.3.2 NeuQ scheduler

Co-scheduling data analytics work may have a performance
impact on the user traffic. From our performance model
above, the first three parameters (λ, E[s1], and E[s2]) only
depend on the characteristics of user workload and perfor-
mance of hardware devices, so co-scheduling has no impact
on these parameters. However, co-scheduling data analytics
work does impact the fast tier hit rate h because it evicts the
user working set from the fast tier and reduces the probability
of serving user requests in the fast tier. Therefore, in order
to meet the user SLO (RTtarget ), the fast tier hit rate of user
traffic needs to be maintained above a threshold that is com-
puted from the user SLO and arrival intensity. We compute
the threshold (htarget ) based on Eq. 6 by representing the fast
tier hit rate as a function of the user response time target and
arrival intensity:

htarget = λ × (RTtarget + E[s1] − E[s2]) − √
P

2λ × (E[s1] − E[s2]) , (7)

where:

P = λ2 × (RT 2
target + 2RTtarget × E[s1]

+ 2RTtarget × E[s2] + (E[s1] − E[s2])2)
− 2λ × (RTtarget − E[s1] − E[s2]) + 1. (8)

Note that the fast tier hit rate depends on both user response
time target and arrival intensity because the latency is com-
posed of service time and queuing waiting time, e.g., during
periods of high arrival intensity, a higher fast tier hit rate is
needed to achieve the same response time target than during
low arrival intensity periods.

Now the question becomes how to make scheduling deci-
sions such that the data analytics work can be completed
as fast as possible without affecting the user SLO. Because
the data analytics work is usually measured by the average
completion time of submitted jobs or the throughput, it is
important to quantify and maximize the (cumulative) time

slot allocated to the analytics work within each time window
tw. Figure 2 and its corresponding analysis in Sect. 2 shows
the benefit of explicit warm up compared to no explicit warm
up. When the system is not as busy with user requests, there
are 2 choices: (i) scheduling the data analytics work for time
tDA, which reduces the fast tier hit rate or (ii) explicit warm-
ing up the fast tier, which recovers the fast tier hit rate.

In order to maximize the time slot allocated to data analyt-
ics work but maintain the fast tier hit rate above the threshold
htarget , different scheduling choices need to be made based
on the arrival intensity in the near future. Recall that the future
arrival intensity can be predicted using the neural network
model introduced in Sect. 3.2. Therefore, we can estimate
the fast tier hit rate hDA after scheduling for tDA time units
data analytics work:

hDA = hbegin − tDA

tevict
, (9)

where hbegin is the fast tier hit rate at the beginning of a time
window and tevict is the time to evict the entire user working
set from a fully warmed up fast tier. Since the data analytics
work is very intensive, tevict can be approximated by the time
to explicitly warm up the fast tier from completely cold to
fully warmed up, which we define as twarmup1, this can be
easily obtained by a quick profiling experiment such as the
one shown in Fig. 2. Assuming that the remaining of idle
time is used for explicit warm up of the fast tier, the fast tier
hit rate hwarmup is:

hwarmup

= min
{
hbegin + (1 − λ × E[s]) × tw − tDA

twarmup1
, hmax

}
,

(10)

recall that hmax is the maximum value of the fast tier hit rate.
In addition, serving user requests also changes the fast tier
hit rate (no explicit warm up):

huser = hbegin + λ × E[s] × tw
twarmup2

, (11)

where twarmup2 is the time to non-explicitly warm up the fast
tier from completely cold to fully warmed up, which can be
easily obtained by a quick profiling experiment. Combining
Eqs. 9, 10, and 11, we have the fast tier hit rate at the end
of the time window hend :

hend = min

{
hbegin− tDA

twarmup1
+ (1−λ × E[s]) × tw−tDA

twarmup1

+ λ × E[s] × tw
twarmup2

, hmax

}
. (12)
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Since each time window is very small, we assume that the
fast tier hit rate only changes at the end of the window, but
stays the same within the window. To meet the SLO, the fast
tier hit rate needs to be maintained at or above the threshold
i.e., hend ≥ htarget , therefore

tDA ≤ ((hbegin − htarget ) × twarmup1 × twarmup2

+ (1 − λ × E[s]) × tw × twarmup2

+ λ × E[s] × tw × twarmup1) × 1

2 × twarmup2
. (13)

From the above inequality, we can quantify the maximum
amount of time to be allocated to data analytics work without
violating user SLOs. The co-scheduling decisions are based
on Eq. 13. We stress that this inequality is critical for the
success of workload co-scheduling as it regulates the amount
of data analytics work that the system can systain in order to
not violate the user SLO.

Because the targeted fast tier hit rate changes with the
arrival intensity, scheduling decisions need to be evaluated
well in advance. Here we determine how early a scheduling
decision needs to be evaluated such that there is enough time
to fully warm up the fast tier during this period. We define
tadvance as:

tadvance = (hmax − hcurrent ) × twarmup1, (14)

where hcurrent is the current fast tier hit rate. Based on the
predicted arrival intensity after tadvance, a correct scheduling
decision (the time allocated to data analytics work) for the
current time window can be made.

In addition, based on the time slot allocated to the data
analytics work (Eq. 13), we can estimate the throughput of
data analytics work ThroughputDA as follows:

ThroughputDA = tDA

sDA
(15)

where sDA is the average service time of data analytics work.
If the scheduling target is meeting deadlines for data ana-

lytics work, then the throughput of data analytics work needs
to meet the above requirements. Assume that the through-
put requirement is Throughputtarget , then we have the
following:

ThroughputDA = tDA

sDA
≥ Throughputtarget , (16)

therefore,

tDA ≥ Throughputtarget ∗ sDA. (17)

The above inequality indicates the minimum amount of time
to be allocated to the data analytics work in order to meet the
deadlines.

3.3.3 NeuQ scheduler with capacity planning

The interesting question is whether it is possible to meet
both user response time SLO RTtarget and data analyt-
ics work throughput SLO Throughputtarget as in practice,
each workload usually has its own performance target. Such
scheduling target is achievable through capacity planning,
thanks to the elastic storage techniques [25]. When the size
of fast-tier increases, serving data analytics work has less
impact on evicting user working set that resides in fast-
tier, so increasing the capacity of fast-tier allows scheduling
more aggressively data analytics work during high user traf-
fic intensity periods. Let’s denote vevict as the speed of user
working set being evicted from the fast tier. vevict can be com-
puted as: vevict = δh

t f
, where δh is the change of user work hit

rate during the data analytics work serving time period t f .
Recall tevict is the time to evict the entire user working set
from a fully warmed up fast-tier (with hit rate of hupper = 1)
to completely cold (with hit rate of hlower = 0), so we have:
vevict = hupper−hlower

tevict
= 1

tevict
. Let’s denote fast-tier capacity

as C , then the time to evict all data from fast-tier tall can be
computed as: tall = C

μc
, where μc is the service rate of the

fast tier. Since the time to evict all data is equal to the time
to evict user working set from fully cached to empty, we
have:

tevict = C

μc
. (18)

For each time window:

hend = hbegin+ ρ ∗ tw
twarmup1

+ (1−ρ) ∗ tw−tDA

twarmup2
− tDA

tevict
. (19)

Together with Eqs. 13, 17, 18, and 19, it is possible to com-
pute the minimum fast-tier capacity to achieve the SLOs of
both user work and data analytics work.

4 Performance evaluation

An integral part of the effectiveness of workload co-
scheduling is the ability to predict accurately the upcoming
user workload. We first evaluate the accuracy of the pre-
diction model and then compare the performance of the
proposed approach with other methods in the literature. We
also show several scenarios that illustrate the effectiveness of
NeuQ. Finally, we demonstrate NeuQ can support different
scheduling targets.
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Fig. 6 Traffic predictions from neural networks with different predic-
tion lengths.

4.1 Traffic prediction

We drive our simulations using the storage workload in [5]
and the Wikipedia trace that is shown in Fig. 4 (both work-
loads with granularity of 1min). We trained neural networks
for the two workloads and used the trained models to pre-
dict incoming traffic for the time period of the next three
upcoming days. We also illustrate the model with two differ-
ent prediction lengths, i.e., 4 and 24h. Here, if the prediction
length equals to K hours, the neural network directly predicts
the arrival intensities in the next K hours. In the proposed
NeuQ scheduler, the traffic intensity information is usually
needed only a few hours ahead, so such prediction length
can fully satisfy the scheduler’s needs. Consistent with the
workload analysis of Sect. 3.1, for each observation during
training, we select the observations from themost recent time
window and the one from one week ago as features. In Fig. 6,
we show the traffic predictions with two prediction lengths,
as well as the actual traffic. The figure illustrates that for both
of the storage andWikipedia traces, the shorter the prediction
length, the more accurate the predictions. Yet, even predict-
ing 24h ahead, the overall prediction accuracy is still good.

To quantify better the quality of the two prediction lengths,
we use the absolute percentage error (APE) metric which is
defined as:

APE = |Prediction − Actual|
Actual

× 100%. (20)

When APE is close to 0, it suggests an accurate prediction.
Figure 7 illustrates the CDFs of the absolute percentage error
for the two traffic predictions. For the storage trace, Fig. 7a
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Fig. 7 CDF of absolute percentage error of the neural network predic-
tions

shows that the 80 percentile of the APE for the 4 and 24-h
predictions, is less than 12 and 18% respectively. For the
Wikipedia trace, Fig. 7b shows that for the 4-h prediction
length, almost all the APEs are no more than 10%, i.e., pre-
dictions are very accurate. For the 24-h case, over 70% of
the APEs are less than 10%, and nearly 100% of them are
no more than 20%.

4.2 Scheduler comparisons

Here, we compare our NeuQ scheduler with two other state-
of-the-art scheduling approaches in the literature. We also
compare to a scheduling approach that only uses neural
network traffic prediction without any help from queueing
models.

– On-line Feedback
The on-line feedback method [26] collects measure-
ments during the most recent time window to check
whether user performance requirements are met or vio-
lated. If met and provided that the system is in a low
utilization state in the current window, then data analytics
work is added. In the interest of showing the maximum
benefit of this scheduler, we assume that we know all
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future upcoming workload, i.e., we are certain about the
length of low/high utilization times due to user workload
a priori.

– State Prediction
The state change prediction basedmethod [5] divides the
traffic into high/low states, based on the average arrival
intensity. It makes use of a Markovian Modulated Pois-
sonProcess (MMPP)model to predictwhen the high state
starts and ends. Based on the state prediction, thismethod
only schedules the data analytics work in the low utiliza-
tion state,while pro-actively warming up the fast tier with
the active user working set right before the arrival of a
high utilization state.

– NeuralNet Scheduler
TheNeuralNet scheduler decides the amount of data ana-
lytics work to schedule based on the user arrival intensity
prediction. Here the amount of data analytics work to
schedule in each time window increases/decreases lin-
early with the predicted user arrival intensity in that time
window. For example, if for the current window w1, λ1
is the average user arrival intensity, and the amount of
scheduled data analytics work is n1, then for the incom-
ing time window w2 with predicted average user arrival
intensity equal to λ2, the NeuralNet scheduler schedules
λ1
λ2

× n1 data analytics work in w2. Intuitively, if the user
arrival intensity is predicted to increase, then the Neural-
Net scheduler schedules less data analytics work in the
incoming time window. Otherwise, more data analytics
work is scheduled.

– NeuQ Scheduler
The NeuQ scheduler makes scheduling decisions (how
much and when to schedule data analytics work) based
on the hybrid model developed in Sect. 3.

We conduct trace-driven simulations on the storage work-
load in [5] and the Wikipedia user traffic (days 26, 27,
and 28 in Fig. 4). Because the NeuQ scheduler and the
state prediction based scheduler depend on the accuracy
of their workload model, we illustrate in Fig. 8 how well
the MMPP model predicts changes in system state as well
as the neural network prediction, both methods are quite
effective.

We start by comparing how fast data analytics work each
method can complete, given an SLO for user performance.
We assume that the service times for the fast and slow tiers
are exponential distributed, and that the average service time
between the two tiers differs by two orders of magnitude.
For the data analytics work, we assume that the average time
to finish one unit of work equals to the mean slow tier ser-
vice time andwe use throughput tomeasure how fast it can be
scheduled. Figure 9 illustrates the user RTs and data analytics
throughputs for the four policies. In each graph, the hori-
zontal lines represent the pre-defined user SLOs. Figure 9a
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Fig. 8 Storage system and Wikipedia user traffic for simulation, with
the state changes and traffic predictions

shows that duringheavyuser trafficperiods (e.g., the 6th, 30th
and 54th h), user SLOs are consistently violated due to the
aggressive scheduling of data analytics. Similar phenomena
are observed in Fig. 9e. The system recovers after the viola-
tion is detected. The MMPP-based state prediction method,
see Fig. 9b, f, ismore conservative and refrains from schedul-
ing data analyticsworkwhile the system is in high utilization.
Since this scheduler pro-activelywarmsup the fast tier, it con-
tains SLO violations. However, the stochastic nature of the
underlying Markovian-based model results in unavoidable
inaccuracies for the exact time that the systemchanges,which
results in SLO violations when the high state approaches. In
Fig. 9c, g, the NeuralNet scheduler is evaluated. The figures
show that although less data analytics work is scheduled in
heavy user traffic periods than during hours of low traffic, the
user SLO is still violated. Figs. 9d and h illustrate the per-
formance of NeuQ. With NeuQ, there are no SLO violations
while data analytics work is served aggressively, and with
even higher throughput as with on-line feedback. We also
list the percentage of user SLO violations, throughput of data
analytics, and its coefficient of variation (CV) for the above
four policies in Table 1.NeuQ achieves 2× to 3× higher data
analytics throughput without any user SLO violation,while
for the other policies, the percentage of user SLO viola-
tions is much higher and still less efficient on data analytics
throughput.

To further illustrate the advantages of our proposed
method, we present the CCDFs that illustrate the tails of
average user response times of each time window in Fig. 10.
NeuQ manages to strictly respect the user SLO (1000ms for
the storage trace and 75ms for the Wikipedia trace).
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(e) Wikipedia Trace: On-line Feedback(a) Storage Trace: On-line Feedback
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(f )Wikipedia Trace: State Prediction(b) Storage Trace: State Prediction
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(g) Wikipedia Trace: NeuralNet Scheduler(c) Storage Trace: NeuralNet Scheduler
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Fig. 9 Performance comparisons via simulation

4.3 Model effectiveness

The performance prediction model that is developed in
Sect. 3 is the core of the proposed NeuQ scheduler. Recall
that the model allows us to regulate the amount of data ana-
lytics work to be co-scheduled such that a certain SLO is
met for the user work. Similarly, if one needs to increase the
throughput of data analytics, this would result in affecting
the user RT as well.

Figure 11 illustrates this relationship between user RT (x-
axis) and data analytics throughput (y-axis) for the storage
andWikipediaworkloads. The figure plots the relationship of
these measures as obtained both by simulation and by using
the prediction model of Sect. 3 (Eq. 15). Both model and
simulation numbers are in good agreement, well-capturing
the relationship trends of both measures. Further, by using
Fig. 11 one could estimate the maximum data analytics

throughput to be achieved given a certain SLO or conversely
the sustained average user RT if a certain throughput for data
analytics work is expected.

4.4 Different scheduling targets

NeuQ can be used to support different scheduling targets.We
first demonstrate the scheduling target scenario of finishing
the data analytics work by the pre-defined deadlines while
preserving the performance of user workload as much as
possible. We use Storage trace for evaluation and show two
different scheduling targets:

– Scheduling Target 2: the deadline of data analytics work
is 15min for 500units ofwork. TheSLOof userworkload
is SLO 1350ms.
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Table 1 Average performance analysis for simulations

Storage trace

% User SLO T PUTDA CV of
Violations (/min) T PUTDA

On-line feedback 68.29 18.24 0.42

State prediction 11.11 7.58 1.71

NeuralNet scheduler 32.41 15.53 0.52

NeuQ scheduler 0.00 26.45 0.23

Wikipedia trace

% User SLO T PUTDA CV of

Violations (/min) T PUTDA

On-line feedback 40.05 257.38 0.16

State prediction 11.81 110.99 1.45

NeuralNet scheduler 15.51 240.71 0.21

NeuQ scheduler 0.00 271.69 0.13
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Fig. 10 CCDF of average user response time

– Scheduling Target 2: the deadline of data analytics work
is 1.5h for 1500 units of work. The SLO of user workload
is SLO 850ms.

Scheduling Target 1 has a tighter deadline for data analytics
work while relatively loose SLO for the user workload, and
Scheduling Target 2 is on the contrary. Both scheduling sce-
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Fig. 11 Throughput of data analytics versus user response time:model
(Eq. 15) and simulation (NeuQ scheduler)

narios consider meeting the deadline of data analytics work
as first priority and meeting SLO of user workload as a sec-
ondary target. The data analytics work that is not finished by
the deadline is dropped so that its impact is not propagated
to the future analytics work.

The results are presented in Fig. 12. The left y-axis is the
user response time measured in ms and right y-axis is the
percentage of the finished data analytics work. The x-axis
represents the elapsed time (3-day period). For Target 1 (left
column of graphs), the results suggest that only NeuQ can
meet the deadlines of data analytics work (there are a few
exceptions, but very few and all above 80%) and all other
methods fail. Meanwhile, NeuQ also consistently archives
the SLO of user workload, this is not the case for other
methods. Target 2 (right column of graphs) shares the same
requirement for meeting deadlines of data analytics work.
Given the stricter SLO, none of the methods can meet the
deadlines of data analytics work while also achieving the
SLO for user workload. However, it is clear thatNeuQ results
in smallest violation of the SLO of user workload among
thesemethods. The above experiments suggest thatNeuQ has
great use potential in reaching other targets. For the experi-
ments presented in Fig. 12, especially for Scheduling Target
1, it is necessary to tolerate high user SLOs tomeet the 15min
deadline.

Then we evaluate the scheduling target scenario of
meeting both user response time target and data analyt-
ics work throughput target through capacity planning. We
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(e) Scheduling Target 2: On-line Feedback(a) Scheduling Target 1: On-line Feedback
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(f) Scheduling Target 2: State Prediction(b) Scheduling Target 1: State Prediction
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(g) Scheduling Target 2: NeuralNet Scheduler(c) Scheduling Target 1: NeuralNet Scheduler
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(d) Scheduling Target 1: NeuQ Scheduler (h) Scheduling Target 2: NeuQ Scheduler

Fig. 12 Performance comparisons via simulation. Scheduling Target 1
(left column of graph): the deadline of data analytics work is 15min for
500 units of work and the user workload SLO is 1350ms. Scheduling

Target 2 (right column of graph): the deadline of data analytics work is
1.5h for 1500 units of work and the user workload SLO is 850ms

use Wikipedia trace for evaluation and show six different
scheduling targets:

– SchedulingTarget1: the deadline of data analyticswork is
10min for 3200 units of work. The SLO of user workload
is SLO 75ms.

– SchedulingTarget2: the deadline of data analyticswork is
10min for 3600 units of work. The SLO of user workload
is SLO 75ms.

– SchedulingTarget3: the deadline of data analyticswork is
10min for 4000 units of work. The SLO of user workload
is SLO 75ms.

– SchedulingTarget4: the deadline of data analyticswork is
10min for 3200 units of work. The SLO of user workload
is SLO 105ms.

– SchedulingTarget5: the deadline of data analyticswork is
10min for 3600 units of work. The SLO of user workload
is SLO 105ms.

– SchedulingTarget6: the deadline of data analyticswork is
10min for 4000 units of work. The SLO of user workload
is SLO 105ms.

These scheduling targets represent a variety selection of dif-
ferent user workload SLO and data analytics work SLO
combinations. The results are presented in Fig. 13. The left
y-axis is the user response time measured in ms and right
y-axis is the percentage of the finished data analytics work.
The x-axis represents the elapsed time in 3-day period. Due
to the interest of space, the results of other methods are not
shown here. Because other methods do not take into consid-
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(f) Scheduling Target 5(b) Scheduling Target 2
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(g) Scheduling Target 6(c) Scheduling Target 3

Fig. 13 User response time and finished data analytics work under various scheduling targets

eration of both user workload SLO and data analytics work
SLO, as expected, the SLOs could not be met at the same
time. For NeuQ, it consistently archives the SLOs of both
user workload and data analytics work in different scenar-
ios, see Fig. 13. We also plot the user working set evicting
speed from fast-tier and fast-tier capacity demands overtime
in Figs. 14 and 15 respectively. These plots show how NeuQ
correctly estimates the user working set evicting speed and
fast-tier capacity demands under different system load so that
to plan in advance the fast-tier capacity to accommodate both
user workload and data analytics work in each time window.

5 Related work

Analytical and simulation models have been widely used
to quantify the impact of workload changes to application
and/or system performance, see [5,9,13,27–30] and ref-

erences therein. [5] uses a probabilistic model to define
“workload states” via hierarchical clustering. After state dis-
covery, the observed workload is used to parameterize a
Markov Modulated Poisson Process that can accurately pre-
dict the duration of each state as well as transitions from
state to state. ARMA/ARIMA [16] have been adopted in [3]
to predict the user traffic overtime in order to achieve cost-
efficient capacity planning. However, this prediction method
is limited to the linear basis function.

Machine learning techniques are used to overcome the
limitations of the linear basis function of ARMA/ARIMA
models,and are used for effective characterization of TCP/IP
[31] and web server views [32]. Machine learning tech-
niques [33] have been also used for performance prediction of
total order broadcast, a key building block for fault-tolerant
replicated systems. Ensembles of time series models have
been used to project disk utilization trends in a cloud set-
ting [22].
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Fig. 14 User working set evicting speed from fast-tier overtime with different scheduling targets
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Fig. 15 Fast-tier capacity demands overtime with different scheduling targets

In general, analytical models are restricted by their simpli-
fied assumptionswhilemachine learningmodels are effective
in predicting performance for scenarios that have already
been observed in the past and fail when new patterns are
observed. A gray-box performance model that combines
analytical modeling with machine learning has been pro-
posed [34]. The authors advocate the use of analyticalmodels
to lower the initial training time of machine-learning based
predictors or enhance the accuracy of the analytic model by
adjusting its error with the help of machine learning. In con-
trast to this work, what we propose here is the usage of
machine learning to accurately predict specific inputs of a
queueing model, which in turn we use to derive scheduling
decisions.

6 Conclusion

Co-scheduling data analytics workloads with user workloads
in multi-tiered storage systems is a challenging problem.
In this paper, we propose NeuQ scheduler, a hybrid co-
scheduling approach using machine learning and queueing
models, that applies neural networks to predict user work-
load intensities and then appropriately adjusts the input to a
queueing model in order to consistently meet user SLOs.
Trace-driven simulations show that NeuQ can effectively
reach performance targets under different userworkloads and
different performance/scheduling targets from commercial
systems.

Acknowledgments This work is supported by NSF Grant CCF-
1218758.

References

1. Herodotou, H., Lim, H., Luo, G., Borisov, N., Dong, L., Cetin,
F.B., Babu, S.: Starfish: a self-tuning system for big data analytics.
CIDR 11, 261–272 (2011)

2. Cohen, J., Dolan, B., Dunlap, M., Hellerstein, J.M., Welton, C.:
Mad skills: newanalysis practices for big data. Proc.VLDBEndow.
2(2), 1481–1492 (2009)

3. Zhuang, Z., Ramachandra, H., Tran, C., Subramaniam, S., Botev,
C., Xiong, C., Sridharan, B.: Capacity planning and headroom
analysis for taming database replication latency: experiences with
linkedin internet traffic. In: Proceedings of the 6th ACM/SPEC
ICPE, pp. 39–50 (2015)

4. Urdaneta, G., Pierre, G., van Steen,M.:Wikipedia workload analy-
sis for decentralized hosting. Elsevier Comput. Netw. 53(11),
1830–1845 (2009)

5. Xue, J., Yan, F., Riska, A., Smirni, E.: Storage workload isolation
via tier warming: howmodels can help. In: Proceedings of the 11th
ICAC, pp. 1–11 (2014)

6. Peters, M.: 3PAR: optimizing I/O service levels. ESGWhite Paper
(2010)

7. Laliberte, B.: Automate and optimize a tiered storage
environment—FAST! ESG White Paper (2009)

8. Amazon ElastiCache. http://aws.amazon.com/elasticache.
Accessed 11 Mar 2015

9. Guerra, J., Pucha, H., Glider, J.S., Belluomini, W., Rangaswami,
R.: Cost effective storage using extent based dynamic tiering. In:
FAST, pp. 273–286 (2011)

10. Oh, Y., Choi, J., Lee, D., Noh, S.H.: Caching less for better per-
formance: balancing cache size and update cost of flash memory
cache in hybrid storage systems. In: FAST, pp. 313–326 (2012)

123

http://aws.amazon.com/elasticache


Cluster Comput (2016) 19:849–864 863

11. FIO Benchmark. http://www.freecode.com/projects/fio. Accessed
11 Mar 2015

12. Bjorkqvist, M., Chen, L.Y., Binder, W.: Opportunistic service pro-
visioning in the cloud. In: 5th IEEE CLOUD, pp. 237–244 (2012)

13. Ansaloni, D., Chen, L.Y., Smirni, E., Binder, W.: Model-driven
consolidation of java workloads onmulticores. In: 42nd IEEE/IFIP
DSN, pp. 1–12 (2012)

14. Birke, R., Björkqvist, M., Chen, L.Y., Smirni, E., Engbersen, T.:
(Big)data in a virtualized world: volume, velocity, and variety in
cloud datacenters. In: FAST, pp. 177–189 (2014)

15. Leemis, L.M., Park, S.K.: Discrete-Event Simulation: A First
Course. Pearson Prentice Hall, Upper Saddle River (2006)

16. George, B.: Time Series Analysis: Forecasting & Control, 3rd edn.
Pearson Education India, Gurgaon (1994)

17. Goodwin, P.: The holt-winters approach to exponential smoothing:
50 years old and going strong. In: Foresight, pp. 30–34 (2010)

18. Frank, R.J., Davey,N.,Hunt, S.P.: Time series prediction and neural
networks. J. Intell. Robot. Syst. 31(1–3), 91–103 (2001)

19. Hassoun, M.H.: Fundamentals of Artificial Neural Networks, 1st
edn. MIT Press, Cambridge (1995)

20. Hill, T., O’Connor, M., Remus, W.: Neural network models for
time series forecasts. Manag. Sci. 42(7), 1082–1092 (1996)

21. Demuth, H., Beale, M., Hagan, M.: Neural network toolboxT M 6,
User Guide

22. Stokely,M.,Mehrabian,A.,Albrecht, C., Labelle, F.,Merchant,A.:
Projecting disk usage based on historical trends in a cloud environ-
ment. In: Proceedings of the 3rd Workshop on ScienceCloud, pp.
63–70 (2012)

23. Ross, S.M.: Introduction to Probability and Statistics for Engineers
and Scientists. Academic Press, Cambridge (2009)

24. Tijms, H.C.: A first course in stochastic models. Wiley, New York
(2003)

25. Lim, H.C., Babu, S., Chase, J.S.: Automated control for elastic
storage. In: Proceedings of the 7th ICAC. ACM, pp. 1–10 (2010)

26. Cucinotta, T., Checconi, F., Abeni, L., Palopoli, L.: Self-tuning
schedulers for legacy real-time applications. In: Proceedings of the
5th EuroSys, pp. 55–68 (2010)

27. Ferrer, A.J., HernáNdez, F., Tordsson, J., Elmroth, E., Ali-Eldin,
A., Zsigri, C., Sirvent, R., Guitart, J., Badia, R.M., Djemame, K.,
et al.: Optimis: a holistic approach to cloud service provisioning.
Futur. Gener Comput. Syst. 28, 66–77 (2012)

28. Singh, R., Shenoy, P., Natu, M., Sadaphal, V., Vin, H.: Analytical
modeling for what-if analysis in complex cloud computing appli-
cations. ACM SIGMETRICS Perform. Eval. Rev. 40(4), 53–62
(2013)

29. Zhang, Q., Cherkasova, L., Smirni, E.: A regression-based analytic
model for dynamic resource provisioning ofmulti-tier applications.
In: Proceedings of the 4th ICAC, pp. 27–36 (2007)

30. Yan, F., Riska, A., Smirni, E.: Busy bee: how to use traffic infor-
mation for better scheduling of background tasks. In: Proceedings
of the 3rd ACM/SPEC International Conference on Performance
Engineering, pp. 145–156 (2012)

31. Cortez, P., Rio,M., Rocha,M., Sousa, P.:Multi-scale internet traffic
forecasting using neural networks and time series methods. Expert
Syst. 29(2), 143–155 (2012)

32. Li, J., Moore, A.W.: Forecasting web page views: methods and
observations. J. Mach. Learn. Res. 9(10), 2217–2250 (2008)

33. Couceiro, M., Romano, P., Rodrigues, L.: A machine learning
approach to performance prediction of total order broadcast proto-
cols. In: 4th IEEE SASO, pp. 184–193 (2010)

34. Didona, D., Quaglia, F., Romano, P., Torre, E.: Enhancing per-
formance prediction robustness by combining analytical modeling
andmachine learning. In: Proceedings of the 6thACM/SPECICPE,
pp.145–156 (2015)

Ji Xue received his B.S. degree
in Computer Science from Bei-
hang University (BUAA) in
2012.Currently he is aPh.D. can-
didate of Computer Science at
theCollege ofWilliam andMary.
His current research interests are
system performance evaluation,
cloud computing, machine learn-
ing, and data mining, especially
in time series. He is a member of
IEEE.

Feng Yan received his B.S.
degree in Computer Science
from Northeastern University in
2008 and M.S. degree in Com-
puter Science from The College
of William and Mary in 2011.
Currently he is a Ph.D. candidate
of Computer Science at the Col-
lege of William and Mary. His
current research interests are big
data, cloud computing, resource
management, scheduling, perfor-
mance modeling and evaluation,
and storage systems. He is a
member of IEEE and ACM.

Alma Riska received her Ph.D.
in Computer Science from the
College of William and Mary,
in Williamsburg, VA, in 2002.
She was a Research Staff Mem-
ber at Seagate Research in
Pittsburgh, Pennsylvania and a
Consultant Software Engineer
at EMC in Cambridge, Massa-
chusetts. She is currently Princi-
pal Software Engineer at NetApp
in Waltham, Massachusetts. Her
research interests are on perfor-
mance and reliability modeling
of computer systems, in general,

and storage systems, in particular. The emphasis of her work is on
applying analytic techniques and detailed workload characterization in
designing more reliable and better performing storage systems that can
adapt their operating into the dynamically changing operational envi-
ronment. She is a member of IEEE and ACM.

123

http://www.freecode.com/projects/fio


864 Cluster Comput (2016) 19:849–864

Evgenia Smirni is the Sidney
P. Chockley professor of com-
puter science at the College of
William and Mary, Williams-
burg, VA. She holds a diploma
degree in computer science and
informatics from the Univer-
sity of Patras, Greece (1987)
and a Ph.D. in computer sci-
ence from Vanderbilt University
(1995). Her research interests
include queuing networks, sto-
chastic modeling, resource allo-
cation, storage systems, cloud
computing, workload character-

ization, and modeling of distributed systems and applications. She is
an ACM Distinguished scientist, and a member of the IEEE and the
Technical Chamber of Greece.

123


	Scheduling data analytics work with performance guarantees: queuing and machine learning models in synergy
	Abstract
	1 Introduction
	2 Motivation
	3 Methodology
	3.1 Workload
	3.2 Neural network model
	3.3 Co-scheduling
	3.3.1 Performance model for user traffic in a tiered storage system
	3.3.2 NeuQ scheduler
	3.3.3 NeuQ scheduler with capacity planning


	4 Performance evaluation
	4.1 Traffic prediction
	4.2 Scheduler comparisons
	4.3 Model effectiveness
	4.4 Different scheduling targets

	5 Related work
	6 Conclusion
	Acknowledgments
	References




