
Proactive Management of Systems via Hybrid Analytic Techniques

Ji Xue
College of William and Mary

Williamsburg, VA, USA
xuejimic@cs.wm.edu

Feng Yan
College of William and Mary

Williamsburg, VA, USA
fyan@cs.wm.edu

Alma Riska
NetApp

MA, USA
alma.riska@netapp.com

Evgenia Smirni
College of William and Mary

Williamsburg, VA, USA
esmirni@cs.wm.edu

Abstract—In today’s scaled out systems, co-scheduling data
analytics work with high priority user workloads is common as
it utilizes better the vast hardware availability. User workloads
are dominated by periodic patterns, with alternating periods
of high and low utilization, creating promising conditions to
schedule data analytics work during low activity periods. To
this end, we show the effectiveness of machine learning models
in accurately predicting user workload intensities, essentially
by suggesting the most opportune time to co-schedule data
analytics work. Yet, machine learning models cannot predict
the effects of performance interference when co-scheduling is
employed, as this constitutes a “new" observation. Specifically,
in tiered storage systems, their hierarchical design makes
performance interference even more complex, thus accurate
performance prediction is more challenging. Here, we quantify
the unknown performance effects of workload co-scheduling
by enhancing machine learning models with queuing theory
ones to develop a hybrid approach that can accurately predict
performance and guide scheduling decisions in a tiered storage
system. Using traces from commercial systems we illustrate
that queuing theory and machine learning models can be used
in synergy to surpass their respective weaknesses and deliver
robust co-scheduling solutions that achieve high performance.

I. INTRODUCTION

High utilization of resources is a design target of scaled-
out systems. Often in such systems, data analytics workloads
co-exist with high priority user workloads that operate
within strict service level objectives (SLOs). Data analytics
workloads, e.g., personalized advertising, sentiment analy-
sis, product recommendation, database replication, dominate
many systems today. Different than traditional internal work
(e.g., garbage collection, snapshots, upgrades), data analytics
work requires faster reaction in order to provide timely
information [1], [2], [3], e.g., a delayed advertisement event
update could cause reduced income or a product recom-
mendation should occur before the user leaves the site.
Since data analytics to enhance user experience and regular
user traffic share the same hardware, their effective resource
management can greatly enhance business value and user
satisfaction.

Scheduling user traffic and data analytics work in the
same system is a challenging task. Scheduling data analytics
too aggressively may cause user traffic to suffer from SLO
violations. If scheduled too conservatively, data analytics
work could not finish in time, thus could loose its value.

With user workload traffic that is repeatable and periodic
across different time scales [3], [4], [5], it is natural to
interleave data analytics work with user workload at periods
of low user demands.

Key to the effective deployment of any policy that inter-
leaves data analytics with SLO-bound user level work, is the
prediction of fluctuations in the user workload and especially
identifying a priori heavy or spiky loads. Here, we pro-
pose NeuQ, a neural network/queuing hybrid solution: the
queueing model that is the basis of co-scheduling decisions
is significantly enhanced by neural networks to improve
its accuracy. The queueing models that we use predict the
magnitude of the potential performance interference of co-
scheduling user and data analytics workloads. An important
parameter of the queueing model that greatly affects its
prediction accuracy is a priori knowledge of the upcoming
arrival intensity, this is successfully provided by the neural
network.

To illustrate the effectiveness of NeuQ, we consider tiered
storage systems as a use case. In storage systems flash-
based technologies (e.g., DRAM, SSD) are widely integrated
into data centers and scaled-out cloud storage systems [6],
[7], [8]. Despite their performance advantages over the
traditional disk- or tape-based storage technologies (e.g.,
HDD), their much higher cost per byte prevents flash-based
storage technologies to completely replace traditional disk or
tape based storage devices. Hybrid, tiered architectures that
integrate flash with various disk technologies are common
alternatives.

Tiered storage systems adopt a hierarchical design: fast
tiers using flash storage devices aiming at boosting perfor-
mance and slow tiers using HDD devices for the purpose
of balancing capacity and cost, as well as for improving
reliability [9], [10]. Their efficiency is based on moving data
to the right tier based on statistics of data access frequencies.
Data moving, i.e., what portion of data ought to be transfered
and when this should take place, affect greatly performance
as access times and capacities across different tiers differ
by orders of magnitude. This greatly depends on how the
upcoming workload intensity is known in advance and is
vital for NeuQ’s success in offering co-scheduling decisions,
as the effects of tier warming greatly depend on timely
information on this measure.

2015 International Conference on Cloud and Autonomic Computing

/15 $31.00 © 2015 IEEE

DOI 10.1109/ICCAC.2015.31

137

2015 International Conference on Cloud and Autonomic Computing

978-1-4673-9566-3/15 $31.00 © 2015 IEEE

DOI 10.1109/ICCAC.2015.31

137

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on June 19,2021 at 06:14:29 UTC from IEEE Xplore. Restrictions apply.

NeuQ guarantees user SLOs while maximizing data ana-
lytics throughput. To this end, we do not treat data analytics
simply as a best effort workload. Instead, our aim is to
schedule it as aggressively as the system allows without
violating user SLOs. We stress that the above performance
targets are by no means a limitation of the proposed hybrid
model. Incorporating different targets (e.g., deadlines) for
completion of data-analytics workload are also easily han-
dled, as we show here.

The proposed approach is fully automatic and robust.
We validate its correctness and efficiency via trace-driven
simulation using two case studies: 1) enterprise traces from
Wikipedia [4] and 2) arrival traces in a scaled-out storage
back-end of a mid-size web service provider that we have
also used in prior work1. Our extensive experimental eval-
uation shows that the prediction of the user traffic arrival
intensity and data analytics completion time is remarkably
accurate. More importantly, compared to other state-of-the-
art scheduling approaches, the proposed solution strictly
meets user SLOs while serving aggressively data analytics
workloads.

This paper is organized as follows. Section II presents
experimental numbers of a multi-tiered storage system that
motivate this work. Section III presents the hybrid model:
the machine learning model for traffic intensity prediction
and the queueing model. Section IV presents extensive
experimental evaluation via trace driven simulations to verify
the correctness and effectiveness of the proposed method-
ology. Section V discusses related work. We conclude in
Section VI.

II. MOTIVATION

We showcase the challenges of performance interference
by presenting some results from an experimental testbed that
consists of a server with a disk enclosure attached to it,
providing data services to a host. Its memory is 12GB and
the disk enclosure has 12 SATA 7200RPM HDDs of 3TB
each. In our experiments the system memory emulates the
fast tier and the disk enclosure is used as the slow tier where
the bulk of the data resides. The workload is generated and
measured at the host machine. We use fio [11] as the IO
workload generator and generate two types of IO workloads,
user and data analytics, which differ on the active working
set size rather than on their access patterns. The working
set size for the user workload is 1GB such that it always
fits into the memory of the server that emulates the fast tier.
The data analytics work has an active working set of 24GB,
i.e., it does not fit fully into the fast tier and the large slow
tier is accessed to retrieve the data. The access pattern for
both user and data analytics workload is 100% small random
reads to emulate common enterprise workloads that benefit

1The Wikipedia traces are publicly available [4]. Due of confidentiality
agreements, the storage system trace or provider details can not be made
publicly available.

from prefetching (warm-up) only if the working set can fully
(or almost) fit in the high performing tier (i.e., the SSD). We
also assume that the system is provisioned in such a way
that the fast tier can fit the entire (or the majority of) the
active user working set. The fast tier is warmed up via a
sequential read of the user working set.

Using fio, we generate a random reads workload ac-
cessing data stored in our server. The intensity of user IO
requests is shown in Figure 1 and it emulates very closely
the load pattern of user requests of the Wikipedia and the
storage workloads that we use to drive our experiments
in Section III. Note that without any data analytics work,
the response time of user IO requests remains in the same
range of about 150ms. All IOs are served from the fast tier.
The user throughput however does increase by one order of
magnitude as the arrival intensity increases. This confirms
that the storage system does not suffer from queuing delays
and it has the capacity to sustain more user load.

We add on the same experiment some data analytics work.
Since the user workload pattern has a clear periodicity, we
contend that this can be easily captured by a machine learn-
ing model (indeed, we show the effectiveness of machine
learning models for predicting such periodic patterns in
Section IV.) Having observed the time pattern of the first
60 minutes, we co-schedule a data analytics workload at
around the 65th minute, i.e., when the user traffic subsides
significantly. While the data analytics workload immediately
gains a lot of throughput, the performance effect of co-
scheduling on the user work is huge: response times increase
by two orders of magnitude. Data analytics work is stopped
around the 70th minute, but we observe that poor user RTs
are sustained for about 6 minutes. This is because the data
analytics work has evicted part of the user working set from
the fast tier/cache.

0 10 20 30 40 50 60 70 80
0

5000

10000

T
P

U
T

 (
IO

P
S

)

Time (min)

0 10 20 30 40 50 60 70 80
0

4000

8000

R
T

 (
m

s)

IOPS of User
IOPS of Data Analytics
RT of User

Figure 1: User and data analytics IOPS (throughput) and
user response time over time.

What could have made the difference in user performance
is the timely fast-tier warm up. Figure 2 captures this effect.
In this experiment, we use a small data set of 1GB. We
perform two experiments: one with explicit cache warm up
(via a sequential read to the user working set) and the other

138138

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on June 19,2021 at 06:14:29 UTC from IEEE Xplore. Restrictions apply.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
0

30

60

90

120

Time: Day

A
rr

iv
al

 In
te

ns
ity

(a
rr

iv
al

s/
m

in
)

Figure 3: User request arrival intensity of storage workload over one month.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
200

400

600

800

1000

Time: Day

A
rr

iv
al

 In
te

ns
ity

(a
rr

iv
al

s/
m

in
)

Figure 4: User request arrival intensity to Wikipedia over one month in 2007.

0 1 2 3 4 5 6 7 8 9 10
0

4000

8000

Time (min)

U
se

r
R

T
(m

s)

Warm Up
No Warm Up

Figure 2: Response time with warm up and without warm
up across the experiment time.

one that brings the workload to cache when needed (no
explicit warm up). While it takes only about 2 minutes to
bring 1GB of data into our fast tier by reading it sequentially,
it takes about 10 minutes to fully warm up the cache by the
user workload alone. This number is longer than what we
observe in Figure 1, this is because in Figure 1 the cache
is not completely cold. These experiments demonstrate the
importance of incorporating the effects of workload inter-
ference and tier warming into any scheduling methodology.
The point here is that naively scheduling data analytics
during the low period (whose timing can be predicted) does
not reach optimized performance. What we need here is a
methodology that incorporates tier-warming and accurately
predicts when this should start. We address these issues in

the following sections.

III. METHODOLOGY

In this section, we start with the description of the user
workloads used in this work. Then we illustrate how to
use a neural network to build a traffic prediction model.
Finally, we introduce in details of the NeuQ scheduler that
is powered by a queueing model.

A. Workload

Data center workloads often follow periodic patterns
across time [12], [13], [5], [14]. In Figure 3, we demonstrate
the arrival intensity of the storage system workload during
one month period [5]. In Figure 4, we present the arrival
intensity of requests to Wikipedia during October 2007 [4].

Intuitively, the workload of Figure 4 shows a distinctive
day/night pattern as well as weekday/weekend pattern. To
capture this, we carry out some statistical analysis by
calculating the autocorrelation of the time series of the
arrival process. Autocorrelation is the cross-correlation of
a signal with itself [15]. Intuitively, it captures the similarity
between observations as a function of the lag between them.
Autocorrelation values are in the [−1,1] range, the closer
the lag autocorrelation to 1, the closer the two observations.
Zero values indicate no relationship among the observations,
while negative values indicate that the range of values of the
two observations is diametrically different.

139139

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on June 19,2021 at 06:14:29 UTC from IEEE Xplore. Restrictions apply.

The autocorrelation of user arrival intensity for the
Wikipedia workload at varying time lags is shown in Fig-
ures 5(a) and 5(b), that report on autocorrelations at the
minute lag (10-minute granularity) and day lag, respectively.
The figures verify clear daily and weekly patterns, as also
observed in Figure 4. Autocorrelation reaches a maximum
value per day across all lags illustrating a clear daily pattern,
ditto for Figure 5(b) that illustrates a clear weekly pattern.
Similar autocorrelation patterns are also observed for the
storage workload. In the following section, we use these
properties to train a neural network that can model user
arrival intensity.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
−1

−0.5

0

0.5

1

 Lag: min × 1440

A
C

F

(a) Minute granularity

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0.5

0.75

1

Lag: day

A
C

F

(b) Day granularity

Figure 5: Autocorrelation of arrivals for different granular-
ities. Note for (a), the points are at 10-minute granularity,
the ticks in x-axis is multiplied by 1440, e.g., 2 represents
2 ∗ 1440 minutes or 2 days, so the lag is up to 14 days.

B. Neural Network Model

Neural networks are a class of machine learning mod-
els that can capture periodicity within different time
scales. Typically, traditional time series models such as
ARMA/ARIMA [16] and Holt-Winters exponential smooth-
ing [17] are limited by the linear basis function. Neural net-
works can instead model non-linear functions of the input,
which makes them effective for time series modeling [18].
A time series analysis consists of two steps: first building
a model that represents a time series, and then using the
model to forecast future values. If a time series has a regular
pattern, then a value of the series should be a function of
previous values. If X is the target variable for prediction,
and Xt is the value of X at time t, then the goal is to create
a model of the form:

Xt = f (Xt−1,Xt−2,Xt−3, · · · ,Xt−n)+ εt , (1)

where εt is an error term. An artificial neural network con-
sists of multiple nodes, or neurons, which are interconnected

to mimic a biological neural network [19]. These neurons
have adaptive weights, tuned by a learning algorithm, which
enables neural networks to approximate non-linear functions
of their inputs. The adaptive weights describe the connection
strengths between neurons, activated during training and
prediction.

To build a neural network model for a time series,
selecting the most relevant input that can describe the trend,
season, and noise is utterly important. To take care of trend
and season, or in other words, to capture the long-term
pattern, we make use of the correlogram in Figure 5(b). The
figure shows that when the lag equals to seven days, the user
traffic is highly and positively correlated. Therefore, as input
to our traffic model, we choose the user arrival intensities
of exactly one week ago. To capture the temporal change or
noise, which can be seen as a short-term pattern, we look
into Figure 5(a) and see that for lag = 10 min the arrival
intensities have the highest correlation value. This suggests
to consider the user arrival intensities of 10 min ago as
another input to the model. With the above inputs as features
and current observations, we can train a neural network.
When training a neural network, the data are divided into
three distinct subsets [20]: the training set, that is used to
train the weights (model parameters) of neural network; the
validation set, which is used to minimize overfitting thus
ensure a generalized solution; and the test set, which is used
for evaluating the accuracy of the trained neural network
model. Here we use the neural network toolbox provided by
MATLAB [21] to train our traffic prediction models.

When training a neural network, even with the same data,
the trained model can have different accuracy depending on
the configured parameters, e.g., different initial weight val-
ues, different divisions of data used for training, validation,
and test samples. Our primary attempt to avoid using badly-
behaved neural networks (that result in poor prediction),
was to train several neural networks on the same data set
and select the one with the smallest mean squared error.
However, since the future largely remains unknown, it is
possible that the “best" neural network fails to do a good
prediction in the future. To mitigate this potential problem,
we use an ensemble method [22], which averages predictions
from different neural networks. Even though the ensemble
method may not always provide the optimal prediction, it
consistently produces accurate predictions without requiring
manual checking.

Last but not least, the computational complexity of the
neural network training is not significant, as the prediction
model can forecast upcoming traffic for up to a week ahead,
suggesting that it is sufficient to update the neural network
model as often as once per week for the data in hand. The
frequency of training can be adjusted based on different
needs.

140140

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on June 19,2021 at 06:14:29 UTC from IEEE Xplore. Restrictions apply.

C. Co-scheduling

As Figure 4 shows, user traffic demonstrates peaks and
valleys, suggesting that one could aggressively co-schedule
data analytics work during the “low" user periods. Our
intention is to quantify how much additional work one could
co-schedule such that overall system utilization increases
while user SLOs are respected. Because we are aiming
to provide a scheduling approach that is easy to deploy
and integrate with other management tools, we refrain from
making scheduling decisions for user requests too frequently,
as this could result in significant overhead. Therefore, our
framework divides the time into small windows Tw and
makes scheduling decisions only at the beginning of each
window2.

1) Performance model for user traffic in a tiered storage
system: To simplify presentation, we assume that the time
window that the user SLO is computed is the same as the
scheduling window size Tw.

Arrival process: Although in large time windows the
arrival process shows a periodical pattern, within each small
time window Tw, the arrival process can be viewed as a
Poisson process [15].

Service process: In a 2-tiered storage system3, if the
working set of the coming IO request is in the fast-tier
(e.g., SSD), the request is served in fast tier. Otherwise,
the coming IO request is served in the slow-tier (e.g., disk).
Here we assume the service process for each tier follows an
exponential distribution. The service process for the 2-tiered
system can be described by a hyper-exponential model [23]
with mean service time:

E[s] = h×E[s1]+ (1−h)×E[s2], (2)

where E[s1] and E[s2] are the mean service times for the
fast tier (tier 1) and slow tier (tier 2), respectively. h is the
fast tier hit rate defined as the probability that a request is
served from the fast tier. The maximum value of the fast tier
hit rate hmax is determined by the workload characteristics
and the capacity of the fast tier, e.g., if the entire working
set can loaded into the fast tier, then the maximum hit rate
is 1, in which case all the requests are served in the fast tier.
Based on Eq. 2, the expectation of the squared service time
can be computed as follows [23]:

E[s2] = 2!×(h×E[s1]
2 +(1−h)×E[s2]

2), (3)

where E[s1]
2 and E[s2]

2 are the square of mean service times
for the fast tier (tier 1) and slow tier (tier 2), respectively.

Queuing model: Based on the above assumptions, the 2-
tired storage system can be modeled by a M/H2/1 queue for
each small time window. We use the Pollaczek-Khinchine

2We assume Tw = 1 minute in our experimental evaluation, but this could
be adjusted according to the specific system requirement.

3For presentation reasons, we use a 2-tiered storage system to explain
our methodology, but it could be easily extended to storage systems with
more tiers. This discussion also applies to caching.

formula [24] to compute the average response time of an
M/H2/1 queue:

RT = E[s]+
λ ×E[s2]

2(1−ρ)
, (4)

where E[s] is the mean service time, E[s2] is the mean of
squared service time, λ is average arrival intensity, and ρ is
the system utilization

ρ = λ ×E[s]. (5)

Combining Eqs. 2, 3, and 5 into Eq. 4, we have:

RT = h×E[s1]+(1−h)×E[s2]+
λ × (h×E[s1]

2 +(1−h)×E[s2]
2)

1−λ × (h×E[s1]+(1−h)×E[s2])
.

(6)
From Eq. 6, it is clear that within each time window Tw, the

average user response time RT is a function of the average
arrival intensity of user requests λ , the mean service time
for each tier (E[s1] and E[s2]), and the fast tier hit rate h.

2) NeuQ Scheduler: Co-scheduling data analytics work
may have a performance impact on the user traffic. From
our performance model above, the first three parameters
(λ , E[s1], and E[s2]) only depend on the characteristics of
user workload and performance of hardware devices, so co-
scheduling has no impact on these parameters. However, co-
scheduling data analytics work does impact the fast tier hit
rate h because it evicts the user working set from the fast tier
and reduces the probability of serving user requests in the
fast tier. Therefore, in order to meet the user SLO (RTtarget),
the fast tier hit rate of user traffic needs to be maintained
above a threshold that is computed from the user SLO and
arrival intensity. We compute the threshold (htarget) based on
Eq. 6 by representing the fast tier hit rate as a function of
the user response time target and arrival intensity:

htarget =
λ × (RTtarget +E[s1]−E[s2])−

√
P

2λ × (E[s1]−E[s2])
, (7)

where:

P = λ 2 × (RT 2
target + 2RTtarget × E[s1] + 2RTtarget × E[s2]

+(E[s1]−E[s2])
2)−2λ×(RTtarget−E[s1]−E[s2])+1.

(8)

Note that the fast tier hit rate depends on both user response
time target and arrival intensity because the latency is
composed of service time and queuing waiting time, e.g.,
during periods of high arrival intensity, a higher fast tier hit
rate is needed to achieve the same response time target than
during low arrival intensity periods.

Now the question becomes how to make scheduling
decisions such that the data analytics work can be completed
as fast as possible without affecting the user SLO. Because
the data analytics work is usually measured by the average
completion time of submitted jobs or the throughput, it is
important to quantify and maximize the (cumulative) time

141141

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on June 19,2021 at 06:14:29 UTC from IEEE Xplore. Restrictions apply.

slot allocated to the analytics work within each time window
Tw. Figure 2 and its corresponding analysis in Section II
shows the benefit of explicit warm up compared to no
explicit warm up. When the system is not as busy with
user requests, there are 2 choices: (i) scheduling the data
analytics work for time tDA, which reduces the fast tier hit
rate or (ii) explicit warming up the fast tier, which recovers
the fast tier hit rate.

In order to maximize the time slot allocated to data
analytics work but maintain the fast tier hit rate above the
threshold htarget , different scheduling choices need to be
made based on the arrival intensity in the near future. Recall
that the future arrival intensity can be predicted using the
neural network model introduced in Section III-B. Therefore,
we can estimate the fast tier hit rate hDA after scheduling for
tDA time units data analytics work:

hDA = hbegin− tDA

tevict
, (9)

where hbegin is the fast tier hit rate at the beginning of a time
window and tevict is the time to evict the entire user working
set from a fully warmed up fast tier. Since the data analytics
work is very intensive, tevict can be approximated by the time
to explicitly warm up the fast tier from completely cold to
fully warmed up, which we define as twarmup1, this can be
easily obtained by a quick profiling experiment such as the
one shown in Figure 2. Assuming that the remaining of idle
time is used for explicit warm up of the fast tier, the fast
tier hit rate hwarmup is:

hwarmup = min{hbegin+
(1−λ ×E[s])× tw− tDA

twarmup1
,hmax},

(10)
recall that hmax is the maximum value of the fast tier hit
rate. In addition, serving user requests also changes the fast
tier hit rate (no explicit warm up):

huser = hbegin +
λ ×E[s]× tw

twarmup2
, (11)

where twarmup2 is the time to non-explicitly warm up the fast
tier from completely cold to fully warmed up, which can be
easily obtained by a quick profiling experiment. Combining
Eqs. 9, 10, and 11, we have the fast tier hit rate at the end
of the time window hend:

hend = min{hbegin − tDA

twarmup1
+

(1− λ × E[s])× tw − tDA

twarmup1

+
λ × E[s]× tw

twarmup2
,hmax}.

(12)

Since each time window is very small, we assume that the
fast tier hit rate only changes at the end of the window, but
stays the same within the window. To meet the SLO, the fast

tier hit rate needs to be maintained at or above the threshold
i.e., hend ≥ htarget , therefore

tDA ≤ ((hbegin−htarget)× twarmup1× twarmup2 +(1−λ ×E[s])

× tw × twarmup2 + λ × E[s]× tw × twarmup1)

× 1
2× twarmup2

.

(13)

From the above inequality, we can quantify the maximum
amount of time to be allocated to data analytics work without
violating user SLOs. The co-scheduling decisions are based
on Eq. 13. We stress that this inequality is critical for the
success of workload co-scheduling as it regulates the amount
of data analytics work that the system can systain in order
to not violate the user SLO.

Because the targeted fast tier hit rate changes with the
arrival intensity, scheduling decisions need to be evaluated
well in advance. Here we determine how early a scheduling
decision needs to be evaluated such that there is enough time
to fully warm up the fast tier during this period. We define
tadvance as:

tadvance = (hmax− hcurrent)× twarmup1, (14)

where hcurrent is the current fast tier hit rate. Based on the
predicted arrival intensity after tadvance, a correct scheduling
decision (the time allocated to data analytics work) for the
current time window can be made.

In addition, based on the time slot allocated to the data
analytics work (Eq. 13), we can estimate the throughput of
data analytics work T hroughputDA as follows:

T hroughputDA =
tDA

sDA
(15)

where sDA is the average service time of data analytics work.
If the scheduling target is meeting deadlines for data

analytics work, then the throughput of data analytics work
needs to meet the above requirements. Assume that the
throughput requirement is T hroughputtarget , then we have
the following:

T hroughputDA =
tDA

sDA
≥ T hroughputtarget , (16)

therefore,
tDA ≥ T hroughputtarget ∗ sDA. (17)

The above inequality indicates the minimum amount of time
to be allocated to the data analytics work in order to meet
the deadlines.

IV. PERFORMANCE EVALUATION

An integral part of the effectiveness of workload co-
scheduling is the ability to predict accurately the upcom-
ing user workload. We first evaluate the accuracy of the
prediction model and then compare the performance of the
proposed approach with other methods in the literature. We

142142

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on June 19,2021 at 06:14:29 UTC from IEEE Xplore. Restrictions apply.

also show several scenarios that illustrate the effectiveness
of NeuQ. Finally, we demonstrate another scheduling target
archived by NeuQ

A. Traffic Prediction

We drive our simulations using the storage workload in
[5] and the Wikipedia trace that is shown in Figure 4 (both
workloads with granularity of 1 minute). We trained neural
networks for the two workloads and used the trained models
to predict incoming traffic for the time period of the next
three upcoming days. We also illustrate the model with
two different prediction lengths, i.e., 4 hours and 24 hours.
Here, if the prediction length equals to K hours, the neural
network directly predicts the arrival intensities in the next K
hours. In the proposed NeuQ scheduler, the traffic intensity
information is usually needed only a few hours ahead, so
such prediction length can fully satisfy the scheduler’s needs.
Consistent with the workload analysis of Section III-A, for
each observation during training, we select the observations
from the most recent time window and the one from one
week ago as features. In Figure 6, we show the traffic
predictions with two prediction lengths, as well as the actual
traffic. The figure illustrates that for both of the storage and
Wikipedia traces, the shorter the prediction length, the more
accurate the predictions. Yet, even predicting 24 hours ahead,
the overall prediction accuracy is still good.

To quantify better the quality of the two prediction
lengths, we use the absolute percentage error (APE) metric
which is defined as:

APE =
|Prediction−Actual|

Actual
×100%. (18)

When APE is close to 0, it suggests an accurate prediction.
Figure 7 illustrates the CDFs of the absolute percentage
error for the two traffic predictions. For the storage trace,
Figure 7(a) shows that the 80 percentile of the APE for the
4 and 24-hour predictions, is less than 12 and 18 percent
respectively. For the Wikipedia trace, Figure 7(b) shows that
for the 4-hour prediction length, almost all the APEs are no
more than 10 percent, i.e., predictions are very accurate. For
the 24-hour case, over 70 percent of the APEs are less than
10 percent, and nearly 100 percent of them are no more than
20 percent.

B. Scheduler Comparisons

Here, we compare our NeuQ scheduler with two other
state-of-the-art scheduling approaches in the literature. We
also compare to a scheduling approach that only uses neural
network traffic prediction without any help from queueing
models.
• On-line Feedback

The on-line feedback method [25] collects measure-
ments during the most recent time window to check
whether user performance requirements are met or
violated. If met and provided that the system is in a

0 6 12 18 24 30 36 42 48 54 60 66 72
0

30

60

90

120

Time: Hour

A
rr

iv
al

 In
te

ns
ity

 (
ar

riv
al

s/
m

in
)

Storage User Traffic
Prediction Length = 4 Hours
Prediction Length = 24 Hours

(a) Storage Trace

0 6 12 18 24 30 36 42 48 54 60 66 72
200

400

600

800

1000

1200

Time: Hour

A
rr

iv
al

 In
te

ns
ity

 (
ar

riv
al

s/
m

in
)

Wikipedia User Traffic
Prediction Length = 4 Hours
Prediction Length = 24 Hours

(b) Wikipedia Trace

Figure 6: Traffic predictions from neural networks with
different prediction lengths.

0 6 12 18 24 30
0

0.2

0.4

0.6

0.8

1

Absolute Percentage Error (%)

C
D

F

(a) Storage Trace

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Absolute Percentage Error (%)

C
D

F

(b) Wikipedia Trace

Figure 7: CDF of absolute percentage error of the neural
network predictions.

low utilization state in the current window, then data
analytics work is added. In the interest of showing the
maximum benefit of this scheduler, we assume that we
know all future upcoming workload, i.e., we are certain
about the length of low/high utilization times due to

143143

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on June 19,2021 at 06:14:29 UTC from IEEE Xplore. Restrictions apply.

0 6 12 18 24 30 36 42 48 54 60 66 72
0

30

60

90

120

Time: Hour

A
rr

iv
al

 In
te

ns
ity

 (
ar

riv
al

s/
m

in
)

Storage User Traffic
Neural Networks Prediction
Prediction of State Changes

(a) Storage Trace

0 6 12 18 24 30 36 42 48 54 60 66 72
200

400

600

800

1000

1200

Time: Hour

A
rr

iv
al

 In
te

ns
ity

 (
ar

riv
al

s/
m

in
)

Wikipedia User Traffic
Neural Networks Prediction
Prediction of State Changes

(b) Wikipedia Trace

Figure 8: Storage system and Wikipedia user traffic for
simulation, with the state changes and traffic predictions.

user workload a priori.
• State Prediction

The state change prediction based method [5] divides
the traffic into high/low states, based on the average ar-
rival intensity. It makes use of a Markovian Modulated
Poisson Process (MMPP) model to predict when the
high state starts and ends. Based on the state prediction,
this method only schedules the data analytics work in
the low utilization state, while pro-actively warming up
the fast tier with the active user working set right before
the arrival of a high utilization state.

• NeuralNet Scheduler
The NeuralNet scheduler decides the amount of data an-
alytics work to schedule based on the user arrival inten-
sity prediction. Here the amount of data analytics work
to schedule in each time window increases/decreases
linearly with the predicted user arrival intensity in
that time window. For example, if for the current
window w1, λ1 is the average user arrival intensity,
and the amount of scheduled data analytics work is n1,
then for the incoming time window w2 with predicted
average user arrival intensity equal to λ2, the NeuralNet
scheduler schedules λ1

λ2
×n1 data analytics work in w2.

Intuitively, if the user arrival intensity is predicted to
increase, then the NeuralNet scheduler schedules less
data analytics work in the incoming time window.
Otherwise, more data analytics work is scheduled.

• NeuQ Scheduler
The NeuQ scheduler makes scheduling decisions (how
much and when to schedule data analytics work) based
on the hybrid model developed in Section III.

We conduct trace-driven simulations on the storage workload
in [5] and the Wikipedia user traffic (days 26, 27, and
28 in Figure 4). Because the NeuQ scheduler and the state
prediction based scheduler depend on the accuracy of their
workload model, we illustrate in Figure 8 how well the
MMPP model predicts changes in system state as well as the
neural network prediction, both methods are quite effective.

We start by comparing how fast data analytics work each
method can complete, given an SLO for user performance.
We assume that the service times for the fast and slow tiers
are exponential distributed, and that the average service time
between the two tiers differs by two orders of magnitude.
For the data analytics work, we assume that the average
time to finish one unit of work equals to the mean slow tier
service time and we use throughput to measure how fast it
can be scheduled. Figure 9 illustrates the user RTs and data
analytics throughputs for the four policies. In each graph,
the horizontal lines represent the pre-defined user SLOs.
Figure 9(a) shows that during heavy user traffic periods (e.g.,
the 6th, 30th and 54th hour), user SLOs are consistently
violated due to the aggressive scheduling of data analytics.
Similar phenomena are observed in Figure 9(e). The system
recovers after the violation is detected. The MMPP-based
state prediction method, see Figures 9(b) and 9(f), is more
conservative and refrains from scheduling data analytics
work while the system is in high utilization. Since this
scheduler pro-actively warms up the fast tier, it contains SLO
violations. However, the stochastic nature of the underlying
Markovian-based model results in unavoidable inaccuracies
for the exact time that the system changes, which results
in SLO violations when the high state approaches. In Fig-
ures 9(c) and 9(g), the NeuralNet scheduler is evaluated.
The figures show that although less data analytics work is
scheduled in heavy user traffic periods than during hours
of low traffic, the user SLO is still violated. Figures 9(d)
and 9(h) illustrate the performance of NeuQ. With NeuQ,
there are no SLO violations while data analytics work is
served aggressively, and with even higher throughput as with
on-line feedback. We also list the percentage of user SLO
violations, throughput of data analytics, and its coefficient
of variation (CV) for the above four policies in TABLE I.
NeuQ achieves 2× to 3× higher data analytics throughput
without any user SLO violation, while for the other policies,
the percentage of user SLO violations is much higher and
still less efficient on data analytics throughput.

To further illustrate the advantages of our proposed
method, we present the CCDFs that illustrate the tails
of average user response times of each time window in
Figure 10. NeuQ manages to strictly respect the user SLO
(1000ms for the storage trace and 75ms for the Wikipedia
trace).

144144

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on June 19,2021 at 06:14:29 UTC from IEEE Xplore. Restrictions apply.

0 6 12 18 24 30 36 42 48 54 60 66 72
0

1000

2000

3000

4000

R
T

 (
m

s)

Time: Hour

0 6 12 18 24 30 36 42 48 54 60 66 72
0

20

40

60

80

T
P

U
T

 (
/m

in
)

RT of User
SLO of User RT
TPUT of Data Analytics

0 6 12 18 24 30 36 42 48 54 60 66 72
0

37.5

75

112.5

150

R
T

 (
m

s)

Time: Hour

0 6 12 18 24 30 36 42 48 54 60 66 72
0

250

500

750

1000

T
P

U
T

 (
/m

in
)

RT of User
SLO of User RT
TPUT of Data Analytics

(a) Storage Trace: On-line Feedback (e) Wikipedia Trace: On-line Feedback

0 6 12 18 24 30 36 42 48 54 60 66 72
0

1000

2000

3000

4000

R
T

 (
m

s)

Time: Hour

0 6 12 18 24 30 36 42 48 54 60 66 72
0

20

40

60

80

T
P

U
T

 (
/m

in
)

RT of User
SLO of User RT
TPUT of Data Analytics

0 6 12 18 24 30 36 42 48 54 60 66 72
0

37.5

75

112.5

150

R
T

 (
m

s)

Time: Hour

0 6 12 18 24 30 36 42 48 54 60 66 72
0

250

500

750

1000

T
P

U
T

 (
/m

in
)

RT of User
SLO of User RT
TPUT of Data Analytics

(b) Storage Trace: State Prediction (f) Wikipedia Trace: State Prediction

0 6 12 18 24 30 36 42 48 54 60 66 72
0

1000

2000

3000

4000

R
T

 (
m

s)

Time: Hour

0 6 12 18 24 30 36 42 48 54 60 66 72
0

20

40

60

80
T

P
U

T
 (

/m
in

)
RT of User
SLO of User RT
TPUT of Data Analytics

0 6 12 18 24 30 36 42 48 54 60 66 72
0

37.5

75

112.5

150

R
T

 (
m

s)

Time: Hour

0 6 12 18 24 30 36 42 48 54 60 66 72
0

250

500

750

1000

T
P

U
T

 (
/m

in
)

RT of User
SLO of User RT
TPUT of Data Analytics

(c) Storage Trace: NeuralNet Scheduler (g) Wikipedia Trace: NeuralNet Scheduler

0 6 12 18 24 30 36 42 48 54 60 66 72
0

1000

2000

3000

4000

R
T

 (
m

s)

Time: Hour

0 6 12 18 24 30 36 42 48 54 60 66 72
0

20

40

60

80

T
P

U
T

 (
/m

in
)

RT of User
SLO of User RT
TPUT of Data Analytics

0 6 12 18 24 30 36 42 48 54 60 66 72
0

37.5

75

112.5

150

R
T

 (
m

s)

Time: Hour

0 6 12 18 24 30 36 42 48 54 60 66 72
0

250

500

750

1000

T
P

U
T

 (
/m

in
)

RT of User
SLO of User RT
TPUT of Data Analytics

(d) Storage Trace: NeuQ Scheduler (h) Wikipedia Trace: NeuQ Scheduler

Figure 9: Performance comparisons via simulation.

Table I: Average performance analysis for simulations

Storage Trace
% User SLO TPUTDA CV of
Violations (/min) TPUTDA

On-line Feedback 68.29 18.24 0.42
State Prediction 11.11 7.58 1.71

NeuralNet Scheduler 32.41 15.53 0.52
NeuQ Scheduler 0.00 26.45 0.23

Wikipedia Trace
% User SLO TPUTDA CV of
Violations (/min) TPUTDA

On-line Feedback 40.05 257.38 0.16
State Prediction 11.81 110.99 1.45

NeuralNet Scheduler 15.51 240.71 0.21
NeuQ Scheduler 0.00 271.69 0.13

C. Model Effectiveness

The performance prediction model that is developed in
Section III is the core of the proposed NeuQ scheduler.

Recall that the model allows us to regulate the amount of
data analytics work to be co-scheduled such that a certain
SLO is met for the user work. Similarly, if one needs to
increase the throughput of data analytics, this would result
in affecting the user RT as well.

Figure 11 illustrates this relationship between user RT (x-
axis) and data analytics throughput (y-axis) for the storage
and Wikipedia workloads. The figure plots the relationship
of these measures as obtained both by simulation and by
using the prediction model of Section III (Eq. 15). Both
model and simulation numbers are in good agreement, well-
capturing the relationship trends of both measures. Further,
by using Figure 11 one could estimate the maximum data
analytics throughput to be achieved given a certain SLO
or conversely the sustained average user RT if a certain
throughput for data analytics work is expected.

145145

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on June 19,2021 at 06:14:29 UTC from IEEE Xplore. Restrictions apply.

0 1000 2000 3000
10

−3

10
−2

10
−1

10
0

RT (ms)

C
C

D
F

(a) Storage Trace

0 25 50 75 100
10

−3

10
−2

10
−1

10
0

RT (ms)

C
C

D
F

(b) Wikipedia Trace

Figure 10: CCDF of average user response time.

0 500 1000 1500 2000 2500
0

10

20

30

user RT (ms)

T
P

U
T

 o
f d

at
a

an
al

yt
ic

s
(/

m
in

)

TPUT Prediction
Simulation

(a) Storage Trace

0 50 100 150 200 250
0

200

400

600

user RT (ms)

T
P

U
T

 o
f d

at
a

an
al

yt
ic

s
(/

m
in

)

TPUT Prediction
Simulation

(b) Wikipedia Trace

Figure 11: Throughput of data analytics versus user response
time: model (Eq. 15) and simulation (NeuQ scheduler).

D. Different Scheduling Targets

NeuQ can be used to support different scheduling targets.

Here we demonstrate another scheduling target scenario of
finishing the data analytics work by the pre-defined deadlines
while preserving the performance of user workload as much
as possible. We show two different scheduling targets:

• Scheduling Target 1: the deadline of data analytics work
is 15 minutes for 500 units of work. The SLO of user
workload is SLO 1350ms.

• Scheduling Target 2: the deadline of data analytics work
is 1.5 hours for 1500 units of work. The SLO of user
workload is SLO 850ms.

Scheduling Target 1 has a tighter deadline for data analytics
work while relatively loose SLO for the user workload, and
Scheduling Target 2 is on the contrary. Both scheduling
scenarios consider meeting the deadline of data analytics
work as first priority and meeting SLO of user workload
as a secondary target. The data analytics work that is not
finished by the deadline is dropped so that its impact is not
propagated to the future analytics work.

The results are presented in Figure 12. The left y-axis is
the user response time measured in ms and right y-axis is the
percentage of the finished data analytics work. The x-axis
represents the elapsed time (3-day period). For Target 1 (left
column of graphs), the results suggest that only NeuQ

canmeet the deadlines of data analytics work (there are a few
exceptions, but very few and all above 80%) and all other
methods fail. Meanwhile, NeuQ also consistently archives
the SLO of user workload, this is not the case for other
methods. Target 2 (right column of graphs) shares the same
requirement for meeting deadlines of data analytics work.
Given the stricter SLO, none of the methods can meet the
deadlines of data analytics work while also achieving the
SLO for user workload. However, it is clear that NeuQ
results in smallest violation of the SLO of user workload
among these methods. The above experiments suggest that
NeuQ has great use potential in reaching other targets.
For the experiments presented in Figure 12, especially for
Scheduling Target 1, it is necessary to tolerate high user
SLOs to meet the 15 minutes deadline. If low deadlines and
low SLOs are to be met, then it is necessary to increase
the capacity of the system. NewQ can be easily extended to
support a capacity planning component.

V. RELATED WORK

Analytical and simulation models have been widely used
to quantify the impact of workload changes to application
and/or system performance, see [26], [9], [5], [13], [27],
[28], [29] and references therein. [5] uses a probabilistic
model to define “workload states" via hierarchical clustering.
After state discovery, the observed workload is used to
parameterize a Markov Modulated Poisson Process that can
accurately predict the duration of each state as well as
transitions from state to state. ARMA/ARIMA [16] have
been adopted in [3] to predict the user traffic overtime in

146146

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on June 19,2021 at 06:14:29 UTC from IEEE Xplore. Restrictions apply.

0 6 12 18 24 30 36 42 48 54 60 66 72
0

675

1350

2025

2700

3375

R
T

 (
m

s)

Time: Hour

0 6 12 18 24 30 36 42 48 54 60 66 72
0

20

40

60

80

100

P
er

ce
nt

ag
e

of
 D

at
a

A
na

ly
tic

s
(%

)

RT of User
Finished Data Analytics
SLO of User RT

0 6 12 18 24 30 36 42 48 54 60 66 72
0

425

850

1275

1700

2125

R
T

 (
m

s)

Time: Hour

0 6 12 18 24 30 36 42 48 54 60 66 72
0

20

40

60

80

100

P
er

ce
nt

ag
e

of
 D

at
a

A
na

ly
tic

s
(%

)

RT of User
Finished Data Analytics
SLO of User RT

(a) Scheduling Target 1: On-line Feedback (e) Scheduling Target 2: On-line Feedback

0 6 12 18 24 30 36 42 48 54 60 66 72
0

675

1350

2025

2700

3375

R
T

 (
m

s)

Time: Hour

0 6 12 18 24 30 36 42 48 54 60 66 72
0

20

40

60

80

100

P
er

ce
nt

ag
e

of
 D

at
a

A
na

ly
tic

s
(%

)

RT of User
Finished Data Analytics
SLO of User RT

0 6 12 18 24 30 36 42 48 54 60 66 72
0

425

850

1275

1700

2125

R
T

 (
m

s)

Time: Hour

0 6 12 18 24 30 36 42 48 54 60 66 72
0

20

40

60

80

100

P
er

ce
nt

ag
e

of
 D

at
a

A
na

ly
tic

s
(%

)

RT of User
Finished Data Analytics
SLO of User RT

(b) Scheduling Target 1: State Prediction (f) Scheduling Target 2: State Prediction

0 6 12 18 24 30 36 42 48 54 60 66 72
0

675

1350

2025

2700

3375

R
T

 (
m

s)

Time: Hour

0 6 12 18 24 30 36 42 48 54 60 66 72
0

20

40

60

80

100
P

er
ce

nt
ag

e
of

 D
at

a
A

na
ly

tic
s

(%
)

RT of User
Finished Data Analytics
SLO of User RT

0 6 12 18 24 30 36 42 48 54 60 66 72
0

425

850

1275

1700

2125

R
T

 (
m

s)

Time: Hour

0 6 12 18 24 30 36 42 48 54 60 66 72
0

20

40

60

80

100

P
er

ce
nt

ag
e

of
 D

at
a

A
na

ly
tic

s
(%

)

RT of User
Finished Data Analytics
SLO of User RT

(c) Scheduling Target 1: NeuralNet Scheduler (g) Scheduling Target 2: NeuralNet Scheduler

0 6 12 18 24 30 36 42 48 54 60 66 72
0

675

1350

2025

2700

3375

R
T

 (
m

s)

Time: Hour

0 6 12 18 24 30 36 42 48 54 60 66 72
0

20

40

60

80

100

P
er

ce
nt

ag
e

of
 D

at
a

A
na

ly
tic

s
(%

)

RT of User
Finished Data Analytics
SLO of User RT

0 6 12 18 24 30 36 42 48 54 60 66 72
0

425

850

1275

1700

2125

R
T

 (
m

s)

Time: Hour

0 6 12 18 24 30 36 42 48 54 60 66 72
0

20

40

60

80

100

P
er

ce
nt

ag
e

of
 D

at
a

A
na

ly
tic

s
(%

)

RT of User
Finished Data Analytics
SLO of User RT

(d) Scheduling Target 1: NeuQ Scheduler (h) Scheduling Target 2: NeuQ Scheduler

Figure 12: Performance comparisons via simulation. Scheduling Target 1 (left column of graph): the deadline of data analytics
work is 15 minutes for 500 units of work and the user workload SLO is 1350ms. Scheduling Target 2 (right column of
graph): the deadline of data analytics work is 1.5 hours for 1500 units of work and the user workload SLO is 850ms.

order to achieve cost-efficient capacity planning. However,
this prediction method is limited to the linear basis function.

Machine learning techniques are used to overcome the
limitation of the linear basis function of the ARMA/ARIMA
models, and are used for effective characterization of
TCP/IP [30] and web server views [31]. Machine learning
techniques [32] have been also used for performance pre-
diction of total order broadcast, a key building block for
fault-tolerant replicated systems. Ensembles of time series
models have been used to project disk utilization trends in
a cloud setting [22].

In general, analytical models are restricted by their sim-
plified assumptions while machine learning models are ef-
fective in predicting performance for scenarios that have

already been observed in the past and fail when new patterns
are observed. A gray-box performance model that com-
bines analytical modeling with machine learning has been
proposed [33]. The authors advocate the use of analytical
models to lower the initial training time of machine-learning
based predictors or enhance the accuracy of the analytic
model by adjusting its error with the help of machine
learning. In contrast to this work, what we propose here is
the usage of machine learning to accurately predict specific
inputs of a queueing model, which in turn we use to derive
scheduling decisions.

147147

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on June 19,2021 at 06:14:29 UTC from IEEE Xplore. Restrictions apply.

VI. CONCLUSION AND FUTURE WORK

Co-scheduling data analytics workloads with user work-
loads in multi-tiered storage systems is a challenging prob-
lem. In this paper, we propose NeuQ scheduler, a hy-
brid co-scheduling approach using machine learning and
queueing models, that applies neural networks to predict
user workload intensities and then appropriately adjusts
the input to a queueing model in order to consistently
meet user SLOs. Trace-driven simulations show that NeuQ
can effectively reach performance targets under different
user workloads and different performance/scheduling targets
from commercial systems while maximizing the throughput
of data analytics work. In the future, we intend to evaluate
our NeuQ scheduler with different user workloads. We also
plan to extend NeuQ to support strict SLO for data analytics
work by adding a capacity planning component.

ACKNOWLEDGMENTS

This work is supported by NSF grant CCF-1218758.

REFERENCES

[1] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F. B.
Cetin, and S. Babu, “Starfish: a self-tuning system for big
data analytics.” in CIDR, vol. 11, 2011, pp. 261–272.

[2] J. Cohen, B. Dolan, M. Dunlap, J. M. Hellerstein, and
C. Welton, “Mad skills: new analysis practices for big data,”
Proceedings of the VLDB Endowment, vol. 2, no. 2, pp. 1481–
1492, 2009.

[3] Z. Zhuang, H. Ramachandra, C. Tran, S. Subramaniam,
C. Botev, C. Xiong, and B. Sridharan, “Capacity planning and
headroom analysis for taming database replication latency:
experiences with linkedin internet traffic,” in Proceedings of
the 6th ACM/SPEC ICPE, 2015, pp. 39–50.

[4] G. Urdaneta, G. Pierre, and M. van Steen, “Wikipedia work-
load analysis for decentralized hosting,” Elsevier Computer
Networks, vol. 53, no. 11, pp. 1830–1845, 2009.

[5] J. Xue, F. Yan, A. Riska, and E. Smirni, “Storage workload
isolation via tier warming: How models can help,” in Pro-
ceedings of the 11th ICAC, 2014, pp. 1–11.

[6] M. Peters, “3PAR: optimizing I/O service levels,” ESG White
Paper, 2010.

[7] B. Laliberte, “Automate and optimize a tiered storage envi-
ronment - FAST!” ESG White Paper, 2009.

[8] “Amazon ElastiCache,” http://aws.amazon.com/elasticache,
last visited on: Mar 11th, 2015.

[9] J. Guerra, H. Pucha, J. S. Glider, W. Belluomini, and R. Ran-
gaswami, “Cost effective storage using extent based dynamic
tiering,” in FAST, 2011, pp. 273–286.

[10] Y. Oh, J. Choi, D. Lee, and S. H. Noh, “Caching less for better
performance: balancing cache size and update cost of flash
memory cache in hybrid storage systems,” in FAST, 2012, pp.
313–326.

[11] “FIO Benchmark,” http://www.freecode.com/projects/fio, last
visited on: Mar 11th, 2015.

[12] M. Bjorkqvist, L. Y. Chen, and W. Binder, “Opportunistic
service provisioning in the cloud,” in 5th IEEE CLOUD,
2012, pp. 237–244.

[13] D. Ansaloni, L. Y. Chen, E. Smirni, and W. Binder, “Model-
driven consolidation of java workloads on multicores,” in
42nd IEEE/IFIP DSN, 2012, pp. 1–12.

[14] R. Birke, M. Björkqvist, L. Y. Chen, E. Smirni, and T. En-
gbersen, “(Big)data in a virtualized world: volume, velocity,
and variety in cloud datacenters,” in FAST, 2014, pp. 177–
189.

[15] L. M. Leemis and S. K. Park, Discrete-event simulation: A
first course. Pearson Prentice Hall Upper Saddle River, NJ,
2006.

[16] B. George, Time Series Analysis: Forecasting & Control, 3rd
ed. Pearson Education India, 1994.

[17] P. Goodwin, “The holt-winters approach to exponential
smoothing: 50 years old and going strong,” Foresight, pp.
30–34, 2010.

[18] R. J. Frank, N. Davey, and S. P. Hunt, “Time series prediction
and neural networks,” Journal of Intelligent and Robotic
Systems, vol. 31, no. 1-3, pp. 91–103, 2001.

[19] M. H. Hassoun, Fundamentals of Artificial Neural Networks,
1st ed. Cambridge, MA, USA: MIT Press, 1995.

[20] T. Hill, M. O’Connor, and W. Remus, “Neural network mod-
els for time series forecasts,” Management Science, vol. 42,
no. 7, pp. 1082–1092, 1996.

[21] H. Demuth, M. Beale, and M. Hagan, “Neural network
toolboxT M 6,” User′s Guide, 2008.

[22] M. Stokely, A. Mehrabian, C. Albrecht, F. Labelle, and
A. Merchant, “Projecting disk usage based on historical trends
in a cloud environment,” in Proceedings of the 3rd workshop
on ScienceCloud, 2012, pp. 63–70.

[23] S. M. Ross, Introduction to probability and statistics for
engineers and scientists. Academic Press, 2009.

[24] H. C. Tijms, A first course in stochastic models. John Wiley
and Sons, 2003.

[25] T. Cucinotta, F. Checconi, L. Abeni, and L. Palopoli, “Self-
tuning schedulers for legacy real-time applications,” in Pro-
ceedings of the 5th EuroSys, 2010, pp. 55–68.

[26] A. J. Ferrer, F. HernáNdez, J. Tordsson, E. Elmroth, A. Ali-
Eldin, C. Zsigri, R. Sirvent, J. Guitart, R. M. Badia, K. Dje-
mame et al., “Optimis: A holistic approach to cloud service
provisioning,” Future Generation Computer Systems, vol. 28,
no. 1, pp. 66–77, 2012.

[27] R. Singh, P. Shenoy, M. Natu, V. Sadaphal, and H. Vin,
“Analytical modeling for what-if analysis in complex cloud
computing applications,” ACM SIGMETRICS Performance
Evaluation Review, vol. 40, no. 4, pp. 53–62, 2013.

[28] Q. Zhang, L. Cherkasova, and E. Smirni, “A regression-based
analytic model for dynamic resource provisioning of multi-
tier applications,” in Proceedings of the 4th ICAC, 2007, pp.
27–36.

[29] F. Yan, A. Riska, and E. Smirni, “Busy bee: how to use traffic
information for better scheduling of background tasks,” in
Proceedings of the 3rd ACM/SPEC International Conference
on Performance Engineering. ACM, 2012, pp. 145–156.

[30] P. Cortez, M. Rio, M. Rocha, and P. Sousa, “Multi-scale
internet traffic forecasting using neural networks and time
series methods,” Expert Systems, vol. 29, no. 2, pp. 143–155,
2012.

[31] J. Li and A. W. Moore, “Forecasting web page views:
methods and observations,” Journal of Machine Learning
Research, vol. 9, no. 10, pp. 2217–2250, 2008.

[32] M. Couceiro, P. Romano, and L. Rodrigues, “A machine
learning approach to performance prediction of total order
broadcast protocols,” in 4th IEEE SASO, 2010, pp. 184–193.

[33] D. Didona, F. Quaglia, P. Romano, and E. Torre, “Enhancing
performance prediction robustness by combining analytical
modeling and machine learning,” in Proceedings of the 6th
ACM/SPEC ICPE, 2015, pp. 145–156.

148148

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on June 19,2021 at 06:14:29 UTC from IEEE Xplore. Restrictions apply.

