
PRACTISE: Robust Prediction of Data Center Time Series

Ji Xue∗, Feng Yan∗, Robert Birke†, Lydia Y. Chen†, Thomas Scherer†, and Evgenia Smirni∗

∗College of William and Mary

Williamsburg, VA, USA

{xuejimic,fyan,esmirni}@cs.wm.edu
†IBM Research Zurich Lab

Zurich, Switzerland

{bir,yic,tsc}@zurich.ibm.com

Abstract—We analyze workload traces from production data
centers and focus on their VM usage patterns of CPU, memory,
disk, and network bandwidth. Burstiness is a clear characteristic
of many of these time series: there exist peak loads within clear
periodic patterns but also within patterns that do not have clear
periodicity. We present PRACTISE, a neural network based
framework that can efficiently and accurately predict future
loads, peak loads, and their timing. Extensive experimentation
using traces from IBM data centers illustrates PRACTISE’s
superiority when compared to ARIMA and baseline neural net-
work models, with average prediction errors that are significantly
smaller. Its robustness is also illustrated with respect to the
prediction window that can be short-term (i.e., hours) or long-
term (i.e., a week).

I. INTRODUCTION

Effective workload characterization and prediction hold the
answers to the conundrum of efficient resource allocation in
distributed and scaled out systems. Being able to accurately
predict the upcoming workload within the next time frame
(i.e., in the next 10 minutes, half hour, hour, or even week)
allows the system to make proactive decisions, rather than
reactive ones. Proactive decisions can be used with superior
performance in storage systems by timely warming up the
cache with the working set [1], [2], especially in systems
where traditional internal work (e.g., garbage collection, snap-
shots, upgrades) is interleaved with the user workload during
opportune times. Proactive scheduling of data analytics work
can result in personalized advertising, sentiment analysis, or
timely product recommendation, i.e., before the user leaves
the site [3], [4], [5]. Virtual machine (VM) consolidation and
migration is another example where accurate prediction of the
physical machine utilizations can guide effective system usage
[6], [7], [8]. In all of the above cases, prediction of the intensity
of peak loads and of their timings becomes key to the effective
launching of proactive management.

To maintain performance at tails, e.g., at high percentiles
of response times, resource management policies [3], [6], [8],
need to address the demands of peak loads instead of average
loads only. Depending on the capability of predicting peak
load magnitudes and timings, resources can be multiplexed at
various degrees across users and across time. Such predictions
can guide VM consolidation in data centers.

In this paper, we focus on data center workloads within the
private cloud operated by IBM and used by major corporations
for their IT needs. Prior work on workload characterization
at IBM data centers [9] focused on statistical analysis of
the usage of specific components of the virtual and physical

machines, e.g., CPU and IO [9], [10]. This statistical analysis
focused on averages, percentiles, and trends, aiming to a
better understanding of how the workload evolves across a
two-year period, but largely ignored the time series of the
various performance metrics. In this paper, we focus on these
time series and develop methodologies for accurate prediction
of various workload metrics and especially peaks and their
timings.

Classic time series models such as ARIMA [11] can be
used for online prediction. Such models first need to be
trained using past observations and can predict the upcoming
workload. Alternatively, neural networks can be used in the
same manner and provide a black box approach to predict the
future, especially to predict events that have been observed in
the past. Superior to the classic time series models that use a
linear basis function, neural networks model input using non-
linear functions, which improves their ability to handle more
complex observations. Features gathered from observations are
not all equally informative; some are relevant, while others
are noise. Key to effective neural network prediction is the
discovery of the appropriate features. Neural network training
is then conducted based on these.

In this paper, we develop a robust framework for prediction
of data center time series (PRACTISE) and illustrate the
flexibility of such a black box approach by showing remarkable
accuracy in usage prediction of data center workloads in the
wild. We focus on four components: CPU, memory, disk,
and network. We focus on an actual production workload and
particularly on 56 physical machines that host 775 virtual ma-
chines during a time period of 61 days. Based on observations
of the workload pattern and its periodicity, we extract the
features that identify the time periods in which the repetitive
patterns occur. We also develop a bagging module [12] and
an online updating module to improve the stability, accuracy,
and speed of PRACTISE. We provide detailed comparisons
with ARIMA and show that the proposed black box approach
offers a significant improvement in predicting resource usage,
by reducing average errors by three times. PRACTISE slashes
the false negative prediction rates of peak loads to less than
12% and achieves two fold to nine fold improvements in the
accuracy of timing predictions. PRACTISE is lightweight and
achieves training and prediction by an order of magnitude
faster than other methods, which allows it to be used online.

This paper is organized as follows. Section II presents an
overview of the workload. Section III presents the machine
learning model. Section IV presents extensive experimental

978-3-901882-77-7 c© 2015 IFIP

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60
0

20

40

60
VM =18673

Time (Day)

C
P

U
 U

S
E

D
 P

C
T

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60
0

20

40
VM =34732

Time (Day)

C
P

U
 U

S
E

D
 P

C
T

Fig. 1: CPU utilization over time for two different VMs.

evaluation. Section V discusses potential use scenarios. Sec-
tion VI discusses related work. We conclude in Section VII.

II. VM WORKLOADS IN A PRIVATE CLOUD

The target systems of this study are IBM private data
centers, which are geographically distributed across all conti-
nents. These systems are used by various industries, including
banking, pharmaceutical, IT, consulting, and retail, and are
based on various UNIX-like operating systems, i.e., AIX, HP-
UX, Linux, and Solaris. Those systems are highly virtualized,
meaning that multiple virtual machines (VMs) are consolidated
on a single physical box. Both VMs and boxes are very
heterogenous in terms of resource configuration. The average
virtualization level per box is ten [9]. We have collected re-
source utilization statistics from several thousands of VMs and
boxes since February 2013. The finest observation granularity
is 15 minutes1. The analysis here is based on two-month data
from March 1, 2013 to April 30, 2013.

We focus on usage of four types of resources: CPU, mem-
ory, disk, and network. Using the base observation window of
15 minutes, we collect the following statistics:

• CPU utilization: the percentage of time the CPU is
active over the observation window.

• Memory utilization: the percentage of memory ca-
pacity used.

• Disk space usage: the percentage of allocated disk
space used.

• Network bandwidth usage: the total network traffic
rate measured in mega bits per second (Mbps).

The collected trace data is retrieved via vmstat, iostat,
and supervisor specific monitoring tools.

The VM workloads within the IBM private cloud exhibit
clear periodic patterns over time [9], see Figure 1. The
figure focuses on two different VMs and illustrates the CPU
utilization within successive time windows of 15-minute across
all 61 days. The upper plot shows a regular periodic pattern
with a period of 7 days, while the bottom one shows a more

1Collection of data is done by another IBM branch, therefore, we do not
have any control on obtaining data at lower granularity.

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45
−0.25

0

0.25

0.5

0.75

1
VM =18673

Time (Day)

A
C

F

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45
−0.25

0

0.25

0.5

0.75

1
VM =34732

Time (Day)

A
C

F

Fig. 2: Autocorrelation of CPU utilization for the two VMs of
Figure 1.

complex pattern with clear trend changes. We also observe
that similar periodic patterns exist in different resources, i.e.,
memory, disk, and network. To the interest of space, we do
not present these results here. Pattern periodicity suggests that
there exist opportunities for workload prediction.

To capture and quantify such periodic patterns, we perform
statistical analysis of the workloads by computing the autocor-
relation of the time series of CPU utilization. Autocorrelation
is a mathematical representation of the degree of similarity
in a time series and a lagged version of itself. As such, it
is ideal for discovering repeating patterns by quantifying the
relationship between different points of a time series as a func-
tion of the time lag [13]. The autocorrelation metric is in the
range of [−1,1]. Higher positive values indicate that the two
points between the computed lag distance are "similar", i.e.,
have stronger correlation. Zero values suggest no periodicity.
Negative values show that the two points lag elements apart
are diametrically different. We show the autocorrelation of
CPU resource usage for the two selected VMs in Figure 2.
It is clear that the autocorrelation becomes high at certain lag
values and that the lag values2 can be different for different
VMs. In the following section, we demonstrate how to utilize
autocorrelation to select the appropriate features in order to
train a neural network that can model the workloads accurately.

III. METHODOLOGY

A time series prediction model uses past observations to
forecast future values. There are different ways to build the
time series prediction model. Traditional time series e.g., the
ARMA/ARIMA [11] and Holt-Winters exponential smooth-
ing [14] are based on a linear basis function, and as a result
they are not effective in predicting complex behaviors. In addi-
tion, these models are backward looking only methods, which
makes it difficult to capture any new patterns that have not
appeared before. Furthermore, the underlying approximation
function usually lacks intuitive explanations. For all of the
above reasons, it is difficult to improve the prediction accuracy
of such types of models. On the other hand, neural networks
are capable of modeling input as non-linear functions, which
offers great potential in handling complex time series [15].
We start from the standard universal neural network toolbox
provided by MATLAB [16] and then introduce PRACTISE by
selecting more appropriate features, using bagging and online

2Note that a lag of 1 corresponds to two intervals 15 minutes apart.

Fig. 3: Overview of PRACTISE.

updating to improve its accuracy and stability. An overview of
PRACTISE is shown in Figure 3. The workload is fed to the
autocorrelation-based feature selection module. The selected
features then become inputs to the neural network training
component. The bagging module processes the aggregated
results. Finally, the online updating model monitors the predic-
tion error and triggers a retraining if large errors are detected.
In the following, we introduce each component in detail.

A. Universal Neural Network

Artificial neural networks are inspired by biological neural
networks [17] and are composed of many interconnected
neurons. The weights associated with the neurons are used to
approximate non-linear functions of the inputs and are tuned
during a training process. Discovering appropriate features is
the key to building an accurate neural network model. The
universal neural network toolbox provided by MATLAB uses
a generalized algorithm for feature selection. To train a neural
network, the input data set is usually divided into three subsets
[18]: training, validation, and test. The neural network uses the
training set to tune its weights and utilizes the validation set to
determine the convergence point and prevent overfitting. The
test set is used for evaluation of the training accuracy.

To understand the prediction accuracy of the standard
neural network toolbox provided by MATLAB, we conducted
extensive experiments. Figure 4 illustrates the default MAT-
LAB prediction (tagged BaselineNN) of the utilization of the
two VMs shown in Figure 1. We have trained and validated
the neural network using the first 14 days, and we show here
the results for days 15 to 24. The figure clearly shows the
neural network’s pitfalls as prediction accuracy is often poor.
Using the standard MATLAB toolbox, the underlying feature
selection algorithm is not tuned to optimize the information
provided by the repeating patterns. Therefore, we are motivated
to explore a better feature selection algorithm for selecting the
appropriate features for the data center workloads that we have
in hand.

B. Autocorrelation-based Features

Intuitively, appropriate features should reliably capture
periodic behavior, changing trends, and repeating patterns. To
identify the appropriate features, we resort to the correlogram
in Figure 2 because autocorrelation can provide quantitative
and qualitative information on the above factors. Figure 2
shows that there can be several lags with high positive au-
tocorrelation values. This indicates that there exist several
good candidate features that represent short-term to long-term
correlation patterns. To automate the process, we use a local
maximum detection function to identify the peak points in
autocorrelations and use the respective lag values as features
for neural network training. In this way, different correlation

14 15 16 17 18 19 20 21 22 23 24
0

20

40

60

Time (Day)

C
P

U
 U

S
E

D
 P

C
T

VM =18673

Actual

BaselineNN

14 15 16 17 18 19 20 21 22 23 24
0

20

40

Time (Day)

C
P

U
 U

S
E

D
 P

C
T

VM =34732

Actual

BaselineNN

Fig. 4: CPU workload prediction by the neural network toolbox
provided by MATLAB for two different VMs. The two gaps
in the first plot are due to the VM being switched off.

TABLE I: Training time using 14 days’ data and prediction
length of 1 day.

VM ID Training Time (sec) Prediction Time (sec)

BaselineNN PRACTISE BaselineNN PRACTISE

18673 300 30 257 10

34732 480 50 360 15

ranges from short-term to long-term can all be captured,
which improves the effectiveness of the neural network. The
remaining steps are the same as with the universal neural
network toolbox provided by MATLAB. We stress that the
feature selection process is fully automatic.

C. Bagging

The training features are not the sole factor in the prediction
accuracy of a neural network model; the quality of the trained
model also depends on other factors. The training data sets are
another crucial factor [12]. As discussed earlier, the training
set is split into training, validation, and test subsets. Different
ways of splitting may result in different samples being used at
different stages and therefore result in different trained models.
In order to minimize the artificial effects caused by a certain
splitting rule, we split the data set randomly several times (e.g.,
20 times), and each split trains a different model. In other
words, we train a group of neutral network models by using
the same data set but with different splits. Each model has
its own prediction result. The prediction results from different
models together become a distribution of prediction results.
To compute the final prediction results from the distribution
of prediction results, we first use the 3-sigma rule [19] (e.g.,
99% confidence interval) and z-score [20] (e.g., within [-
0.85,0.85]) to filter out outliers and then compute the average
of the remaining data as the final prediction. Bagging may not
always guarantee that optimal prediction is achieved, but it
consistently improves prediction accuracy compared to using
only a single trained model.

D. Online Updating Module

In a real cloud environment, there can be sudden or
permanent workload changes caused by unexpected events. As
neural network models rely on past information to forecast
the future, workload characterization changes may not be

VM CPU VM MEM VM DISK VM NET

F
N

R
 o

f
P

e
a

k
 S

ta
te

 P
re

d
ic

to
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
PRACTISE
ARIMA
BaselineNN

VM CPU VM MEM VM DISK VM NET

P
re

c
is

io
n

 o
f

P
e

a
k
 S

ta
te

 P
re

d
ic

to
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
PRACTISE
ARIMA
BaselineNN

VM CPU VM MEM VM DISK VM NET

R
e

c
a

ll
o

f
P

e
a

k
 S

ta
te

 P
re

d
ic

to
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
PRACTISE
ARIMA
BaselineNN

Fig. 5: Prediction accuracy for peak states. The left plot is the false negative rate (FNR) of peak state prediction, the middle
plot is the precision of peak state prediction, and the right plot is the recall of the peak state prediction.

timely reflected in the prediction results. To ensure an agile
response to workload characterization changes, we add an
online updating module. The update is triggered based on
monitoring the prediction errors periodically. If errors suddenly
surge, a workload change is suspected and the neural network
model is retrained. We emphasize that the computational cost
of the neural network training and prediction is not significant
thanks to the simple yet efficient feature selection process.
Thus, it allows us to retrain the model online quickly at low
cost. We demonstrate two examples in Table I to show how
long PRACTISE takes for training and prediction compared to
BaselineNN on a machine with 2.8 GHz Intel Core i7 CPU,
16 GB memory and 750 GB SSD. From the table, it is clear
that both the training time and prediction time of PRACTISE
are very low and that PRACTISE is one order of magnitude
faster than BaselineNN. This difference may appear modest,
but if prediction has to be done simultaneously for thousands
of VMs and multiple resources, it becomes significant. The
training and prediction times change linearly with the amount
of training data and prediction length.

IV. EXPERIMENTAL EVALUATION

We describe the methods used for the evaluation below:

• ARIMA: the standard ARIMA algorithm, used as
baseline comparison.

• BaselineNN: the default setting of the neural network-
ing toolbox provided by MATLAB, used as a second
baseline comparison.

• PRACTISE: the workload prediction framework pro-
posed in this paper.

Evaluation strategies. We use the first 14 days as training
data and use the following 46 days as the data for evaluation
of the prediction accuracy. With the online updating module,
PRACTISE automatically triggers a retraining if the monitored
error is outside the confidence interval determined by the 3
sigma rule [19]. We present the results for prediction length of
1 day ahead. We also present two more cases, one predicting 2
hours ahead (short window) and one predicting 1 week ahead
(long window). We evaluate PRACTISE by comparing it to
ARIMA and BaselineNN in two prediction scenarios: state
predictions and timing, and quantified predictions.

State predictions and timing. Several scheduling and
management frameworks [1], [21] do not require quantified
prediction. Instead, workloads are classified into states, e.g.,
peak states with relatively high resource usage and non-peak

VM CPU VM MEM VM DISK VM NETM
e

a
n

 D
e

la
y
 o

f
P

e
a

k
 S

ta
te

 P
re

d
ic

ti
o

n
 (

m
in

)

0

50

100

150

200
PRACTISE
ARIMA
BaselineNN

Fig. 6: Mean delay between prediction and actual occurrence
of peak states.

states with relatively low resource usage3, and only qualitative
predictions are needed. In such a scenario, the quality of the
prediction is measured by whether the future state can be
predicted correctly. In addition, it is critical to be able to not
only predict a peak state, but also the time when this state
occurs. We quantify the timing of the predictions across all
VMs in a cumulative way, i.e., we count for how many 15-
minute intervals the timing of the prediction of the peak state
is delayed.

With the given granularity of 15 minutes, every entry in
the traces represents a peak or non-peak state. The threshold
between peak and non-peak states is determined via K-means
clustering. Because timely predicting peak states is utterly
important, we first evaluate the accuracy of peak state pre-
diction. The left plot in Figure 5 illustrates the rate of false
negative peak state predictions, which is defined as the number
of wrong peak predictions (i.e., states that are predicted as non-
peak) divided by the total number of actual peak predictions.
Results are across all VMs. PRACTISE consistently achieves
less than 12% false negatives across all resources. The false
negative rates of ARIMA and BaselineNN are much higher
and very random across resources. We also provide two other
commonly used metrics for evaluating prediction accuracy:
precision, which is defined as the fraction of retrieved instances
that are relevant and recall, which is defined as the fraction of
relevant instances that are retrieved, see the middle and right
plots in Figure 5 respectively. PRACTISE again consistently
outperforms ARIMA and BaselineNN with respect to the two
metrics, which further validates the accuracy of PRACTISE.

Figure 6 illustrates the average delay (in minutes) between
the prediction and the actual occurrence of peak states across

3Here we focus on peaks because of literature [22], [23], but it can be
applied to other utilization levels, not only peaks.

14 15 16 17
0

17.5

35

52.5

70

Time (Day)

C
P

U
 U

S
E

D
 P

C
T

VM =18702

Actual

PRACTISE

14 15 16 17
0

17.5

35

52.5

70

Time (Day)

C
P

U
 U

S
E

D
 P

C
T

ACTUAL

ARIMA

14 15 16 17
0

17.5

35

52.5

70

Time (Day)

C
P

U
 U

S
E

D
 P

C
T

Actual

BaselineNN

Fig. 7: Prediction for VM CPU utilization.

14 15 16 17
0

12.5

25

37.5

50

Time (Day)

M
E

M
 U

S
E

D
 P

C
T

VM =3791

Actual

PRACTISE

14 15 16 17
0

12.5

25

37.5

50

Time (Day)

M
E

M
 U

S
E

D
 P

C
T

ACTUAL

ARIMA

14 15 16 17
0

12.5

25

37.5

50

Time (Day)

M
E

M
 U

S
E

D
 P

C
T

Actual

BaselineNN

Fig. 8: Prediction for VM memory utilization.

14 15 16 17
50

52

54

56

58

Time (Day)

D
IS

K
 U

S
E

D
 P

C
T

VM =28995

Actual

Neural Network

14 15 16 17
50

52

54

56

58

Time (Day)

D
IS

K
 U

S
E

D
 P

C
T

Actual

ARIMA

14 15 16 17
50

52

54

56

58

Time (Day)

D
IS

K
 U

S
E

D
 P

C
T

Actual

BaselineNN

Fig. 9: Prediction for VM disk space usage.

14 15 16 17
0

100

200

300

Time (Day)

N
E

T
 T

X
+

R
X

 M
B

P
S

VM =13060

Actual

PRACTISE

14 15 16 17
0

100

200

300

Time (Day)

N
E

T
 T

X
+

R
X

 M
B

P
S

Actual

ARIMA

14 15 16 17
0

100

200

300

Time (Day)

N
E

T
 T

X
+

R
X

 M
B

P
S

Actual

BaselineNN

Fig. 10: Prediction for VM network bandwidth usage.

all 775 VMs. PRACTISE shows a remarkable accuracy across
all resources with values dramatically outperforming all other
methods, i.e., for VM CPU utilization, the average delay
reduces from 36.80 minutes (ARIMA) and 23.82 minutes
(BaselineNN) to 6.22 minutes; for VM memory utilization,
from 29.93 minutes (ARIMA) and 14.00 minutes (Baseli-
neNN) to 8.00 minutes; for VM disk space usage, from 161.88
minutes (ARIMA) and 45.75 minutes (BaselineNN) to 17.02
minutes; and, for VM network bandwidth usage, from 63.12
minutes (ARIMA) and 18.75 minutes (BaselineNN) to 10.05
minutes.

Quantified predictions. Scheduling and management
frameworks do require quantified prediction [24], [25], es-
pecially for systems that need to meet certain service level
objectives. We first show overtime plots for the actual workload
and predicted results. Results for VM CPU utilization, VM
memory utilization, VM disk space usage, and VM network
bandwidth usage are shown in Figure 7, Figure 8, Figure 9,
and Figure 10 respectively4.

4We zoom in a 3-day period for clearer presentation.

Each point on the graphs corresponds to the finest work-
load granularity that is available, i.e., 15 minutes. It is clear
that the prediction error of PRACTISE is consistently lower
than both ARIMA and BaselineNN, especially for sudden
workload surges, thanks to the more appropriate feature se-
lection and bagging used in PRACTISE. Note that predicting
sudden workload surges is very important as it can drive
scheduling/management to allocate timely the right amount of
resources to prevent performance pitfalls.

While the results presented before show cases of consistent
periodicity across time, in Figure 11 we show a more challeng-
ing case where the trends of the periodical pattern change.
The results show that PRACTISE can effectively capture this
thanks to the online updating component. ARIMA can also
react to the trend change, but it fails to capture most peak
states. However, BaselineNN can only predict events that have
been observed before, and are therefore unable to capture such
trend changes. The experiments cover a variety of data center
configurations and applications with various usage patterns,
but due to the interest of space, we skip other results here.

14 15 16 17 18 19
0

15

30

45

60

Time (Day)

C
P

U
 U

S
E

D
 P

C
T

VM =35458

Actual

PRACTISE

14 15 16 17 18 19
0

15

30

45

60

Time (Day)

C
P

U
 U

S
E

D
 P

C
T

ACTUAL

ARIMA

14 15 16 17 18 19
0

15

30

45

60

Time (Day)

C
P

U
 U

S
E

D
 P

C
T

Actual

BaselineNN

Fig. 11: Prediction for CPU utilization; the trends changes after
day 17.

To quantify the prediction errors, we define the prediction

error (PCT) as
|prediction−actual|

actual
. We show the CDFs for one

specific VM (first column of Figure 12) for CPU, memory,
disk, and network. We also show the mean and 90th percentile
in the legend. The results illustrate clearly that PRACTISE is
consistently superior in accuracy compared to ARIMA and
BaselineNN as PRACTISE achieves up to 3 times better
prediction accuracy than in terms of average prediction errors.
The second column of Figure 12 illustrates the same informa-
tion but cumulative across all 775 VMs. The superiority of
PRACTISE is also clear in this comparison.

To demonstrate the importance of the bagging and the
online updating modules, we also compare the prediction
errors when bagging and online updating are activated, see
Figure 13. The results indicate that with these two components,
the prediction accuracy can be significantly further improved,
which verifies that these two enhancements are non-trivial and
useful.

Finally, we evaluate PRACTISE for different prediction
lengths. We demonstrate the prediction length of 2 hours
and 1 week in Figure 14. The results clearly illustrate that
PRACTISE consistently outperforms ARIMA and BaselineNN
for different prediction lengths. In addition, the change in the
size of the prediction window does not affect robustness.

Challenging cases. PRACTISE relies on the autocorrela-
tion values as features for neural network training. Here we
evaluate a challenging case with poor autocorrelation structure,
see the top plot of Figure 15. The figure illustrates the
autocorrelation plot of the memory utilization of a VM. The
autocorrelation function switches between positive and nega-
tive values, which makes feature selection very challenging.
The CDF of prediction errors for this VM is presented in the
bottom plot of Figure 15. The results suggest that even for
this case, PRACTISE still achieves relatively good prediction
accuracy and clearly outperforms ARIMA and BaselineNN.
The robustness in prediction is due to the fact that PRACTISE
does not solely rely on the autocorrelation features but also

on bagging and online updating which contribute to more
sophisticated predictions. We conclude that PRACTISE is
effective, efficient, and robust.

V. DISCUSSION

In this paper, we provided the first important step that
is required for VM consolidation and/or load balancing: a
framework for efficient and accurate prediction of future load,
and in particular peak loads and their timing. This prediction
is robust: even for cases where the workload burstiness does
not have a clear repetitive pattern, we still manage to achieve
remarkable accuracy and outperform ARIMA and generic
neural network models for future time windows that can range
from 1 hour to a week. There are many important implications
of this work:

Dynamic VM consolidation driven by resource demands
of different percentiles: PRACTISE can provide resource us-
age predictions for VMs but also for physical machines (PMs)
where the various VMs may be consolidated. PRACTISE can
provide different types of usage statistics, e.g., means, and
percentiles. Indeed, for PMs, the traces provide the number
of VMs per PM, as well as resource usage information.
PRACTISE can be used to predict this information and drive
different consolidation strategies5 that are based on different
load statistics. Due to the remarkable accuracy of PRACTISE
on capturing the peak loads and their timings, the consolidation
policy can aggressively conserve resources without risking
performance degradation.

VM consolidation driven by prediction of multiple re-
sources: PRACTISE is able to explore the availability of both
CPU and memory on PMs. Most importantly, having predic-
tions on multiple resources, one can focus on the most scarce
resource and drive the consolidation policies accordingly. Even
more specifically, since there is significant burstiness in both
memory and CPU usage, a strong prediction model can really
help in optimizing usage for both resources.

Minimizing the impact of VM migration: the VM migra-
tion overhead is known to be non-negligible and application
performance can thus drastically degrade, especially when
the migration timing collides with peak loads of the VMs
or the underlying physical hosts. Intelligent migration can
greatly leverage the information of future loads provided by
PRACTISE and select the optimal timings for migrating VMs.

A bird’s eye view of data center resource usage: beyond
VM consolidation, accurate information on future loads of
different resources enables a holistic load management of the
entire data center, including IT, cooling, and energy costs. The
server loads consume the energy to power up not only server
resources but also the cooling facility. Fundamental questions,
such as turning on/off components, can not be addressed
without a holistic view of data center resource usage.

Other workloads: PRACTISE an be applied to any work-
loads with autocorrelation, e.g., storage workloads [1].

5PRACTISE shows excellent prediction results for the PMs in this data set.
These results are not shown due to lack of space.

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

C
D

F

Absolute PCT Error (%)

VM =33222, CPU USED PCT

ARIMA: Mean =32.4, 90% =135.9

BaselineNN: Mean =29.3, 90% =120.4
PRACTISE: Mean =9.3, 90% =18.3

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

C
D

F

Absolute PCT Error (%)

VM CPU USED PCT

ARIMA: Mean =43.6, 90% =60.2

BaselineNN: Mean =32.5, 90% =93.6
PRACTISE: Mean =15.1, 90% =39.7

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

C
D

F

Absolute PCT Error (%)

VM =3788, MEM USED PCT

ARIMA: Mean =17.9, 90% =45.1

BaselineNN: Mean =11.3, 90% =23.1
PRACTISE: Mean =9.5, 90% =18.6

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

C
D

F

Absolute PCT Error (%)

VM MEM USED PCT

ARIMA: Mean =21.4, 90% =48.8

BaselineNN: Mean =20.6, 90% =47.7
PRACTISE: Mean =16.2, 90% =38.3

0 2 4 6
0

0.2

0.4

0.6

0.8

1

C
D

F

Absolute PCT Error (%)

VM =28995, DISK USED PCT

ARIMA: Mean =1.9, 90% =5.3

BaselineNN: Mean =2.1, 90% =4
PRACTISE: Mean =0.6, 90% =0.8

0 2 4 6
0

0.2

0.4

0.6

0.8

1

C
D

F

Absolute PCT Error (%)

VM DISK USED PCT

ARIMA: Mean =0.9, 90% =2.3

BaselineNN: Mean =0.8, 90% =2.2
PRACTISE: Mean =0.5, 90% =0.8

0 100 200 300
0

0.2

0.4

0.6

0.8

1

C
D

F

Absolute PCT Error (%)

VM =3751, NET RX+TX MBPS

ARIMA: Mean =85.8, 90% =253

BaselineNN: Mean =52.7, 90% =149
PRACTISE: Mean =27.5, 90% =79.5

0 100 200 300
0

0.2

0.4

0.6

0.8

1

C
D

F

Absolute PCT Error (%)

VM NET RX+TX MBPS

ARIMA: Mean =66.7, 90% =269.5

BaselineNN: Mean =29.6, 90% =64.2
PRACTISE: Mean =18.9, 90% =37.3

Fig. 12: Prediction error comparison for different prediction methods. The graphs are for VM CPU utilization (row 1), VM
memory utilization (row 2), VM disk space usage (row 3), VM network bandwidth prediction (row 4). The first column is for
a selected VM and the second column shows accumulated results over all VMs. Prediction length is 1 day ahead.

VI. RELATED WORK

ARMA/ARIMA [11] have been widely used for time series
prediction in several systems areas. Tran and Reed use ARIMA
to improve block prefetching for scientific applications [26].
They use ARIMA to predict the temporal access pattern and
Markov models to identify spatial access patterns and manage
to identify what and how much to prefetch. Their predictor
is implemented on the Linux file system. In [5] ARIMA is
used for effective user traffic prediction for capacity planning.
The authors focus on cost-efficient database replication that
is driven by the anticipated user traffic within the LinkedIn

social network. ARIMA models have also been used in sensor
networks to reduce the frequency of sampling and to improve
on energy efficiency by transmitting only deviations from
the ARIMA-predicted values [27]. Anomaly detection is yet
another area where ARIMA models have been used [28].

Machine learning techniques are used to overcome the
limitation of the linear basis function of ARIMA models and
are used for effective characterization of TCP/IP [29] and web
server views [30]. Neural networks are used for performance
prediction of the total order broadcast, which is a key building
block for fault-tolerant replicated systems [31]. Ensembles of

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

C
D

F

Absolute PCT Error (%)

VM =18700, CPU USED PCT

NoBagging: Mean =7.6, 90% =25.2

Bagging: Mean =2.4, 90% =5.9

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

C
D

F

Absolute PCT Error (%)

VM =35458, CPU USED PCT

NoUpdate: Mean =28, 90% =62.4

OnlineUpdate: Mean =17.7, 90% =58.1

Fig. 13: Prediction error comparison of VM CPU utilization
with and without bagging (top plot), and with and without
online updating module (bottom plot).

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

C
D

F

Absolute PCT Error (%)

VM CPU USED PCT

ARIMA: Mean =22.4, 90% =40.7

BaselineNN: Mean =28.7, 90% =82.1
PRACTISE: Mean =10.4, 90% =32.7

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

C
D

F

Absolute PCT Error (%)

VM CPU USED PCT

ARIMA: Mean =34.4, 90% =113.6

BaselineNN: Mean =31.2, 90% =94.6
PRACTISE: Mean =24.6, 90% =52.6

Fig. 14: Prediction error comparison of VM CPU utilization
for prediction length of 2 hours (top plot) and 1 week (bottom
plot). The results are accumulated across all VMs.

time neural network models have been used to project disk
utilization trends in a cloud setting [32]. Neural networks and
hidden Markov models are used for automatic IO pattern clas-
sification and are evaluated with both sequential and parallel
benchmarks [21]. Probabilistic models that define workload
states via Markov Modulated Poisson Processes have been
used in [1] to interleave workloads with different performance
objectives. Machine learning techniques have been widely used
for workload prediction [33], [34], [35], [36]. In contrast to
these works, we rely on the autocorrelation and automate the

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45
−0.25

0

0.25

0.5

0.75

1
VM =34726

Time (Day)

A
C

F

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

C
D

F

Absolute PCT Error (%)

VM =34726, MEM USED PCT

ARIMA: Mean =49.5, 90% =69.4

BaselineNN: Mean =56.6, 90% =125.3

PRACTISE: Mean =27.5, 90% =49.8

Fig. 15: A challenging case (VM 34726). Autocorrelation (top
plot) and prediction error comparison (bottom plot) of memory
utilization for different prediction methods.

entire learning process.

The effectiveness of the proposed neural network approach
that we advocate in this paper is based on statistical analysis of
the workload so that the most relevant features are selected for
the training data set. Training the model with careful feature
selection significantly improves its accuracy and stability but
also increases the speed of training and prediction, making
it appropriate to use for online performance prediction and
capacity planning. In addition, due to the appropriate feature
selection, PRACTISE can provide short-term (e.g., 15 minutes)
to long-term (e.g., one day or one week ahead) predictions
and achieve excellent accuracy. These superior predictions
facilitate robust long-term capacity planning and resource
allocation.

VII. CONCLUSION AND FUTURE WORK

In this paper, we develop PRACTISE, an enhanced neural
network based framework for predicting the usage of various
resources in data centers. PRACTISE uses autocorrelation-
based feature selection, boostrap aggregation, and online up-
dating. We extensively evaluate PRACTISE on predicting
CPU, memory, disk and network usage on a set of 775
VMs over a period of 2 months and compare its prediction
effectiveness to ARIMA and basic neural network models. We
are able to achieve up to 3 times better prediction accuracy in
terms of average prediction errors and dramatic improvements
(2- to 9-fold) with respect to the prediction timings. Thanks
to the excellent prediction accuracy of PRACTISE, we are
able to efficiently capture the peak loads in terms of their
intensities and timing, in contrast to classic time series models.
In our future work we intend to use PRACTISE to explore VM
consolidation and migration policies tailored to cater to peak
demands in a cost-effective way.

VIII. ACKNOWLEDGMENTS

This work is supported by NSF grant CCF-1218758 and
EU commission FP7 GENiC project (Grant Agreement No
608826).

REFERENCES

[1] J. Xue, F. Yan, A. Riska, and E. Smirni, “Storage workload isolation
via tier warming: How models can help,” in Proceedings of the 11th

ICAC, 2014, pp. 1–11.

[2] Y. Zhang, G. Soundararajan, M. W. Storer, L. N. Bairavasundaram,
S. Subbiah, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “Warm-
ing up storage-level caches with Bonfire,” in FAST, 2013, pp. 59–72.

[3] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F. B. Cetin, and
S. Babu, “Starfish: a self-tuning system for big data analytics.” in CIDR,
vol. 11, 2011, pp. 261–272.

[4] J. Cohen, B. Dolan, M. Dunlap, J. M. Hellerstein, and C. Welton, “Mad
skills: new analysis practices for big data,” Proceedings of the VLDB

Endowment, vol. 2, no. 2, pp. 1481–1492, 2009.

[5] Z. Zhuang, H. Ramachandra, C. Tran, S. Subramaniam, C. Botev,
C. Xiong, and B. Sridharan, “Capacity planning and headroom analysis
for taming database replication latency: experiences with linkedin
internet traffic,” in Proceedings of the 6th ACM/SPEC ICPE, 2015,
pp. 39–50.

[6] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach,
I. Pratt, and A. Warfield, “Live migration of virtual machines,” in NSDI.
USENIX Association, 2005, pp. 273–286.

[7] M. Nelson, B.-H. Lim, G. Hutchins et al., “Fast transparent migration
for virtual machines.” in USENIX ATC, 2005, pp. 391–394.

[8] T. Wood, P. J. Shenoy, A. Venkataramani, and M. S. Yousif, “Black-box
and gray-box strategies for virtual machine migration.” in NSDI, vol. 7,
2007, pp. 17–17.

[9] R. Birke, A. Podzimek, L. Y. Chen, and E. Smirni, “State-of-the-practice
in data center virtualization: Toward a better understanding of VM
usage,” in DSN, 2013, pp. 1–12.

[10] R. Birke, M. Björkqvist, L. Y. Chen, E. Smirni, and T. Engbersen,
“(big)data in a virtualized world: volume, velocity, and variety in cloud
datacenters,” in FAST, 2014, pp. 177–189.

[11] B. George, Time Series Analysis: Forecasting & Control, 3rd ed.
Pearson Education India, 1994.

[12] L. Breiman, “Bagging predictors,” Machine learning, vol. 24, no. 2, pp.
123–140, 1996.

[13] L. M. Leemis and S. K. Park, Discrete-event simulation: a first course.
Pearson Prentice Hall Upper Saddle River, NJ, 2006.

[14] P. Goodwin, “The holt-winters approach to exponential smoothing: 50
years old and going strong,” Foresight, pp. 30–34, 2010.

[15] R. J. Frank, N. Davey, and S. P. Hunt, “Time series prediction and
neural networks,” Journal of Intelligent and Robotic Systems, vol. 31,
no. 1-3, pp. 91–103, 2001.

[16] H. Demuth, M. Beale, and M. Hagan, “Neural network toolboxT M 6,”
User′s Guide, 2008.

[17] M. H. Hassoun, Fundamentals of Artificial Neural Networks, 1st ed.
Cambridge, MA, USA: MIT Press, 1995.

[18] T. Hill, M. O’Connor, and W. Remus, “Neural network models for time
series forecasts,” Management Science, vol. 42, no. 7, pp. 1082–1092,
1996.

[19] G. Upton and I. Cook, A Dictionary of Statistics 3e. Oxford university
press, 2014.

[20] M. L. Marx and R. J. Larsen, Introduction to mathematical statistics

and its applications. Pearson/Prentice Hall, 2006.

[21] T. M. Madhyastha and D. A. Reed, “Learning to classify parallel
input/output access patterns,” IEEE Trans. Parallel Distrib. Syst.,
vol. 13, no. 8, pp. 802–813, 2002. [Online]. Available: http:
//doi.ieeecomputersociety.org/10.1109/TPDS.2002.1028437

[22] A. K. Maji, S. Mitra, B. Zhou, S. Bagchi, and A. Verma, “Mitigat-
ing interference in cloud services by middleware reconfiguration,” in
Proceedings of the 15th International Middleware Conference. ACM,
2014, pp. 277–288.

[23] J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat, and R. P.
Doyle, “Managing energy and server resources in hosting centers,” in
ACM SIGOPS Operating Systems Review, vol. 35, no. 5. ACM, 2001,
pp. 103–116.

[24] X. Zhu, D. Young, B. J. Watson, Z. Wang, J. Rolia, S. Singhal,
B. McKee, C. Hyser, D. Gmach, R. Gardner et al., “1000 islands:

Integrated capacity and workload management for the next generation
data center,” in Autonomic Computing, 2008. ICAC’08. International

Conference on. IEEE, 2008, pp. 172–181.

[25] P. Xiong, C. Pu, X. Zhu, and R. Griffith, “vperfguard: an automated
model-driven framework for application performance diagnosis in con-
solidated cloud environments,” in Proceedings of the 4th ACM/SPEC

International Conference on Performance Engineering. ACM, 2013,
pp. 271–282.

[26] N. Tran and D. A. Reed, “Automatic ARIMA time series
modeling for adaptive I/O prefetching,” IEEE Trans. Parallel Distrib.

Syst., vol. 15, no. 4, pp. 362–377, 2004. [Online]. Available:
http://doi.ieeecomputersociety.org/10.1109/TPDS.2004.1271185

[27] M. Li, D. Ganesan, and P. J. Shenoy, “PRESTO: feedback-
driven data management in sensor networks,” IEEE/ACM Trans.

Netw., vol. 17, no. 4, pp. 1256–1269, 2009. [Online]. Available:
http://doi.acm.org/10.1145/1618562.1618581

[28] B. Zhu and S. Sastry, “Revisit dynamic ARIMA based anomaly
detection,” in PASSAT/SocialCom 2011, Privacy, Security, Risk and

Trust (PASSAT), 2011 IEEE Third International Conference on and

2011 IEEE Third International Conference on Social Computing

(SocialCom), Boston, MA, USA, 9-11 Oct., 2011, 2011, pp. 1263–
1268. [Online]. Available: http://doi.ieeecomputersociety.org/10.1109/
PASSAT/SocialCom.2011.84

[29] P. Cortez, M. Rio, M. Rocha, and P. Sousa, “Multi-scale internet traffic
forecasting using neural networks and time series methods,” Expert

Systems, vol. 29, no. 2, pp. 143–155, 2012.

[30] J. Li and A. W. Moore, “Forecasting web page views: methods and
observations,” Journal of Machine Learning Research, vol. 9, no. 10,
pp. 2217–2250, 2008.

[31] M. Couceiro, P. Romano, and L. Rodrigues, “A machine learning
approach to performance prediction of total order broadcast protocols,”
in 4th IEEE SASO, 2010, pp. 184–193.

[32] M. Stokely, A. Mehrabian, C. Albrecht, F. Labelle, and A. Merchant,
“Projecting disk usage based on historical trends in a cloud environ-
ment,” in Proceedings of the 3rd workshop on ScienceCloud, 2012, pp.
63–70.

[33] N. K. Ahmed, A. F. Atiya, N. E. Gayar, and H. El-Shishiny, “An
empirical comparison of machine learning models for time series
forecasting,” Econometric Reviews, vol. 29, no. 5-6, pp. 594–621, 2010.

[34] L. M. Saini and M. K. Soni, “Artificial neural network-based peak load
forecasting using conjugate gradient methods,” Power Systems, IEEE

Transactions on, vol. 17, no. 3, pp. 907–912, 2002.

[35] S. F. Crone, M. Hibon, and K. Nikolopoulos, “Advances in forecasting
with neural networks? empirical evidence from the nn3 competition on
time series prediction,” International Journal of Forecasting, vol. 27,
no. 3, pp. 635–660, 2011.

[36] K.-L. Ho, Y.-Y. Hsu, and C.-C. Yang, “Short term load forecasting using
a multilayer neural network with an adaptive learning algorithm,” Power

Systems, IEEE Transactions on, vol. 7, no. 1, pp. 141–149, 1992.

