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Abstract—Data centers are nowadays ubiquitous, in a world-
wide scale, and often geographically dispersed. In such en-
vironments, data reliability and availability are enhanced via
data redundancy throughout the distributed storage. Because
user performance is important in data centers, data updates
in such distributed environments are done such that eventual
consistency is achieved. In this paper we utilize a learning-based
framework that aims at scheduling data writes during user idle
times such that the impact on user performance is limited within
strict predefined targets while the updates are completed as fast
as possible. The effectiveness and robustness of the proposed
framework are illustrated via extensive trace-driven simulations.

I. INTRODUCTION

To accommodate the fast growth of data centers and ser-
vices, data or its fragments are distributed and replicated
across a subset of nodes such that the system can tolerate
a wide range of network, power, and/or other type of failures
that could put off-line large quantities of data [1], [2]. As
data is continuously updated, keeping all replicas current
and consistent is challenging due to the impact that data
creation/update has on user performance as it propagates to
the destination nodes. If all updates are propagated to all
of their replicas in real time, then the delays experienced
by users at the nodes where data replication is involved can
be significant. Asynchronous propagation of updates is an
attractive alternative, as long as the data updates eventually
reach all replicas in order for the system to achieve eventual
data consistency [3], [4], [5].

The term “eventual consistency” implies that updates of
data do reach all of their distributed replicas; it just does
not quantify how fast all updates are completed. Naturally,
this depends largely on the supporting infrastructure, e.g., the
network bandwidth between the data centers, as well as the
scale of the system and its quality goals, e.g., performance,
reliability, and availability. However, for any piece of data that
has not reached its consistency yet, there are vulnerabilities
with regard to its integrity and reliability. A robust and
resilient system achieves eventual consistency quickly for each
piece of data that is created or updated. Key to meeting the
system quality goals is the scheduling of the asynchronous
updates [6], such that they minimally interfere with normal
user traffic and complete as soon as possible. Commonly these
tasks are scheduled based on the current utilization levels of

each node; i.e., asynchronous updates are scheduled mostly
during periods of low storage node utilization.

In this paper, we focus on how to schedule the asynchronous
data updates such that the performance in the sending and
receiving nodes meets predefined quality of service (QoS)
goals. The scheduling parameters are determined and updated
continuously at the individual node level as the scheduling
framework “learns” the characteristics of the workload the
nodes are serving. Such parameters are exchanged between
nodes in order to synchronize the speed of the transmis-
sion, given that busy or performance sensitive nodes can
send/receive data at different speeds.

The learning aspect of our scheduling policy consists of
understanding the available idle times that can be used to
serve the asynchronous updates as in [7]. The methodology
in [7] is utilized to determine when to start and stop servicing
asynchronous tasks without violating performance goals, such
as the degradation in user traffic response time.

Extensive experimentation with simulations driven from
traces collected in real storage systems, demonstrates the
robustness of our framework. Evaluation results show that our
framework is orders of magnitude faster than the common
practice of utilization-based scheduling and completes its
updates comparably to an aggressive policy that schedules the
asynchronous updates as soon as the involved nodes become
idle. We note that our framework provides guarantees on the
performance of each node and reduces the time to achieve data
consistency, something that none of the alternative policies
achieves.

II. STATE OF THE ART AND MOTIVATION

In this section we quickly review three scheduling methods
that are often used to schedule background work in storage
systems:

• Aggressive scheduling schedules asynchronous updates
immediately and without any consideration of foreground
user traffic. Such scheduling reduces the inconsistency
window but may result in very high and unpredictable
user performance degradation.

• Utilization-guided (Aggressive) scheduling takes the user
traffic into consideration by monitoring the utilization. If
the system utilization is below a threshold, then it sched-
ules asynchronous updates immediately. When utilization
is high, it stops scheduling any asynchronous updates.
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• Utilization-guided (Conservative) scheduling uses system
utilization as guidance and schedules the asynchronous
updates only when the system utilization is low. Be-
fore scheduling any asynchronous updates during a low
utilization interval, the system idle waits for a certain
amount of time [8] to avoid using small idle intervals,
which have a higher chance to cause extra delays to user
traffic.
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Fig. 1. Utilization over time for bin size 10 mins (top), 1 hour (middle) and
1 day (bottom). Y-axis is in log scale.

From the above policies, only the third one strives to reduce
the performance impact of the asynchronous updates on the
node user traffic, although still without performance guaran-
tees. Note that both utilization-based policies depend on the
characteristics of system utilization, which may be very dif-
ferent across different time scales (e.g., minutes versus days).
To illustrate this, we plot in Figure 1 the average utilization of
a representative trace from Microsoft Research (this trace is
described in detail in the following section). The plot shows a
large variance in utilization when looking at 10-minute, 1-hour,
and 1-day windows and suggests that utilization, as a steady-
state metric, is not usable for scheduling purposes here. If
utilization is monitored over a long interval (e.g., hours), then
it cannot capture well the unpredictability of user traffic. If it
is monitored over a short interval (e.g., minutes), it may not
be able to predict the near future correctly based on current
and past information because utilization changes swiftly at
such scale. This observation motivates us to devise a more
sophisticated yet simple learning-based scheduling framework
to overcome the above shortcomings.

III. ASYNCHRONOUS UPDATE SCHEDULING FRAMEWORK

In this section, we propose a learning-based framework for
scheduling asynchronous updates. We first introduce the basic
premise of the learning-based scheduling of background work.
Then we explain in more details how to estimate the amount
of work associated with asynchronous updates so that the
framework can compute correct scheduling parameters.

A. Learning-based Scheduling with Performance Guarantees

We first describe an algorithmic framework that schedules
asynchronous updates with performance guarantees for user
traffic. This algorithmic framework estimates the performance
impact of asynchronous updates. It determines the most effec-
tive schedule by examining when and for how long to schedule
asynchronous updates during idle periods in storage devices,
such that the trade-off between performance degradation and
timely asynchronous updates meets system quality targets.

One could argue that starting the asynchronous updates
immediately after the storage device becomes idle is most
efficient. However, the stochastic nature of idle periods and
the non-instantaneously preemptive nature of tasks in storage
devices may cause delays to user requests when it arrives in
a system that is serving the asynchronous tasks. In storage
systems, it is very common to idle wait for some time before
starting a background task to avoid utilizing the very short
idle periods for any background activities [8]. In addition, [9]
suggests that limiting the amount of time that the system serves
background tasks further limits the performance impact on
user traffic. The framework in [7] computes both the idle wait
I and the duration T of the time to serve background jobs as a
function of past workload (i.e., the stochastic characteristics of
past idle periods). We use here this (I, T ) tuple for scheduling
asynchronous updates during idle periods.

Central to the calculation of I and T is the CDH of idle
intervals. In addition to the CDH, the framework also uses
the user-provided average performance degradation target D,
which is defined as the allowed average relative delay of
an IO operation due to asynchronous updates and can be
computed from the (I , T ) scheduling pair and other statistical
information such as average response time.

B. Calculation of Scheduling Parameters

The first target is for the scheduling of asynchronous
updates (e.g., replica WRITEs) to remain transparent to the
user, which is measured by the performance degradation D

introduced earlier. Assume that W is the average IO wait due
to serving replica WRITEs. Without loss of generality, we
measure the idle interval length as well as the wait within
the 1 ms granularity. Because a disk is activated upon an
IO arrival, W can be at most P , which is the time penalty
that a user request may suffer if it arrives while the disk
is still serving the replica WRITEs. The penalty can be
estimated from the average IO service time because when a
new user request comes, it needs to wait until the asynchronous
task completes. By denoting a possible delay by w and its
respective probability by Prob(w) then

W =
P∑

w=1

w · Prob(w). (1)

where the delay w caused to the IOs of the busy period
following the scheduling of replica WRITEs may be any value
between 1 and P . Using the probabilities in the CDH of idle
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periods length, the probability of any delay w caused to the
IOs of the following busy period is given by the equation

Prob(w) =

⎧⎪⎨
⎪⎩

CDH(I + T − w + 1)− CDH(I + T − w),

for 1 ≤ w < P

CDH(I + T − P )− CDH(I), for w = P,
(2)

where CDH(.) indicates the cumulative probability value of an
idle interval in the monitored histogram. The intuition behind
this equation is that for a scheduling pair (I, T ), the delay to
the busy period following the scheduling of replica WRITEs
is w (1 <= w < P ) if the idle interval length is larger than
I + T − P and the probability is given as CDH(I + T −

w + 1)− CDH(I + T − w). And the delay is P for all idle
intervals whose length falls between I and I + T − P , where
the probability of this event is given as CDH(I + T − P )−
CDH(I).

To find the qualified scheduling pair (I, T ), we scan the
CDH of idle periods length for (I, T ) pairs that do not violate
the target D. A pair (I, T ) guarantees the performance target
D if

D ≥
W(I,T )

RTw/o BG
, (3)

where RTw/o BG is monitored and W(I,T ) is computed using
Eq. (1).

The second scheduling target is to complete all replica
WRITEs. Here we define the average replication work amount
target BW measured in units of time as

BW =
ρW ∗ E[I]

1− ρFG
(4)

where ρW is the average utilization contributed to WRITEs,
ρFG is the average utilization of all user requests, and E[I] is
the average idle interval length. The term E[I]

1−ρFG
corresponds

to the average length of one busy period plus one following
idle period, and if multiplied by ρW , it represents the average
amount of time WRITE requests need to be served during one
busy period plus one following idle one.

For a pair (I, T ) that guarantees the performance target D
as computed above, the average amount of replica work BBG

measured in units of time can be estimated as follows:

BBG =

I+T−P∑
o=I

p(o) · (o− I) +

max∑
o=I+T−P

p(o) · (T − P ) (5)

where p(o) is the probability that an idle interval is of length
o, and max is the maximum length of the idle intervals in
the CDH. Intuitively, BBG is composed of two kinds of idle
intervals that are larger than idle wait time I (intervals smaller
than I are not used for replication work). The first type of idle
interval is of length o that falls between I and I + T − P .
Because the replication work in this kind of interval terminates
at the end of each idle interval, which is before the limiting
time T , its contribution to the overall BBG is only o− I . The
second type of idle interval is of length o with a vale of at least
I+T −P . In this case, the replication mode stays for T time

units, so its contribution to the overall BBG is T − P . Then
we multiply them by the probability of each used interval and
sum them together to get the average amount of replication
work BBG.

Among all the (I, T ) scheduling pairs that can meet perfor-
mance target, we choose only the one that can also meet the
replication work amount target (BBG >= BW ) so that there
is never replication work starving. There might be multiple
pairs that qualify for meeting both the target D and target
BW . In this case, we select the one with the smallest I . If
there are multiple pairs with the smallest I, we choose the
one with the largest T so that it schedules as aggressively as
possible, thereby ensuring that replication work finishes as fast
as possible without backlog.

IV. EXPERIMENTAL EVALUATION

In this section, we evaluate the proposed scheduling frame-
work via an extensive set of experiments. First, we describe
the traces to drive the simulation experiments. Then we
experiment with our framework and other common practices
as discussed in Section II. The experiments that we present
in this section validate the robustness and efficiency of our
framework with regard to the time it takes to achieve the
eventual consistency and the impact on user performance.

We use storage system traces made available through the
SNIA IOTTA repository [10] collected by Microsoft from its
servers at their data centers and published by the Microsoft
Research Cambridge (MSR) [11]. Each trace records informa-
tion about a set of attributes for each IO request. Specifically,
for each IO, we have the arrival time stamp, request type
(write/read), offset from the start of logical disk, request size,
and response time.

Table I presents an overview of various statistical measures
for four traces1. The usr0 trace is obtained from a user files
server, the mds0 trace comes from a media server, the ts0
trace is collected from a terminal server, and the web0 trace
is captured in the Web/SQL server. Each trace has a duration
of one week (168 hours) and represents a wide range of
common traffic behaviors. From the table, we can see that
these volumes show very low utilization, which suggests that
good opportunities exist for serving background work, such as
WRITE synchronization. The relatively substantial Coefficient
of Variation (C.V., which is a normalized measure of the
dispersion defined as the ratio of the standard deviation to
the mean) suggests that using idleness may be challenging.
We also note these traces are WRITE dominant workloads for
which the asynchronous update strategy plays a very important
role.

We plot the idle time intervals across time in Figure 2. The
plots clearly show that there is a daily cycle pattern which
suggests that if we characterize well these idle periods within
a cycle, then we may be able to accurately predict the next
cycle. Comparing to the utilization, idleness depicts more of
a cyclic behavior, making it more reliable.

1The Microsoft IOTTA repository has a larger number of traces than what
we show here. We have selected only these four traces as representative.
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Trace Duration Utilization Average Arrival Average Service Average Response Idle Length R/W
(hour) (%) Rate (1/ms) Rate (1/ms) Time (ms) Average (ms) C.V. ratio

usr0 168 1.07 0.0012 0.1203 8.94 805.36 1.74 0.11
mds0 168 0.52 0.0007 0.1412 7.21 1404.16 1.93 0.03

ts0 168 0.61 0.0008 0.1455 7.06 1150.20 1.74 0.04
web0 168 0.72 0.0010 0.1468 7.12 959.72 2.11 0.13

TABLE I
GENERAL TRACE INFORMATION.
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Fig. 2. The idle periods length overtime plots.

A. Experiment Scenarios

The set of simulations that we developed to evaluate the
framework proposed in Section III as well as the other
baseline alternatives are driven by the Microsoft Research
traces. We call the node that receives the WRITE traffic (i.e. all
updates/creates) the “active node” and the node that receives
the asynchronous updates the “inactive” one (replica). The
inconsistency window consists of three parts: the time it takes
to send out the data from the active node, the time to transfer
the data over the network, and the time to commit the data on
the storage devices of the inactive node.

We focus on minimizing the delays experienced at the
active and inactive nodes. We do not limit the buffer space,
contending that the faster we complete the synchronization of
data the less buffer is needed. We also assume that there is
no packet loss in the network and that the network delay is
exponentially distributed with an average of 100 ms (i.e., the
average delay for intercontinental round trip communication).

In our experiments, we use two different pairs of traces
to evaluate our framework, i.e., (msd-active, ts0-inactive) and
(web0-active, usr0-inactive). For each pair, we divide the traces
into seven portions or time windows, each corresponding to
a full day workload. Recall that during learning we update
the histogram of idle periods length, the average arrival and
service rate of WRITE, the average arrival and service rate
of all IO. Our framework uses these monitored parameters
to compute the scheduling parameters, i.e., when and for
how long during the idle interval, the asynchronous tasks are
executed. Learning in our framework occurs during one full
time window and the learning results apply on the next time
window. This means that we run our framework once a day
and update the scheduling parameters accordingly. We run the
experiments across all six time windows (the first day/time
window is used only for learning), but due to the limited space,
we only show results only for a subset of time windows. We

also do experiments with other learning window and the results
are not as good as one day, which verifies the choice according
to the daily cycle as analyzed earlier.

In our experiments we evaluate the following solutions for
achieving eventual consistency: the fully work-conservative
approach (we label it as “Aggressive”) that starts to serve
the asynchronous tasks as soon as the node becomes idle.
The “Utilization-based” policy monitors the utilization of the
system for the past 10 minutes, and if it increases above a
threshold (the threshold is chosen as the average utilization
during a long period, e.g., one day), then no asynchronous
tasks are scheduled. If utilization drops below the threshold,
then asynchronous tasks are scheduled aggressively, i.e., as
soon as the node becomes idle. The above two policies are
evaluated as baseline versions to compare with our scheduling
framework (we label it as “Learning-based”).

Note that the “Utilization-based” approach is not work con-
serving but is widely used in systems today, in an effort to limit
the unpredictable performance impact that an “Aggressive”
approach would have during periods of high utilization. Our
experiments show that the impact of all alternative methodolo-
gies have an unpredictable impact on node performance and
that only our “Learning-based” method provides a solution
that can maintain user-performance guarantees.

B. Delay on Achieving Eventual Consistency

Our initial experiments evaluate the total time that it takes,
on the average, to propagate the WRITE from the active node
to the inactive node. Obviously, the faster the propagation
of WRITEs, i.e., the smaller the inconsistency window, and
the more robust and resilient the system is. We provide the
results of the experiments on the duration of the inconsistency
window in Figure 3, each row of plots in the figure corre-
sponding to the node pairs described in Section IV-A. Since
our framework relies on the knowledge of various scheduling
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Fig. 3. Inconsistency Window comparison between different scheduling for various active-inactive pairs (first row: mds0 - ts0, second row: web0 - usr0.
Three learning windows are considered: Start = first day (left column), Start = third day (center column), and Start = fifth day (right column).

parameters including the CDH of idle intervals, we compute
the (I, T ) scheduling pair based on system measurements
in the previous time interval (an entire day). The columns
of Figure 3 correspond to results for three different days.
Results are plotted for different user performance degradation
targets (in %) (captured in the x-axis). For different per-
formance degradation targets (captured in the x-axis) there
are different scheduling parameters for our framework and
consequently, different results. However the results for the
baseline approaches are independent of such goals and their
corresponding results do not change across the x-axis.

The Aggressive approach performs best with regard to how
fast the WRITEs propagate through the distributed system,
because it represents the only work conserving policy that
we are evaluating here. However, as we show in the next
subsection, it also causes the largest, possibly unbounded,
delays in user performance. As a result, in systems today, it
is rarely used, but we include it here to use its performance
with regard to the length of the inconsistency window as a
baseline of the possible minimum. The closer other policies
come to this approach without sacrificing performance, the
more resilient they are.

On the other hand the Utilization-based policy makes
scheduling decisions based on the monitored utilization levels
in the immediate past. Because of the strong oscillations in the
short-term utilization, it behaves as a very conservative policy
that does not take into consideration the available idleness in
the system. Observe that the inconsistency window is orders
of magnitude higher than the other alternative policies. Similar
policies are common practices in systems today.

The curves corresponding to our framework, dynamically
change as the target performance goal changes. As expected,

for systems that are more sensitive to performance and where
the target is low, the eventual consistency is achieved at a
slower pace than when the performance degradation target is
less stringent. Our scheduling converges to the Aggressive
scheduling as the performance degradation target increases
to the performance degradation caused by the Aggressive
approach. Note that the higher the performance degrada-
tion target, the smaller the value of I , which indicate how
(non)work conserving the policy is (i.e., I = 0 and large T

corresponds to a work-conserving policy). The few fluctuations
in our scheduling results is due to the fact that we use the
learning of a previous day, which obviously can result in some
errors on the predicted workload characteristics.

The main observation from Figure 3 is that our framework
(both its versions) performs comparable to the Aggressive
policy for any performance degradation target (excluding the
very small and impractical ones 1-5%). The Utilization-based
approach is orders of magnitude worse, and as we show next,
it also suffers from high performance degradation.

C. Impact on User Performance

As discussed above, the time it takes to propagate the
asynchronous traffic and achieve eventual consistency is highly
dependent on how much the user performance is degraded.
Recall that serving the asynchronous updates as background
work delays foreground user requests that arrive while the
system serves asynchronous updates because IO tasks are
not instantaneously preemptable. Here, we focus on how the
various approaches perform with respect to foreground task
degradation, measured as the percentage of the average user
response time increase in presence of asynchronous tasks.
We show the results in Figure 4, each row corresponding to
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Fig. 4. User performance impact comparison between different scheduling for various active-inactive pairs (first row: mds0 - ts0, second row: web0 - usr0).
Three learning windows are considered: Start = first day (left column), Start = third day (center column), and Start = fifth day (right column).

different active-inactive pairs, and each column corresponding
to different days in the trace. We still use the performance
target (in %) as index of the x-axis and plot the actual
performance degradation measured in simulations (in %) in
the y-axis.

As expected, the Aggressive policy performs very poor
with regard to the actual user degradation in the system. The
average user response time increases beyond 50%, despite the
fact that the the work associated with asynchronous updates
is modest. The Utilization-based policy proves to be really
ineffective, because although it results in very slow eventual
consistency, it still penalizes user performance significantly,
which attests to the inefficiency of making decisions based
on short-term learning. We believe that not only short-term
learning is ineffective, but also the metric of utilization itself
and a guide to scheduling asynchronous tasks, despite the
fact that it is widely used in practice. Our framework, on the
other hand, adapts its decisions to the system quality targets
striking a good balance between system user performance and
replica completion speed. The results in Figure 4 confirm the
robustness of periods of long learning as being more robust
and effective than shorter learning periods as used in the
Utilization-based policy.

V. CONCLUSIONS

In this paper, we utilized a framework that learns the
idleness characteristics in a storage node dynamically. It deter-
mines how fast the newly written data can be asynchronously
sent or received to/from nodes in a distributed storage envi-
ronment (like geographically distributed data centers) without
violating performance goals so that eventual data consistency
is achieved quickly. Our simulation results indicate that the

framework performs orders of magnitude better than the
common practices in terms of achieving consistency speed and
maintaining performance.
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