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ABSTRACT

As storage in data centers is increasing rapidly, it has be-
come critical to find ways to operate efficiently this impor-
tant component of a data center. Often, it has been pro-
posed to consolidate the storage workload into a subset of
storage devices and shutdown the unused ones with the pur-
pose of preserving power. In many cases storage workload
consolidation requires some amount of data to be copied
from one device or set to the next. While storage workload
consolidation techniques focus on extending power savings
with minimal penalty in the performance of a data center,
less attention is paid to the process of seamlessly integrating
the data copy phase into the overall storage workload con-
solidation technique. Specifically, in this paper, we propose
an analytic framework that synchronizes the pace of copying
data between two storage devices (or nodes) such that per-
formance is maintained within predefined targets. As such,
we avoid either undesired performance degradation caused
by aggressively scheduling the data copy task or a slow copy
process caused by conservative scheduling. We show with
extensive experimentation that the framework is robust and
that it provides an important step toward automating stor-
age consolidation and high power savings.

1. INTRODUCTION
Storage consolidation has been proposed as an effective

way to increase idleness at individual or sets of disk drives
aiming at using disk idleness for power savings [12, 4]. From
this perspective, the entire working set of a disk or portions
of it may be redirected elsewhere in the storage system [1, 6,
7, 10]. Intelligent replication schemes to decide the optimal
number of active disks to serve a workload in the system
have been proposed [10]. Strategies conserve energy by ex-
ploiting disk parallelism to spin down disks so that more
disks are used for better performance, less for power savings
have been proposed in [11].
These studies have put emphasis on the question of how

to gain more extra power savings, but they do not provide
the solution to estimate beforehand the overheads due to
the consolidation process. During consolidation, the disks
need to handle extra background work to copy the workload,
which may have an impact on the performance of foreground
work they serve. If such a copy work is scheduled without
considering the performance of the foreground tasks, the sys-
tem may experience a disaster from the performance point
of view. In addition, problems may come from the different
copy pace between the consolidation disks. For example, if
the disk sending data is much faster than the disk receiving

data, the buffer of the disk receiving data may overflow.
In this paper, we address the problem of how to synchro-

nize effectively the process of copying data from one disk to
another with performance guarantees. The framework al-
lows to estimate beforehand the maximum copy rate given
the desired performance requirements on both the storage
node that sends the data and the node that receives it. If
the storage nodes to be “consolidated” are not pre-defined,
then the system can select the best consolidation pair such
that their copy rates are best matched in order to reduce ex-
posure to buffer overflow risk and performance degradation.
Alternatively, if we can not find such consolidation pair in
the system or if the consolidation disk pair is pre-defined,
then we can actively synchronize the copy pace according to
the slower storage node to reduce the risk of buffer overflow
and performance degradation.

Overall, the framework that we propose provides a storage
cluster with the tools to estimate the maximum copy rate
with the desired performance guarantees, as well as synchro-
nize the copy pace between sending data and receiving data
to achieve the resource consolidation with minimum perfor-
mance overheads. The framework scales well because it only
relies on information of the current workload at the indi-
vidual storage nodes (disks) that includes the arrival rate of
requests, the response time of requests, and idle times. Such
information is commonly logged in storage systems and is
compact and lightweight. Extensive trace-driven evaluation
of the framework establishes its robustness and that its es-
timations are accurate.

This paper is organized as follows. In Section 2 we de-
scribe briefly the algorithm used to schedule the copy op-
eration as a background job. In Section 3 we develop the
methodology to synchronize the copy operation between the
consolidation nodes in a storage cluster. Section 4 presents
an extensive set of trace-driven experiments that demon-
strates the robustness of the framework. We conclude and
discuss future directions in Section 5.

2. BACKGROUND
In this section, we describe, in high level details, an algo-

rithmic framework that schedules maintenance work, such
as the data copy process that we address in this paper, with
performance guarantees. This algorithmic framework is used
to estimate the impact of copying data and determine the
most effective schedule for it.

We give an overview of the algorithmic framework that
determines when and for how long to schedule the mainte-
nance or background tasks in storage devices, such that the



trade-off between performance degradation and completion
of the background tasks meets system quality targets [9, 1].
One could argue that starting a background task imme-

diately after the disk (or any storage device) becomes idle
would maximize the amount of background work that can be
completed in the system. However, because of the stochas-
tic nature of idle periods and the non-preemptive nature of
tasks in storage devices (e.g. disk drives) user performance
may suffer significantly. In storage systems, it is very com-
mon to idle wait for some time before starting a background
task, as to avoid utilizing the very short idle periods for any
background activities [2]. In addition to that, [3] suggests
that limiting amount of time that the system serves back-
ground tasks further limits the performance impact on fore-
ground jobs. The framework in [5] computes both the idle

wait I and the duration T of the time to serve background
jobs, background busy period. We use here this (I, T ) tuple
to compute the schedules of the data copy process for consol-
idation storage nodes in a cluster, while meeting predefined
performance targets.
Central to the calculation of I and T is the cumulative

distribution histogram (CDH) of idle intervals that allows
for a compact representation of the empirical distribution
of the lengths of idle times. This CDH is created by di-
viding the range of the idle interval lengths into equal-sized
“bins”. Then, the number of observed idle intervals that fall
into each bin is calculated and the frequency of an interval
of a specific size is obtained. In addition to the CDH of
idle intervals, the framework uses the user-provided average
performance degradation D, which is defined as the aver-
age relative delay of an IO operation due to the background
tasks and can be computed from the (I, T ) scheduling pair
and other statistical information such as average response
time. For more details on computing D, we direct the in-
terested readers to [5]. Usually, larger D ensures that more
background work can be completed. There may exist multi-
ple (I, T ) tuples for a specific D target, but the framework
chooses the one that maximizes the overall amount of back-
ground work completed.

3. COPY SYNCHRONIZATION
We focus on estimating the ability of disks in a cluster

to take over additional work, with the goal of consolidat-
ing resources. Here, we refer to the disks that receive the
redirected workload as receiver nodes and the disks that
redirect the workload as the sender nodes. The sender and
receiver nodes in a cluster may be pre-defined. In this case,
our framework synchronizes the pace of data copying with
performance guarantees to minimize the overheads such as
buffer overflow or performance degradation. If there are
multiple potential sender or receiver nodes, the framework
selects the sender and receiver nodes pair such that their
copy rates are closest to each other and then synchronizes
their copy rate if they are not close enough. We consider
the first scenario to be a sub-case of the second one. There
are two aspects in our framework to minimize the cost dur-
ing consolidation. First, both sender and receiver nodes
should allow for the data copy to complete transparently,
and second, the copy rate of the sender and receiver should
be synchronized by our framework.

3.1 Copy Rate Estimation and Scheduling
Copying data for the purpose of consolidation should be

transparent. We measure transparency in terms of the per-
formance degradation D in the average relative delay of an
IO operation due to the data copy. Certainly, the comple-
tion of the data copy, depends on the amount of data to
copy, which we assume that ranges from a few GBytes up
to hundreds of GBytes. The data copy process is considered
as a background task. Consequently, the algorithmic frame-
work in [5] can be used to schedule it during the available
idle times at the sender and receiver nodes. The framework
uses the histogram of idle times to generate a “schedule”
for background work that is always waiting for service and
it can estimate the amount of completed work for each idle
interval.

We use such a framework to compute all the valid schedul-
ing pairs (I, T ) given the performance degradation target
D. Each scheduling pair schedules in average Tcopy per idle

amount of copy work as background task measured in units
of time (or simply mean interval length) in idle intervals at
the storage nodes. We calculate Tcopy per idle as follows:

Tcopy per idle =

I+T−P∑

o=I

p(o) · (o− I) +
max∑

o=I+T−P

p(o) · (T −P )

(1)
where p(o) is the probability that an idle interval is of length
o, max is the maximum length of the idle intervals in the
CDH, and P is the time penalty that a foreground IO re-
quest may suffer, if it arrives while the disk is copying the
data to be consolidated. Note the penalty for sender and
receiver may be different because the sender is reading data
from disk while the receiver is writing the data to disk. In
this aspect, we calculate individual scheduling pair for the
sender and receiver nodes. Intuitively, Tcopy per idle is com-
prised of two kinds of idle intervals that are larger than idle
wait time I (intervals smaller than I are not used for copy).
The first type of idle intervals are of length o that falls be-
tween I and I+T −P . Because the copy task in this kind of
intervals terminates at the end of each idle interval, which is
before the limiting time T , their contribution to the overall
Tcopy per idle is only o− I. The second type of idle intervals
are of length o that at least I + T − P . In this case, the
copy task for T time units, so their contribution to the over-
all Tcopy per idle is T − P . Then we multiply them by the
probability of each used interval and sum them together to
get the average amount of copy work Tcopy per idle. Among
all the valid scheduling pairs (I, T ), we choose the one with
largest Tcopy per idle.

Assume that the total bandwidth for a disk is R, which
indicates the maximum transfer ability of a disk if it is fully
idle and not serving any other I/Os. If ρ is the disk utiliza-
tion, then the bandwidth occupied by the foreground tasks
is R · ρ and the total left bandwidth is R · (1 − ρ). Let β

be the percentage of bandwidth the copy task can gain from
the total left bandwidth, then β is calculated by:

β =
Tcopy per idle

E[I]
(2)

where E[I] is the mean idle interval length. This equation
expresses the fraction of time used for the copy task in each
idle interval. The bandwidth used for copying r can be ob-
tained from the following equation:

r = R · (1− ρ) · β (3)



Mean Mean

Trace Util Idle Length Arrival Service

(%) Mean (ms) CV Rate Rate

CODE1 (C1) 5.6 192.6 8.4 0.0089 0.1596
CODE2 (C2) 0.7 1681.6 2.3 0.0013 0.1859
FILE1 (F1) 1.7 767.5 2.3 0.0033 0.1938
FILE2 (F2) 0.7 2000.2 3.8 0.0011 0.1596

Table 1: General trace characteristics.

Since the bandwidth used for copying is essentially the copy
rate, once it is computed for each sender and receiver node,
we can evaluate the information each node provided for copy
rate synchronization between senders and receivers.

3.2 Copy Rate Synchronization
The second part of our framework synchronizes the sender

and receiver nodes such that the copy rate of sender is equal
to the copy rate of receiver to reduce the buffer overflow risk
and unnecessary performance degradation. If there are mul-
tiple potential senders and receivers in the cluster, we select
the pair with the closest copy rates. There are three cases
after selecting a sender and receiver pair: i. The copy rate of
sender is equal to the receiver. We define such case as copy
rate synchronized and it is the target of our copy rate syn-
chronization framework, ii. The copy rate of sender is faster
than the receiver. In this case, the buffer on the receiver side
can be overflowed. Since the bottleneck is at the receiver
side, the sender’s higher bandwidth is wasted. Note that
higher bandwidth is gained by sacrificing performance, so
wasting bandwidth indicates wasting performance, iii. The
copy rate of sender is slower than the receiver. In this case,
the bottleneck is the sender, so the receiver bandwidth used
for copying is wasted. This implies opportunities to improve
the receiver’s performance.
Our framework detects the later two cases as mismatch

cases and automatically adjusts the copy rate by choosing
a new (I, T ) scheduling pair to synchronize the copy pace
between sender and receiver.
In general, we define rslow as the copy rate of the slower

side between sender and receiver, and we use it as the target
copy rate for the faster side. Because the bottleneck is at the
slower side, we slow down the copy rate of the faster side to
rslow so that the problems due to mismatched copy rate, e.g.,
buffer overflow and unnecessary performance degradation,
are avoided.
Knowing the target copy rate rslow, we can use Equation

(2) and (3) to compute Tcopy per idle as Tslow. Then we
check all scheduling pairs (I, T ) and find one that schedules
in average Tslow amount of copy work at the faster side with
the lowest performance degradation D.

4. EXPERIMENTAL EVALUATION
In this section we evaluate the correctness and effective-

ness of our framework. First, we describe the traces and the
environment we use to do the evaluation. Then we show
the accuracy of copy rate estimation by comparing the es-
timated copy rates and simulation results from a series of
experiments. Finally, based on the estimated copy rates, we
use scenarios and quantify metrics to show the benefits of
the copy rate synchronization.
A set of enterprise traces measured at the disk level from
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Figure 1: The copy rate and performance degrada-
tion without our framework.

an application development server (“CODE”) and a file server
(“FILE”) [8] is used in our evaluation. These traces have a
duration of twelve hours. For each request, the following
metrics are logged: the arrival time, the departure time, the
type of the request (i.e., read or write), the request length in
bytes, and the location on the disk. This information allows
to calculate a rich set of metrics exactly and we show a sub-
set of these metrics used in our evaluation in Table 1. Table 1
clearly shows that all disks are underutilized. Highly vari-
able periods of idleness suggest that there are opportunities
for data consolidation aiming at higher operation efficiency,
i.e., power savings.

In our experiments, we consider a storage cluster of four
disks. Each node serves a different workload from Table 1.
Since the estimation framework is lightweight, it scales well
with the cluster size, but here we choose 4 nodes to manage
the presentation of results. We use the first half of the trace
(6 hours) to build up the continuous data histogram of idle
times, the average response time of IO requests, and their
average service times. The collected statistics are used in our
framework described in Section 3 to estimate the copy rate
and perform copy rate synchronization, then the framework
computes a scheduling pair (I, T ) as output. The second half
of the trace uses this pair for copy rate synchronization.

We use trace-driven simulations to show the baseline of
our experiments in Figure 1: the copy rate and performance
degradation without our framework, which means the disk
starts immediately the copy work when the disk is idle and
do it until new request comes. From the figure, we can see
though the copy rates (show in left y-axis of the plot) are
high, the performance degradation (show in right y-axis of
the plot) can range from 60% to over 100%, which may break
the performance requirements in systems.

4.1 Copy Rate Estimation and Scheduling
We first use extensive experiments to verify the accuracy

of our copy rate estimation for the scheduling with perfor-
mance guarantees. We note that before synchronization,
the computed scheduling pair depends on only the workload
characterization (i.e., the CDH of idle periods), the perfor-
mance requirement D, and the average penalty P of a disk,
so the copy rate of each disk depends its own information.

In the evaluation of the copy rate estimation, we show
extensive cases that a reasonable performance degradation
from 0% to 40% can be achieved. If the storage node serves
as a sender, then the penalty of a copy task is assumed
to be 5 ms on the average because the sender only reads
the data from the media. If the storage node serves as a
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Figure 2: Comparison of the estimated (EST) and simulation (ACT) copy rates for different performance
degradations and sender/receiver workloads.

receiver then the penalty of the copy task is assumed to be
6 ms in average because the receiver writes the data and
usually it takes slightly longer in a disk. These penalties
are approximated from the average seeking time in disks.
More accurate values can be obtained during monitoring of
the disk operation. Since here we only want to show an
example case that the penalty of receiver is slightly higher
than the sender due to the difference between reading and
writing operation, these approximated penalties serve our
needs.
To verify the correctness of the framework, we run trace-

driven simulations with the calculated (I, T ) pairs to get the
copy rate. In the simulation, the penalty caused from the
copy task is the same as the one used in the estimations.
The arrivals and departures of requests are the ones in the
trace. From the simulation, we measure the amount of data
to be processed as copy tasks and average it in time to get
the corresponding copy rate. We validate our estimations
by comparing the estimated results with the ones resulted
from the trace-driven simulations.
Because the copy rate of each disk depends on its own

information before synchronization, we show the results of
the four disks as sender and receiver respectively in Fig-
ure 2. In the figure, we plot the estimated copy rates (EST)
and copy rates from simulations (ACT) for different perfor-
mance degradation levels of different disks. We can see for
the same disk, the EST plot curve and the ACT plot curve
matches very well, which indicates the good accuracy of our
estimations.
We also notice that for different workloads, the plot curve

can be quite different, which suggests the usefulness of our
estimations. One important observation from our results is
that simple measurements, like utilization, may be insuffi-
cient to indicate the potential copy rate capabilities with
performance guarantees. For example, the Table 1 shows
the “FILE1” does not have the highest utilization among
the four disks, but we can see from Figure 2 that its copy
rate is always the lowest among the four disks in all cases.

4.2 Copy Rate Synchronization
The results in Figure 2 suggest the copy rate changes

with performance degradation for the same disk and one
can control the copy rate simply by setting different perfor-
mance degradation levels through different scheduling pairs
(I, T ). Figure 2 also shows that for sender and receiver pairs
with the same or different performance degradation levels,

the copy rate of sender can be quite different from receiver,
which implies the needs for copy rate synchronization.

In the evaluation, we compare the Copy Rate Mismatch
(in MBytes/Sec) and Performance Degradation (in %) to
show the benefits of our framework. Obviously, higher Copy
Rate Mismatch means higher buffer overflow risk and higher
performance degradation means higher performance cost.
The results are plotted in Figure 3. We use four scenarios
where the sender copy rate is faster (left column in figure)
and four scenarios where the sender is slower (right column
in figure) to demonstrate the benefits of synchronization.
The x-axis corresponds to these scenarios.

Figure 3(a) shows Copy Rate Mismatch (in MBytes/Sec)
if the scheduling just guarantees the performance degrada-
tion without the synchronization. It illustrates the necessity
of synchronizing the sender and receiver copy rate even when
the performance is guaranteed. For example, if “FILE2” is
used as sender with performance degradation level of 30%
and “FILE1” is used as receiver with performance degrada-
tion level of 30% (i.e., the F2(30)→ F1(30) scenario in Fig-
ure 3(a)), without the copy rate synchronization, the sender
copy rate is 53.34 MBytes/Sec higher than the receiver’s.
Since most of today’s high-end storage disks have a buffer
size from tens to hundreds of MBytes, the buffer may be
overflowed in seconds.

Figure 3(b) shows the performance degradation compar-
ison between the baseline, the scheduling with only per-
formance guarantees, and the scheduling with both perfor-
mance guarantees and synchronization. We observe that
without performance guaranteed scheduling (i.e., baseline),
the performance effects on the system may be disastrous,
i.e., one order of magnitude higher than the system can af-
ford. In addition, after the synchronization of sender and
receiver copy rate, the unnecessary performance degrada-
tion (up to 30%) can be avoided.

The (I, T ) pair is determined by how an IO workload per-
formance in a given storage device. So to synchronize work
between different storage devices, we will need to estimate
the (I, T ) pair for each of the storage devices participating in
the communication. The copy rate resulting from an (I, T )
pair is estimated in average and deploying these schedul-
ing parameters does not need to overlap idle intervals, just
the existence of a small buffer (at the sender). Estimating
the copy capabilities in each storage device participating
in the communication means that the size of the buffer to
use for moving the data does not need to be large and will
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Figure 3: Copy Rate Mismatch (in MBytes/Sec) without synchronization and Performance Degradation (in
%). → stands for the copy direction.

not experience overflow. As a result, our methodology al-
lows synchronization of the communication between hetero-
geneous storage devices such as solid state drives and hard
disk drives. For example, the copy rate for a flash drive may
be much higher than for a SATA drive. Once both rates are
estimated, then the solid state drives can send the data to
the SATA drive at the correct pace and unnecessary buffer
overflow is avoid.

5. CONCLUSIONS AND FUTURE WORK
We propose a method for data consolidation with high ef-

ficiency while low overheads that is transparent to end users.
Our estimation of the copy rate is accurate and provides cri-
teria for the synchronization of work consolidation between
sender and receiver disks in a cluster. Finally, our frame-
work uses commonly logged simple information and does not
require any feedback loops during consolidation, therefore,
it is compact, lightweight and scalable.
An interesting extension of our work is a fully automated

generalized framework for work consolidation targeting power
savings, backups, or virtualization.
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