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Abstract
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2. The scheduling in [3] schedules asynchronous updates: 'd'eCF[’DeI:‘O_d; ézggth . Over Time Plot — mds0
* D: the user-provided average relative performance degradation target. Bin Size = 1 M8
Systems have adopted the notion of eventual consistency, which means that the targeted « RT: the average |0 request response time without asynchronous updates. 25 !
redundancy of data in the system Is reached asynchronously, I.e., outside of the critical path of « W: extra IO request wait time due to asynchronous updates. e = Ii
user traffic, so that performance of user traffic is impacted minimally. Here, we propose a « Bw: the workload defined average replication work amount target. > = ;:‘
scheduling framework that makes decisions about when to schedule the asynchronous tasks « Bea: the average replication work under (I, T) scheduling. 5 9 o i i )
associated with new or updated data such that they are completed as soon as possible without « Performance guarantees: D =W / RT. So. E :::;1
violating user traffic quality targets. At the heart of the framework lies a learning methodology » No backlog guarantees: Bsc = Bw. - 2" |

that extracts the characteristics of idle periods and infers the average amount of work to be

filled during periods of idleness so that asynchronous tasks are completed transparently to the
user.
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» Eventual consistency [1]: data is updated asynchronously. - _ E
> Inconsistency window: time between Active and the last Inactive node acknowledgement. = . | N S ) o E e"
+ Important because it reflects the reliability of system. 5 g CDH() el T B T BT e
- Active node: the node that receives the new data. B B Averaae Replication Work: Dty Dty By
. | . . verage Replication Work: - - %
 |nactive node: the nodes that would receive replicas asynchronously. O g 2 g
> Buffering is required at the Inactive node to protect performance. (- Bsc = J(Prob.*Time) sty ) ) Y ) ) ) )
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Fig. 5. Inconsistency Window (the first row), user performance impact (the second row), buffer
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consumption (the third row) comparison between different scheduling for various active-inactive pairs.
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Fig. 1. Schematic View of the system with asynchronous replication and eventual consistency.
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