Toward Fast Eventual Consistency with Performance Guarantees
Feng Yan!, Alma Riska 4, Evgenia Smirnit

2

1 College of William & Mary, Williamsburg, VA, USA, {fyan, esmirni}@cs.wm.edu where information lives

2EMC Corporation, Cambridge, MA, USA, alma.riska@emc.com

Abstract

Idle Periods Length

2. The scheduling in [3] schedules asynchronous updates: 'd'eCF[’DeI:‘O_d; ézggth . Over Time Plot — mds0
* D: the user-provided average relative performance degradation target. Bin Size = 1 M8
Systems have adopted the notion of eventual consistency, which means that the targeted « RT: the average |0 request response time without asynchronous updates. 25 !
redundancy of data in the system Is reached asynchronously, I.e., outside of the critical path of « W: extra IO request wait time due to asynchronous updates. e = Ii
user traffic, so that performance of user traffic is impacted minimally. Here, we propose a « Bw: the workload defined average replication work amount target. > = ;:‘
scheduling framework that makes decisions about when to schedule the asynchronous tasks « Bea: the average replication work under (I, T) scheduling. 5 9 o i i)
associated with new or updated data such that they are completed as soon as possible without « Performance guarantees: D =W / RT. So. E :::;1
violating user traffic quality targets. At the heart of the framework lies a learning methodology » No backlog guarantees: Bsc = Bw. - 2" |

that extracts the characteristics of idle periods and infers the average amount of work to be

filled during periods of idleness so that asynchronous tasks are completed transparently to the
user.

10’ 10° 10° 10°

Idle Periods Length (ms) 40 60 80 100 120
Time (hour)

1|

Eventual Consistency T L cors

. Active: usrd, Inactive: mds0, 2nd Day Active: mds, Inactive: ts0, 2nd Day Active: ts0, Inactive: web0, 2nd Day
> In dlstrlbuted SyStemS, data |S dlstrlbuted acrOSS mUItlple nOdeS and geographlc |Ocat|OnS. 1.3?:- Inconsistency Window Comparison 1.3? Inconsistency Window Comparison 1.3?:- Inconsistency Window Comparison
» Eventual consistency [1]: data is updated asynchronously. - _ E
> Inconsistency window: time between Active and the last Inactive node acknowledgement. = . | N S) o E e"
+ Important because it reflects the reliability of system. 5 g CDH() el T B T BT e
- Active node: the node that receives the new data. B B Averaae Replication Work: Dty Dty By
. | . . verage Replication Work: - - %
 |nactive node: the nodes that would receive replicas asynchronously. O g 2 g
> Buffering is required at the Inactive node to protect performance. (- Bsc = J(Prob.*Time) sty)) Y))))
; . o] 50 100 1D 20 10 :..-.-.-.-.-‘- T 1D 150 200 150 200
Ferformance Target (%) Ferformance Target (%) Ferformance Target (%)
A Verage EXtra Delay: Active: usrd, Inactive: mdso, 2nd Day Active: mdsO, Inactve: 120, 2nd Cay Active: 120, Inactive, web0, 2nd Day
ser Parformancs lmpact Comparison ser Parformancs lmpact Comparison ser Parformancs lmpact Comparison
_ o 70 70T 70T
W = J(Prob.*Delay)) . -) .
czdundane | Idle Period Length Average 2o : 2
Data ' " E | —¥— Learning-base E —¥— Learning-base E I —¥— Learning-base
Preemptlon "g 20t —|—tearning—iasej+ ‘% 20t —|—tearning—iasej+ ‘% 20t —|—tearning—iasej+
D_[; —O— Baseline-Aggressive D_[; —O— Baseline-Aggressive D_[; —O— Baseline-Aggressive
o 16-2)‘ —H— Baseline-Utilization o 1134; —H— Baseline-Utilization o mJ; —H— Baseline-Utilization
DD 5ID 1I1I3ICI 1:5@ 2I1I3ID DD 5ID 1I1I3ICI 1:5@ 2I1I3ID DD 5ID 1I1I3ICI 1:5@ 2I1I3ID
Ferformance Target (%) Ferformance Target (%) Ferformance Target (%)
Fig. 2. Use CDH to estimate the average extra delay and average replication work finished. RN et e 8 B Sttt s e
10 10 10
Data 10 T 0
, g s arming-based g : —¥— Learning-based g —¥— Learning-based
I e & 0o —t— Leaming-based+ & 0o —t— Leaming-based+ & 0o [w__lzl.ewgg_baﬁedahg
@ —O— Baseline-Aggressive @ —O— Baseline-Aggressive @ : —O— Baseline-Aggressive
nCOnSIStency : . % ! —E—Ease:inejiﬁzation % —E—Ease:inejiﬁzation % - —E—Ease:inejiﬁzation
Window Performance Evaluation A ., —
=. | fesee e e oo oo o9 tEcscco-0-0-0-0-000————6—————0 =% *
Arrive | - | £ - 1I:j_]c::u SID 1:50 1|50 25@ 1I:j_]c::u SID 1:50 1|50 25@ 10 0 SID 1:50 1|50 25@

Ferformance Target (%) Ferformance Target (%) Ferformance Target (%)

t1 t3 t4

Fig. 5. Inconsistency Window (the first row), user performance impact (the second row), buffer

GeneralTrace Description

consumption (the third row) comparison between different scheduling for various active-inactive pairs.

Data Flow (Duration: 168 hours)

Average | Average | Average

Arrival | Service | Response References

Rate Rate Time

Fig. 1. Schematic View of the system with asynchronous replication and eventual consistency.

[1] W. Vogels, “Eventually consistent,” ACM Queue, vol. 6, no. 6, pp. 14-19, 2008.
[2] N. Mi, A. Riska, X. Li, E. Smirni, and E. Riedel, “Restrained utilization of idleness for
transparent scheduling of background tasks,” in Proceedings of the Eleventh International Joint

Conference on Measurement and Modeling of Computer Systems, SIGMETRICS/Performance,
1. The framework in [2] computes (I, T) tuple from CDH of idle intervals: 2009, pp. 205-216.

o |: idle walit time before scheduling. [3] F. Yan, A. Riska and E. Smirni, “Toward Fast Eventual Consistency with Performance
* T: the time to serve background jobs. Fig. 3. General Trace Information. ms stands for millisecond. Guarantees”, in Proceedings of 9th ACM International conference on Autonomic computing, 2012

\ e CDH: Cumulative Distribution Histogram of idle intervals. / \ / @ appear). /

Scheduling Framework

	幻灯片编号 1

