
Toward Fast Eventual Consistency with Performance Guarantees
Feng Yan1, Alma Riska 2, Evgenia Smirni1

1

Abstract
Systems have adopted the notion of eventual consistency, which means that the targeted
redundancy of data in the system is reached asynchronously, i.e., outside of the critical path of
user traffic, so that performance of user traffic is impacted minimally. Here, we propose a
scheduling framework that makes decisions about when to schedule the asynchronous tasks
associated with new or updated data such that they are completed as soon as possible without
violating user traffic quality targets. At the heart of the framework lies a learning methodology
that extracts the characteristics of idle periods and infers the average amount of work to be
filled during periods of idleness so that asynchronous tasks are completed transparently to the
user.

Eventual Consistency
 In distributed systems, data is distributed across multiple nodes and geographic locations.
 Eventual consistency [1]: data is updated asynchronously.
 Inconsistency window: time between Active and the last Inactive node acknowledgement.

• Important because it reflects the reliability of system.
• Active node: the node that receives the new data.
• Inactive node: the nodes that would receive replicas asynchronously.

 Buffering is required at the Inactive node to protect performance.

Fig. 1. Schematic View of the system with asynchronous replication and eventual consistency.

2. The scheduling in [3] schedules asynchronous updates:
• D: the user-provided average relative performance degradation target.
• RT: the average IO request response time without asynchronous updates.
• W: extra IO request wait time due to asynchronous updates.
• Bw: the workload defined average replication work amount target.
• BBG: the average replication work under (I, T) scheduling.
• Performance guarantees: D ≥W / RT.
• No backlog guarantees: BBG ≥Bw.

Performance Evaluation

Fig. 2. E-commerce experiment environment

Fig. 3. Model

References
[1] W. Vogels, “Eventually consistent,” ACM Queue, vol. 6, no. 6, pp. 14–19, 2008.
[2] N. Mi, A. Riska, X. Li, E. Smirni, and E. Riedel, “Restrained utilization of idleness for
transparent scheduling of background tasks,” in Proceedings of the Eleventh International Joint
Conference on Measurement and Modeling of Computer Systems, SIGMETRICS/Performance,
2009, pp. 205–216.
[3] F. Yan, A. Riska and E. Smirni, “Toward Fast Eventual Consistency with Performance
Guarantees”, in Proceedings of 9th ACM international conference on Autonomic computing, 2012
(to appear).

Fig. 4. CDH of idle period lengths (left) and the idle periods lengths overtime plots (right).

1 College of William & Mary, Williamsburg, VA, USA, {fyan, esmirni}@cs.wm.edu
2 EMC Corporation, Cambridge, MA, USA, alma.riska@emc.com

Fig. 2. Use CDH to estimate the average extra delay and average replication work finished.

Fig. 3. General Trace Information. ms stands for millisecond.

Fig. 5. Inconsistency Window (the first row), user performance impact (the second row), buffer
consumption (the third row) comparison between different scheduling for various active-inactive pairs.

Scheduling Framework
1. The framework in [2] computes (I, T) tuple from CDH of idle intervals:

• I: idle wait time before scheduling.
• T: the time to serve background jobs.
• CDH: Cumulative Distribution Histogram of idle intervals.

	幻灯片编号 1

