
Toward Fast Eventual Consistency with Performance
Guarantees

Feng Yan1, Alma Riska2, and Evgenia Smirni1

1College of William and Mary, Williamsburg, VA, USA, fyan,esmirni@cs.wm.edu
2EMC Corporation, Cambridge, MA, USA, alma.riska@emc.com

ABSTRACT

As data and its processing increasingly becomes more critical to
enterprises and consumers alike, systems have started to cross the
physical boundaries of a single data center. It is very common
nowadays, for service providers and corporations to span systems
and data across multiple geographic locations, with the goal of re-
ducing the chance that the data or its services become unavailable in
case of network, power, or other outages. With such architectures,
comes the need to facilitate achievement of data redundancy and
integrity while autonomously and transparently handling the added
network delay during ingesting or updating data in the system. Sys-
tems have adopted the notion of eventual consistency which means
that the targeted redundancy of data in the system is reached asyn-

chronously, i.e., outside of the critical path, so that performance
of user traffic is impacted minimally. Here we propose a schedul-
ing framework that makes decisions about when to schedule the
asynchronous tasks associated with new or updated data such that
they are completed as soon as possible without violating user traf-
fic quality targets. At the heart of the framework lies a learning
methodology that extracts the characteristics of idle periods and
infers the average amount of work to be done during idle periods
so that asynchronous tasks are completed transparently to the user.
Extensive trace-driven evaluation shows the effectiveness and ro-
bustness of the proposed framework when compared to common
practices.

1. INTRODUCTION
The majority of computer systems today are faced with the need

to scale because the services they provide and the data they store is
increasing at a significant pace. In order to provide uninterrupted
computing services and access to the related data, it has become
necessary for systems to extend their boundaries beyond a single
data or computing center. In designing such scaled-out distributed
systems [1, 2, 3], it is necessary to balance cost, performance, relia-
bility, and availability. Specifically, in distributed storage systems,
it is expected that data is spread across multiple nodes and geo-
graphic locations such that a wide range of network, power, and
other failures do not cause data unavailability [4, 5, 6]. Yet, as new

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICAC-12, September 16-20, 2012, San Jose, CA, USA.
Copyright 2012 ACM 978-1-59593-998-2/09/06 ...$10.00.

data arrives in the system, from the performance perspective, it is
not as efficient for the system to propagate the data to the various
locations in real time, because the impact on end user performance
(now including also WAN transfers) may be significant. A solution
is for the system to distribute the data across the locations asyn-
chronously [7, 8, 4]. As a result, the data reaches its expected lo-
cations eventually and the systems strive to achieve eventual data

consistency [9, 10, 11]. Systems that aim to achieve eventual data
consistency often provide cloud services [11, 12], making sure that
data reliability is not compromised. For example, data is protected
via RAID [13] locally. However, the location failure tolerance is
achieved only eventually.

Eventual data consistency is a “loose” term. It means that data
can eventually reach its distributed locations, but it just does not
quantify how fast. This depends largely on the supporting infras-
tructure, e.g., the network bandwidth, the distance between the data
centers, as well as the scale of the system and its quality goals, e.g.,
performance, reliability and availability. It also depends on how ag-
gressively the system schedules the asynchronous tasks [14], given
that they may interfere with the normal user traffic and impact its
performance. Commonly these tasks are scheduled based on the
current utilization levels of each node, i.e., asynchronous tasks are
scheduled mostly during periods with low node utilization.

In this paper, we focus on how to schedule these asynchronous
tasks that distribute data across different locations such that the
performance in the sending and receiving nodes meets predefined
quality of service goals. The scheduling parameters for the asyn-
chronous tasks are determined and updated continuously at the in-
dividual node level as they learn the characteristics of the work-
load they are serving. Such parameters are exchanged between the
nodes in order for them to synchronize the speed of data transfer.
It is expected that different pairs of nodes in a geographically dis-
tributed system have different communication speeds. As a result,
it is critical to synchronize the speed of data transfer so that failed
attempts are reduced and eventual consistency is achieved faster.

The learning in our scheduling policy consists of understanding
the available idleness that can be used to serve the asynchronous
updates. We utilize the histogram of idle periods as it is done in
[15] to determine when to start and stop servicing the tasks without
violating performance goals, such as the degradation in user traffic
response time.

Extensive experimentation with simulations driven by traces col-
lected in real storage systems, demonstrates the robustness of our
framework, which performs orders of magnitude faster than the
common practice of utilization-based scheduling and very compa-
rably to an aggressive policy that schedules the asynchronous tasks
as soon as the system becomes idle. We note that our policy pro-
vides guarantees on the performance of each node in the system

and reduces the time to reach consistency for newly added data,
something that none of the alternative policies can achieve.

This paper is organized as follows. In Section 2, we introduce
the background of consistency issues and state-of-art scheduling
strategies in storage systems. In Section 3, we provide a detailed
analysis of a set of enterprise traces and show how the character-
istics of workload can help us to develop our scheduling frame-
work. In Section 4, we propose an analytic framework that com-
putes the scheduling parameters based on the learned characteriza-
tion of idleness and other system information. Section 5 presents
an extensive set of trace-driven experiments that demonstrates the
effectiveness and robustness of the framework. Section 6 discusses
the related work. We conclude and discuss future directions in Sec-
tion 7.

2. BACKGROUND AND MOTIVATION
In this section, we provide general background on eventual con-

sistency in scaled-out geographically distributed systems, data re-
dundancy schemes, and aspects of data reliability and integrity when
handled asynchronously. We also summarize the state of the art in
scheduling techniques, which also motivates the work presented
here.

2.1 Data Redundancy and Eventual Consis-
tency

In fast growing data centers and global services, many of today’s
distributed storage systems need to meet several qualities simul-
taneously, such as performance, reliability, availability, security,
and cost effectiveness. Traditionally, data redundancy is used in
such systems to enhance availability, reliability, integrity, and per-
formance. Yet because redundancy means that data (or parts of
it) needs to be written multiple times, often in different locations,
then it has become common to achieve the desired redundancy for
each piece of data asynchronously rather than synchronously [7,
8, 4], which means that data is acknowledged to the user before it
has successfully reached all its destination nodes. As a result, data
consistency is often classified as follows [14]:

• strong consistency, where the system acknowledges the data
after it has reached all nodes that hold it,

• weak consistency, where the system acknowledges the data
as soon as it receives and stores it locally or partially. It al-
lows the system to complete the data distribution to its des-
tination nodes at a later time (i.e., asynchronously). In this
case, there is a temporal gap between acknowledgment of
updates and distribution of updates across the system, which
we call here the “inconsistency window".

Weak consistency [16, 17] favors high system performance and
availability and is preferred by applications that consider liveliness
more important than durability [8]. Eventual consistency [9, 1, 18,
10, 4] is a specific type of weak consistency that implies that if no
new updates are made to a data object, then eventually all copies of
the object data get updated. The inconsistency window reflects data
reliability since data loss may occur while the targeted redundancy
is not reached immediately upon the system receiving the data.
Here, we denote the node in the distributed system that receives
the new data as the “active" node and the nodes that would receive
replicas (or parts of the data) asynchronously “inactive nodes". In
our exposition, data may arrive in any node in the system, which
means that any node can be an active node for some data and inac-
tive node for other pieces of data.

Figure 1: Schematic view of the system with asynchronous

replication and eventual consistency.

A schematic view of how data is stored redundantly and asyn-
chronously is shown in Figure 1. When new data arrives, it is
acknowledged and processed by its active node and then spreads
across the system (i.e., to the nodes that should receive it). In large
scale storage systems today, data either is replicated in multiple
locations or it is stripped, coded, and distributed in different lo-
cations (erasure coding). Independent of the specifics on how the
data is redundantly stored, the fact is that the targeted redundancy is
achieved asynchronously as background tasks (BG), which is out-
side the critical path of serving the user traffic.

When the redundant data is sent out from the active node, over
the network, it can be delayed depending on the distance between
the nodes and the amount of data being transferred. The inactive
node that receives it, buffers it in cache before committing it to a
storage device. The buffer is required because the inactive node
may be serving its own user traffic, and the goal is not to impact
its performance according to system quality targets. If the inactive
node process such data upon arrival then its user performance im-
pact may be severe. It is clear that the inconsistency window has
three parts: the time it takes to send out the data from the active
node, the time to transfer the data over the network, and the time
to commit the data on the storage devices of the inactive node. The
eventual consistency for each piece of data is achieved when all in-
active nodes that should have received a copy or fragment of it have
done so successfully. This means that from the perspective of mod-
eling the duration of the inconsistency window, the problem can
be simplified to having one active node and one inactive (slowest)
node, without loss of generality.

The issue with the asynchronous traffic is that it impacts system
performance regardless of how carefully it is scheduled because
often IO tasks are not instantaneously preemptable [19, 20, 21].
Judicious scheduling of asynchronous tasks that is done as quickly
as possible so that data durability is high, while user traffic is not
affected, is challenging.

2.2 State of the Art in Scheduling of Back-
ground Jobs

In this section we quickly review three scheduling methods that
are widely used to schedule background work in storage systems:

• Aggressive scheduling schedules replication work immedi-

ately and without any consideration of foreground user traf-
fic. Such scheduling reduces the inconsistency window but
may result in very high and unpredictable user performance
degradation.

• Utilization-guided (Aggressive) scheduling takes the user traf-
fic into consideration by monitoring utilization. If the system
utilization is below a threshold, then it schedules replications
immediately. When utilization is high, it stops scheduling
any replication work.

• Utilization-guided (Conservative) scheduling uses system uti-
lization as guidance and schedules the replication work only
when the system utilization is low. Before scheduling any
replication job during a low utilization interval, the system
idle waits for certain amount of time [22] to avoid using small
idle intervals, which have a higher chance to cause extra de-
lays to user traffic.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

10
0

10
1

Time (minutes)

U
ti
liz

a
ti
o
n
 (

%
)

UTIL of 10 min

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

10
0

10
1

Time (minutes)

U
ti
liz

a
ti
o
n
 (

%
)

UTIL of 1 hour

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10

0

10
1

Time (minutes)

U
ti
liz

a
ti
o
n
 (

%
)

UTIL of 1 day

Figure 2: The utilization over time plots, the bin size for the top

plot is 10 mins, for the middle one is 1 hour and for the bottom

one is 1 day. Note y-axis is in log scale.

From the above policies, only the third one strives to reduce the
performance impact of the inactive node traffic, although still with-
out performance guarantees. Note that utilization-based policies
depend on the characteristics of system utilization that may be very
different across different time scales (e.g., minutes versus days). To
illustrate this, we plot in Figure 2 the average utilization of a repre-
sentative trace from Microsoft Research, and this trace is described
in detail in the following section. The plot shows a large variance
in utilization when looking in 10 minute, 1 hour, and 1 day win-
dows and suggests that utilization, as a steady-state metric, is not
suitable for scheduling purposes here. If utilization is monitored in
a too long interval, then it cannot capture well the unpredictability
of user traffic. If it is monitored in a too short interval, it may not be
able to predict the near future correctly based on current and past
information because utilization changes swiftly in such scale. This
observation motivates us to devise a more sophisticated yet simple
learning-based scheduling framework to overcome the above short-
comings.

3. WORKLOAD CHARACTERIZATION
In this section, we analyze the set of traces used in our evalua-

tion. First, we give some general information about these traces.

Then we further characterize the idle periods length in more details
and give some intuitions on how we take advantage of such char-
acterization for the purpose of running fast and with performance
guarantees the asynchronous tasks that aim at achieving eventual
consistency in a distributed storage system.

3.1 Overview of Traces
We use storage system traces made available through the SNIA

IOTTA repository [23] collected by Microsoft from its servers in
data centers and published by the Microsoft Research Cambridge
(MSR) [24]. Each trace records information about a set of attributes
for each I/O request. Specifically, for each IO, we have the arrival
time stamp, request type (write/read), offset from the start of log-
ical disk, request size, and response time. In addition, other stor-
age features such as simultaneous IO requests are reflected in these
traces.

Table 1 presents an overview of various statistical measures for
four traces1. The usr0 trace is obtained from a user file server,
the mds0 trace comes from a media server, the ts0 trace is col-
lected from a terminal server, and the web0 trace is captured in
the Web/SQL server. Each trace has a duration of one week (168
hours) and represents a wide range of common traffic patterns.
From the table, we can see that these systems show very low uti-
lization, which suggests that good opportunities exist for serving
background work, such as asynchronous tasks. The relatively sub-
stantial Coefficient of Variation (C.V., which is a normalized mea-
sure of dispersion, defined as the ratio of the standard deviation to
the mean) suggests that using idleness may be challenging because
scheduling too much background work during small idle periods
may cause performance degradation while during large idle peri-
ods, scheduling too little background work may waste idleness and
slow down the synchronization speed. We also note these traces are
WRITE dominant workloads for which the asynchronous tasks of
propagating the data through the system nodes play a very impor-
tant role.

3.2 Characteristics of Idle Periods
We further evaluate the characteristics of the idle periods because

asynchronous tasks are to be scheduled during these intervals. Fig-
ure 3 shows the Cumulative Distribution Histogram (CDH) of the
idle period lengths. The figure indicates that more than half of the
idle periods are very small (note the log scale in the x-axis), which
means that if we schedule the asynchronous tasks during these short
intervals then it is highly possible that user requests may be delayed
as a result of arriving to a system that is serving the asynchronous
tasks, which cannot be preempted instantly. The goal is to incor-
porate the learning of characteristics of idle periods in a policy that
schedules the asynchronous tasks such that they are served as fast
as possible while the user requests are impacted in minimum.

Figure 4 plots the idle time intervals across time. The plots
clearly show that there is a daily cycle pattern which suggests that
if we characterize well these idle periods within such a cycle, then
we may be able to accurately predict the next cycle. Comparing to
the utilization, idleness depicts more of a cyclic behavior, making
it more reliable as a metric to guide the scheduling policy. In ad-
dition, we expect that using the information from the CDH of idle
intervals rather than a simple average value of idle interval lengths
would result in more reliable predictions and robust scheduling.

1The Microsoft IOTTA repository has a larger number of traces
than what we show here. We have selected only these four traces
as representatives.

Trace Duration Utilization Average Arrival Average Service Average Response Idle Length R/W
(hour) (%) Rate (1/ms) Rate (1/ms) Time (ms) Average (ms) CV ratio

usr0 168 1.07 0.0012 0.1203 8.94 805.36 1.74 0.11

mds0 168 0.52 0.0007 0.1412 7.21 1404.16 1.93 0.03

ts0 168 0.61 0.0008 0.1455 7.06 1150.20 1.74 0.04

web0 168 0.72 0.0010 0.1468 7.12 959.72 2.11 0.13

Table 1: General trace information. ms stands for millisecond.

10
0

10
1

10
2

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1

Idle Periods Length (ms)

P
ro

b
a

b
ili

ty

Idle Periods Length
CDH − usr0

Bin Size = 1 ms

10
0

10
1

10
2

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1

Idle Periods Length (ms)

P
ro

b
a

b
ili

ty

Idle Periods Length
CDH − mds0

Bin Size = 1 ms

10
0

10
1

10
2

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1

Idle Periods Length (ms)

P
ro

b
a

b
ili

ty

Idle Periods Length
CDH − ts0

Bin Size = 1 ms

10
0

10
1

10
2

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1

Idle Periods Length (ms)

P
ro

b
a

b
ili

ty

Idle Periods Length
CDH − web0

Bin Size = 1 ms

Figure 3: The CDH of idle period lengths measured in ms. Note that the x-axis is in log scale.

0 2 4 6

x 10
8

0

0.5

1

1.5

2

2.5
x 10

4

Time (ms)

Id
le

 P
e

ri
o

d
s
 L

e
n

g
th

 (
m

s
)

Idle Periods Length
 Over Time Plot − usr0

0 2 4 6

x 10
8

0

0.5

1

1.5

2

2.5

3
x 10

4

Time (ms)

Id
le

 P
e

ri
o

d
s
 L

e
n

g
th

 (
m

s
)

Idle Periods Length
Over Time Plot − mds0

0 2 4 6

x 10
8

0

0.5

1

1.5

2

2.5
x 10

4

Time (ms)

Id
le

 P
e

ri
o

d
s
 L

e
n

g
th

 (
m

s
)

Idle Periods Length
 Over Time Plot − ts0

0 2 4 6

x 10
8

0

0.5

1

1.5

2

2.5

3
x 10

4

Time (ms)

Id
le

 P
e

ri
o

d
s
 L

e
n

g
th

 (
m

s
)

Idle Periods Length
 Over Time Plot − web0

Figure 4: The idle periods length overtime plots.

4. ASYNCHRONOUS UPDATE SCHEDUL-

ING FRAMEWORK
In this section, we propose a learning-based framework for schedul-

ing asynchronous updates. We first introduce the basic premise of
the learning-based scheduling of background work. Then we ex-
plain in more details how to estimate the amount of replication
work so that the framework can compute correct scheduling pa-
rameters.

4.1 Learning-based Scheduling with Performance
Guarantees

We first describe an algorithmic framework that schedules back-
ground work, e.g. asynchronous tasks, with performance guaran-
tees for the foreground traffic. This algorithmic framework is used
to estimate the performance impact of background work and deter-
mine the most effective schedule for it by determining when and
for how long to schedule background tasks in storage devices, such
that the trade-off between performance degradation and how fast
background tasks can be scheduled meets system performance tar-
gets.

One could argue that starting a background task immediately af-
ter the storage subsystem becomes idle would be most efficient.
However, because of the stochastic nature of idle periods and the
non-instantaneously preemptive nature of tasks in storage devices
(e.g. disk drives), user performance may suffer significantly. In
storage systems, it is very common to idle wait for some time be-
fore starting a background task, as to avoid utilizing the very short

idle periods for any background activities [22]. In addition to that,
[25] suggests that limiting the amount of time that the system serves
background tasks further limits the performance impact on fore-
ground jobs. The framework in [15] computes both the idle wait

I and the duration T of the time to serve background jobs as a
function of past workload (i.e., the stochastic characteristics of past
idle periods). Note the T is introduced here so that the disk can
be proactively ready to serve user traffic and therefore avoid user
performance degradation in all the idle periods used for scheduling
background work. We use here this (I, T) tuple to compute the
schedules of the asynchronous updates in distributed storage sys-
tems, while meeting predefined performance targets.

Central to the calculation of I and T is the CDH of idle intervals.
In addition to the CDH, the framework also uses the user-provided
average performance (degradation) target D, which is defined as
the allowed average relative delay of an IO operation due to the
background tasks and can be computed from the (I , T) scheduling
pair and other statistical information such as average response time.

Let’s assume that W is the average IO waiting due to serving
background tasks. Without loss of generality, we measure the idle
interval length as well as the wait within the 1 ms granularity. Be-
cause a disk is activated upon an IO arrival, W can be at most P ,
which is the time penalty that a foreground IO request may suffer,
if it arrives while the disk is still serving the asynchronous tasks
of propagating new data throughout the distributed system. We as-
sume that the data to be redundantly stored in distributed nodes is
already stored in the local storage. As a result, the penalty can be
estimated from the average service time of an IO request done to

the local storage, because when a new user request comes, it needs
to wait until the asynchronous task completes. With “local stor-
age” we mean any storage device that can be used, from memory to
SSD to local disk. Consequently the penalty is different for differ-
ent storage devices and we reflect it in our computations. However,
we argue that in the scaled-out systems, where efficiency is key,
utilizing memory or SSDs to store the data that is asynchronously
distributed across the nodes, may not be the most cost-effective
choice because these background work should be off the critical
path for better user traffic performance. In our evaluations later-on
we assume it is the disk IO and the penalty about several ms long
depends on the specific characteristics of disk IO workload.

By denoting a possible delay by w and its respective probability
by Prob(w) then

W =
P
∑

w=1

w · Prob(w). (1)

where the delay w caused to the IOs of the busy period following
the scheduling of background tasks may be any value between 1
and P . Using the probabilities in the CDH of idle periods length,
the probability of any delay w caused to the IOs of the following
busy period is given by the equation below

Prob(w) =

CDH(I + T − w + 1)− CDH(I + T − w),

for 1 ≤ w < P

CDH(I + T − P)− CDH(I), for w = P,

(2)
where CDH(.) indicates the cumulative probability value of an idle
interval in the monitored histogram. The intuition behind this equa-
tion is that for a scheduling pair (I, T), the delay to the busy period
following the scheduling of background tasks is w (1 <= w < P)
if the idle interval length is larger than I + T − P and the proba-
bility is given as CDH(I + T − w + 1) − CDH(I + T − w).
And the delay is P for all idle intervals whose length falls between
I and I + T − P , where the probability of this event is given as
CDH(I + T − P)− CDH(I).

To find the qualified scheduling pair (I, T), we scan the CDH of
idle periods length for (I, T) pairs that would not violate the target
D. Note that I and I +T correspond to successive histogram bins.
A pair (I, T) guarantees the performance target D if

D ≥
W(I,T)

RTw/o BG

, (3)

where RTw/o BG is monitored and W(I,T) is computed using Eq. (1).
Usually, larger D ensures faster background work completion.

4.2 Calculation of Scheduling Parameters
The replication work should be transparent to user performance.

We measure transparency in terms of the performance degradation
D as introduced earlier. The first scheduling target is to complete
all replication work without violating any performance target. The
algorithmic framework in 4.1 can be used to schedule asynchronous
updates (e.g. replica WRITEs in disk IOs) during appropriate idle
periods at both active and inactive nodes. The framework uses the
histogram of idle periods length to generate a “schedule" for repli-
cation work and estimate the amount of completed work for each
idle interval so that it is higher than the average amount of replica
WRITEs. This is necessary to prevent uncontrolled replica back-
logs. Here we estimate the average WRITE work amount BW mea-
sured in units of time as

BW =
ρW ∗ E[idle]

1− ρFG
(4)

where ρW is the average utilization contributed to WRITE requests,
ρFG is the average utilization of all user requests, and E[idle] is

the average idle interval length. The term
E[idle]
1−ρFG

corresponds to

the average length of one busy period plus one following idle pe-
riod, and if multiplied by ρW , it represents the average amount of
time WRITE requests need to be served during one busy plus one
following idle periods.

As a second step, we use the framework introduced in 4.1 to
compute all valid scheduling pairs (I, T) given the performance
target D. Each scheduling pair schedules in average BBG amount
of background task measured in units of time in idle intervals at the
storage nodes. We calculate BBG as follows:

BBG =

I+T−P
∑

o=I

p(o) · (o− I) +

max
∑

o=I+T−P

p(o) · (T − P) (5)

where p(o) is the probability that an idle interval is of length o,
max is the maximum length of the idle intervals in the CDH. In-
tuitively, BBG is comprised of two kinds of idle intervals that are
larger than idle wait time I (intervals smaller than I are not used
for replication work). The first type of idle intervals are of length o

that falls between I and I + T − P . Because the replication work
in this kind of intervals terminates at the end of each idle interval,
which is before the limiting time T , their contribution to the overall
BBG is only o− I . The second type of idle intervals are of length
o that at least I + T − P . In this case, the replication mode stays
for T time units, so their contribution to the overall BBG is T −P .
Then we multiply them by the probability of each used interval and
sum them together to get the average amount of replication work
BBG. Among all the valid scheduling pairs (I, T), we only choose
the one with BBG >= BW so that there is never replication work
that is never served (i.e., there is no starvation). There might be
multiple pairs that qualify for meeting both the target D and BW .
From those, we select the one with smallest I . If still multiple pairs
qualify, we select the one with largest T so that the scheduling can
schedule as aggressively as possible to ensure that replication work
also finishes as fast as possible and there is no backlog.

4.3 Learning-based+ Scheduling
We also provide a more aggressive variation of the scheduling

mechanism described above. The standard approach above only
schedules for a T period of time for each idle interval longer than
I . If there are still asynchronous tasks to complete upon T elapsing,
the system does not schedule them even if it is still idle. For this
reason we consider the above scheduling policy as being strictly
work non-conserving, guided by both I and T .

Here we are proposing a more aggressive and less non-work-
conserving policy by relaxing the condition on T . Specifically, af-
ter scheduling asynchronous tasks for T time units and the system
remains idle with additional asynchronous work outstanding, then
the policy is changed to wait another I in idle and re-start schedul-
ing for another T time units. This is done repeatedly until there is
no more asynchronous work to be served or the system becomes
busy.

This extension to our framework, ensures that the very long idle
intervals are utilized more if there are asynchronous tasks waiting
for completion. It does not change the behavior for the short idle
intervals, where the potential for delays to user traffic is higher.
However, since the goal is to serve as fast as possible all the asyn-
chronous tasks, then by allowing the long idle intervals (that are
only a few) to be utilized more if there is work to be done, then we
achieve a faster response time for asynchronous tasks without the
additional delay on user performance.

Pairs 1 2 3 4

Active usr0 mds0 ts0 web0

Inactiv mds0 ts0 web0 usr0

Table 2: The traces used for pairing active and inactive nodes

during experiments.

5. EXPERIMENTAL EVALUATION
In this section, we evaluate the proposed scheduling framework

via an extensive set of experiments. We use the traces described
in Section 3 to drive a set of simulations that experiment with our
framework and other common practices as discussed in Section 2.2.
The experiments that we present in this section validate the robust-
ness and efficiency of our framework with regard to

- the time it takes to achieve the eventual consistency,
- the impact on user performance, and
- the amount of buffer space required to store all incoming data

updates at the destination nodes before committing them on persis-
tent storage.

5.1 Experiment Scenarios
The set of simulations that we developed to evaluate the frame-

work proposed in Section 4 as well as the other baseline alternatives
are driven by the Microsoft Research traces. Recall that the node
that receives the new data is the “active node" and the node that
does the same updates in the background (asynchronously) as the
“inactive" one. The inconsistency window is composed of three
parts: active node delay, network delay and inactive node delay as
introduced in Section 2.1.

We apply our scheduling framework for both active and inac-
tive nodes and focus on minimizing the delays experienced at these
nodes. We do not limit the buffer space, contending that the faster
we complete the synchronization of data the less buffer is needed.
We also assume that there is no packet loss in the network and that
the network delay is exponentially distributed with an average of
100 ms (i.e., the average delay for intercontinental round trip com-
munication).

In our experiments, we use four different pairs of traces to eval-
uate our framework and the alternatives under 4 different workload
combinations. These pairings are given in Table 2. For each work-
load combination, we divide the available traces into seven portions
or time windows, each corresponding to a full day workload (i.e.,
recall that the traces are 7 days long). Recall that during learning
we update the histogram of idle periods length, the average arrival
and service rate of WRITE, the average arrival and service rate of
all IO. Our framework uses these monitored parameters to compute
the scheduling parameters, i.e., when and for how long during the
idle interval, the asynchronous tasks are executed. The learning
procedure of our framework occurs during one full time window
and the learning results apply on the next time window. This means
that we run our framework once a day and update the scheduling
parameters accordingly. We run the experiments across all six time
windows (the first day/time window is used only for learning), but
due to the limited space, we only show results only for a subset of
time windows.

In our experiments we evaluate the following solutions for achiev-
ing eventual consistency: the fully work-conservative approach (we
label it as “Aggressive") that starts to serve the asynchronous tasks
as soon as the node becomes idle. The “Utilization-based" pol-
icy monitors the utilization of the system for the past 10 minutes,
and if it increases above a threshold (the threshold is chosen as the
average utilization during a long period, e.g., one day), then no

asynchronous tasks are scheduled. If utilization drops below the
threshold, then asynchronous tasks are scheduled aggressively, i.e.,
as soon as the node becomes idle. Note we use 10 minutes as the
measurement window for utilization-based approach because the
utilization is a statistical parameter and if set too small (e.g. 1 min),
it is statistically meaningless and such swift change is difficult to
be used for predicting near future; if set too large (e.g. 1 hour),
the synchronization speed is too slow and there is always backlog.
The above two policies are evaluated as baseline versions to com-
pare with the two scheduling versions of our framework, the basic
“Learning-based" non-work-conserving version and the “Leaning-
Based+" work-conserving variant introduced in Section 4.1.

Note that the “Utilization-based" approach is not work-conserving
but is widely used in systems today, in an effort to limit the unpre-
dictable performance impact that an “Aggressive" approach would
have during periods of high utilization. Our experiments show that
the impact of all alternative methodologies have an unpredictable
impact on node performance and that only our “Learning-based"
methods provide a solution that can maintain user-performance guar-
antees.

5.2 Delay on Achieving Eventual Consistency
Our initial experiments evaluate the total time that it takes, on the

average, to propagate the new data or updates (e.g. WRITE in disk
IOs) from the active node to the inactive node. Obviously, the faster
the propagation of WRITEs, i.e., the smaller the inconsistency win-
dow, the more robust and resilient the system is because during the
inconsistency window, the system has staled data in inactive nodes,
which may cause various problems, e.g., impact the back-order rate
in TPC-W system [7] or break the application’s contract with the
user as the classic example discussed in [8]. We provide the results
of the experiments on the duration of the inconsistency window
in Figure 5, each row of plots in the figure corresponding to the
node pairs described in Table 2. Since our framework relies on the
knowledge of various scheduling parameters including the CDH
of idle intervals, we compute the (I, T) scheduling pair based on
system measurements in the previous time interval (an entire day).
The columns of Figure 5 correspond to results for three different
days. Results are plotted for different user performance targets (in
%) (captured in the x-axis). For different performance targets (cap-
tured in the x-axis) there are different scheduling parameters for our
framework and consequently, different results. However the results
for the baseline approaches are independent of such goals and their
corresponding results do not change across the x-axis.

The Aggressive approach performs best with regard to how fast
the WRITEs propagate through the distributed system, because it
represents the only work-conserving policy that we are evaluating
here. However, as we show in the next subsection, it also causes
the largest, possibly unbounded (e.g. the delay can propagate and
accumulate) delays in user performance because. As a result, in
systems today, it is rarely used, but we include it here to use its
performance with regard to the length of the inconsistency window
as a baseline of the possible minimum. The closer other policies
come to this approach without sacrificing performance, the more
resilient they are.

On the other hand the Utilization-based policy makes scheduling
decisions based on the monitored utilization levels in the immedi-
ate past. Because of the strong oscillations in the short-term utiliza-
tion, it behaves as a very conservative policy that does not take into
consideration the available idleness in the system. Observe that the
inconsistency window is orders of magnitude higher than the other
alternative policies. Similar policies are common practices in sys-
tems today.

0 50 100 150 200
10

2

10
3

10
4

10
5

10
6

10
7

Performance Target (%)

In
c
o

n
s
is

te
n

c
y
 W

in
d

o
w

 (
m

s
)

Active: usr0, Inactive: mds0, S2
Inconsistency Window Comparison

Learning−based

Learning−based+

Baseline−Aggressive

Baseline−Utilization

0 50 100 150 200
10

2

10
3

10
4

10
5

10
6

10
7

Performance Target (%)

In
c
o

n
s
is

te
n

c
y
 W

in
d

o
w

 (
m

s
)

Active: usr0, Inactive: mds0, S4
Inconsistency Window Comparison

Learning−based

Learning−based+

Baseline−Aggressive

Baseline−Utilization

0 50 100 150 200
10

2

10
3

10
4

10
5

10
6

10
7

Performance Target (%)

In
c
o

n
s
is

te
n

c
y
 W

in
d

o
w

 (
m

s
)

Active: usr0, Inactive: mds0, S6
Inconsistency Window Comparison

Learning−based

Learning−based+

Baseline−Aggressive

Baseline−Utilization

0 50 100 150 200
10

2

10
3

10
4

10
5

10
6

10
7

Performance Target (%)

In
c
o

n
s
is

te
n

c
y
 W

in
d

o
w

 (
m

s
)

Active: mds0, Inactive: ts0, S2
Inconsistency Window Comparison

Learning−based

Learning−based+

Baseline−Aggressive

Baseline−Utilization

0 50 100 150 200
10

2

10
3

10
4

10
5

10
6

10
7

Performance Target (%)

In
c
o

n
s
is

te
n

c
y
 W

in
d

o
w

 (
m

s
)

Active: mds0, Inactive: ts0, S4
Inconsistency Window Comparison

Learning−based

Learning−based+

Baseline−Aggressive

Baseline−Utilization

0 50 100 150 200
10

2

10
3

10
4

10
5

10
6

10
7

Performance Target (%)

In
c
o

n
s
is

te
n

c
y
 W

in
d

o
w

 (
m

s
)

Active: mds0, Inactive: ts0, S6
Inconsistency Window Comparison

Learning−based

Learning−based+

Baseline−Aggressive

Baseline−Utilization

0 50 100 150 200
10

2

10
3

10
4

10
5

10
6

10
7

Performance Target (%)

In
c
o

n
s
is

te
n

c
y
 W

in
d

o
w

 (
m

s
)

Active: web0, Inactive: usr0, S2
Inconsistency Window Comparison

Learning−based

Learning−based+

Baseline−Aggressive

Baseline−Utilization

0 50 100 150 200
10

2

10
3

10
4

10
5

10
6

10
7

Performance Target (%)

In
c
o

n
s
is

te
n

c
y
 W

in
d

o
w

 (
m

s
)

Active: web0, Inactive: usr0, S4
Inconsistency Window Comparison

Learning−based

Learning−based+

Baseline−Aggressive

Baseline−Utilization

0 50 100 150 200
10

2

10
3

10
4

10
5

10
6

10
7

Performance Target (%)

In
c
o

n
s
is

te
n

c
y
 W

in
d

o
w

 (
m

s
)

Active: web0, Inactive: usr0, S6
Inconsistency Window Comparison

Learning−based

Learning−based+

Baseline−Aggressive

Baseline−Utilization

0 50 100 150 200
10

2

10
3

10
4

10
5

10
6

10
7

Performance Target (%)

In
c
o

n
s
is

te
n

c
y
 W

in
d

o
w

 (
m

s
)

Active: ts0, Inactive: web0, S2
Inconsistency Window Comparison

Learning−based

Learning−based+

Baseline−Aggressive

Baseline−Utilization

0 50 100 150 200
10

2

10
3

10
4

10
5

10
6

10
7

Performance Target (%)

In
c
o

n
s
is

te
n

c
y
 W

in
d

o
w

 (
m

s
)

Active: ts0, Inactive: web0, S4
Inconsistency Window Comparison

Learning−based

Learning−based+

Baseline−Aggressive

Baseline−Utilization

0 50 100 150 200
10

2

10
3

10
4

10
5

10
6

10
7

Performance Target (%)

In
c
o

n
s
is

te
n

c
y
 W

in
d

o
w

 (
m

s
)

Active: ts0, Inactive: web0, S6
Inconsistency Window Comparison

Learning−based

Learning−based+

Baseline−Aggressive

Baseline−Utilization

Figure 5: Inconsistency Window comparison between different scheduling for various active-inactive pairs (first row: usr0 - mds0,

second row: mds0 - ts0, third row: web0 - usr0, fourth row: ts0 - web0. Three learning windows are considered: Start = first day

(left column), Start = third day (center column), and Start = fifth day (right column).

The curves corresponding to our framework, dynamically change
as the target performance goal changes. As expected, for systems
that are more sensitive to performance and where the target is low,
the eventual consistency is achieved at a slower pace than when the
performance target is less stringent. Our scheduling converges to
the Aggressive scheduling as the performance target increases to
the performance degradation caused by the Aggressive approach.
Note that the higher the performance target, the smaller the value
of I , which indicates how non-work-conserving the policy is (i.e.,

I = 0 and large T corresponds to a work-conserving policy).
As expected Learning-based+ achieves eventual consistency faster
than the basic Learning-based approach and converges faster to the
Aggressive scheduling. The few fluctuations in our scheduling re-
sults is due to the fact that we use the learning of a previous day,
which obviously can result in some errors on the predicted work-
load characteristics.

The main observation from Figure 5 is that our framework (both
its versions) performs comparable to the Aggressive policy for any

0 50 100 150 200
0

10

20

30

40

50

60

70

Performance Target (%)

R
e
a
l
P

e
rf

o
rm

a
n
c
e
 D

e
g
ra

d
a
ti
o
n
 (

%
)

Active: usr0, Inactive: mds0, S2
User Performance Impact Comparison

Learning−based

Learning−based+

Baseline−Aggressive

Baseline−Utilization

0 50 100 150 200
0

10

20

30

40

50

60

70

Performance Target (%)

R
e
a
l
P

e
rf

o
rm

a
n
c
e
 D

e
g
ra

d
a
ti
o
n
 (

%
)

Active: usr0, Inactive: mds0, S4
User Performance Impact Comparison

Learning−based

Learning−based+

Baseline−Aggressive

Baseline−Utilization

0 50 100 150 200
0

10

20

30

40

50

60

70

Performance Target (%)

R
e
a
l
P

e
rf

o
rm

a
n
c
e
 D

e
g
ra

d
a
ti
o
n
 (

%
)

Active: usr0, Inactive: mds0, S6
User Performance Impact Comparison

Learning−based

Learning−based+

Baseline−Aggressive

Baseline−Utilization

0 50 100 150 200
0

10

20

30

40

50

60

70

Performance Target (%)

R
e
a
l
P

e
rf

o
rm

a
n
c
e
 D

e
g
ra

d
a
ti
o
n
 (

%
)

Active: mds0, Inactive: ts0, S2
User Performance Impact Comparison

Learning−based

Learning−based+

Baseline−Aggressive

Baseline−Utilization

0 50 100 150 200
0

10

20

30

40

50

60

70

Performance Target (%)

R
e
a
l
P

e
rf

o
rm

a
n
c
e
 D

e
g
ra

d
a
ti
o
n
 (

%
)

Active: mds0, Inactive: ts0, S4
User Performance Impact Comparison

Learning−based

Learning−based+

Baseline−Aggressive

Baseline−Utilization

0 50 100 150 200
0

10

20

30

40

50

60

70

Performance Target (%)

R
e
a
l
P

e
rf

o
rm

a
n
c
e
 D

e
g
ra

d
a
ti
o
n
 (

%
)

Active: mds0, Inactive: ts0, S6
User Performance Impact Comparison

Learning−based

Learning−based+

Baseline−Aggressive

Baseline−Utilization

0 50 100 150 200
0

10

20

30

40

50

60

70

Performance Target (%)

R
e
a
l
P

e
rf

o
rm

a
n
c
e
 D

e
g
ra

d
a
ti
o
n
 (

%
)

Active: web0, Inactive: usr0, S2
User Performance Impact Comparison

Learning−based

Learning−based+

Baseline−Aggressive

Baseline−Utilization

0 50 100 150 200
0

10

20

30

40

50

60

70

Performance Target (%)

R
e
a
l
P

e
rf

o
rm

a
n
c
e
 D

e
g
ra

d
a
ti
o
n
 (

%
)

Active: web0, Inactive: usr0, S4
User Performance Impact Comparison

Learning−based

Learning−based+

Baseline−Aggressive

Baseline−Utilization

0 50 100 150 200
0

10

20

30

40

50

60

70

Performance Target (%)

R
e
a
l
P

e
rf

o
rm

a
n
c
e
 D

e
g
ra

d
a
ti
o
n
 (

%
)

Active: web0, Inactive: usr0, S6
User Performance Impact Comparison

Learning−based

Learning−based+

Baseline−Aggressive

Baseline−Utilization

0 50 100 150 200
0

10

20

30

40

50

60

70

Performance Target (%)

R
e
a
l
P

e
rf

o
rm

a
n
c
e
 D

e
g
ra

d
a
ti
o
n
 (

%
)

Active: ts0, Inactive: web0, S2
User Performance Impact Comparison

Learning−based

Learning−based+

Baseline−Aggressive

Baseline−Utilization

0 50 100 150 200
0

10

20

30

40

50

60

70

Performance Target (%)

R
e
a
l
P

e
rf

o
rm

a
n
c
e
 D

e
g
ra

d
a
ti
o
n
 (

%
)

Active: ts0, Inactive: web0, S4
User Performance Impact Comparison

Learning−based

Learning−based+

Baseline−Aggressive

Baseline−Utilization

0 50 100 150 200
0

10

20

30

40

50

60

70

Performance Target (%)

R
e
a
l
P

e
rf

o
rm

a
n
c
e
 D

e
g
ra

d
a
ti
o
n
 (

%
)

Active: ts0, Inactive: web0, S6
User Performance Impact Comparison

Learning−based

Learning−based+

Baseline−Aggressive

Baseline−Utilization

Figure 6: User performance impact comparison between different scheduling for various active-inactive pairs (first row: usr0 - mds0,

second row: mds0 - ts0, third row: web0 - usr0, fourth row: ts0 - web0). Three learning windows are considered: Start = first day

(left column), Start = third day (center column), and Start = fifth day (right column).

performance target (excluding the very small and impractical ones
1-5%). The Utilization-based approach is orders of magnitude worse,
as we show later, for several times higher performance degradation.

5.3 Impact on User Performance
As discussed above, the time it takes to propagate the WRITE

traffic and achieve eventual consistency is highly dependent on how
much the user performance is degraded. Recall that serving the IO
replicas as background work delays foreground user requests that

arrive while the system serves replica updates because IO tasks are
not instantaneously preemptable. Here, we focus on how the var-
ious approaches perform with respect to foreground task degrada-
tion, measured as the percentage of the average user response time
increase in presence of asynchronous tasks. We show the results in
Figure 6, each row corresponding to different active-inactive pairs,
and each column corresponding to different days in the trace. We
still use the performance target (in %) as index of the x-axis and
plot the actual performance degradation measured in simulations

0 50 100 150 200
10

−3

10
−2

10
−1

10
0

10
1

10
2

Performance Target (%)

B
u
ff
e
r

S
iz

e
 (

M
B

)

Active: usr0, Inactive: mds0, S2
Average Buffer Size Consumption Comparison

Learning−based

Learning−based+

Baseline−Aggressive

Baseline−Utilization

0 50 100 150 200
10

−3

10
−2

10
−1

10
0

10
1

10
2

Performance Target (%)

B
u
ff
e
r

S
iz

e
 (

M
B

)

Active: usr0, Inactive: mds0, S4
Average Buffer Size Consumption Comparison

Learning−based

Learning−based+

Baseline−Aggressive

Baseline−Utilization

0 50 100 150 200
10

−3

10
−2

10
−1

10
0

10
1

10
2

Performance Target (%)

B
u
ff
e
r

S
iz

e
 (

M
B

)

Active: usr0, Inactive: mds0, S6
Average Buffer Size Consumption Comparison

Learning−based

Learning−based+

Baseline−Aggressive

Baseline−Utilization

0 50 100 150 200
10

−1

10
0

10
1

10
2

10
3

Performance Target (%)

B
u
ff
e
r

S
iz

e
 (

M
B

)

Active: usr0, Inactive: mds0, S2
Max Buffer Size Consumption Comparison

Learning−based

Learning−based+

Baseline−Aggressive

Baseline−Utilization

0 50 100 150 200
10

−1

10
0

10
1

10
2

10
3

Performance Target (%)

B
u
ff
e
r

S
iz

e
 (

M
B

)

Active: usr0, Inactive: mds0, S4
Max Buffer Size Consumption Comparison

Learning−based

Learning−based+

Baseline−Aggressive

Baseline−Utilization

0 50 100 150 200
10

−1

10
0

10
1

10
2

10
3

Performance Target (%)

B
u
ff
e
r

S
iz

e
 (

M
B

)

Active: usr0, Inactive: mds0, S6
Max Buffer Size Consumption Comparison

Learning−based

Learning−based+

Baseline−Aggressive

Baseline−Utilization

Figure 7: Buffer consumption comparison between different scheduling for usr0 - mds0 pair, both Standard and Aggressive Version

of our framework are provided and also both Mean (first row) and Max (second row) Buffer consumption are provided. Three

learning windows are considered: Start = first day (left graph), Start = third day (center graph), and Start = fifth day (right

graph).

(in %) in the y-axis.
As expected, the Aggressive policy performs very poor with re-

gard to the actual user degradation in the system. The average user
response time increases well beyond 50%, despite the fact that the
asynchronous replica work is modest. The Utilization-based pol-
icy proves to be really ineffective, because although it results in
very slow eventual consistency, it still penalizes user performance
significantly, which attests to the inefficiency of making decisions
based on short-term learning. We believe that not only the short-
term learning is ineffective, but also the metric of utilization itself
and a guide to scheduling asynchronous tasks, despite the fact that
it is widely used in practice.

Our framework, on the other hand, adapts its decisions to the
system quality targets striking a good balance between system user
performance and replica completion speed with the goal of achiev-
ing eventual consistency quickly without significant performance
loss. The results in Figure 6 confirm the robustness of periods of
long learning (we update our learning once a day, see results per
column) as being more robust and effective than shorter learning
periods as used in the Utilization-based policy.

5.4 Buffer Space Requirements
Since there cannot be a perfect synchronization between the speed

that the active node sends its updates with the speed that the inac-
tive node processes them, there is a clear need for buffering at the
inactive node to temporarily store the incoming replica WRITEs.
Although we do not limit buffer availability here, as to be able to
assess the maximum buffer requirement for each of the evaluated
approaches, in real systems the buffer space is limited. Therefore,
buffer size is preferred to be as small as possible. We show the re-
quired buffer size for the various policies in Figure 7 for the usr0 -
mds0 pair. Results for the other three active-inactive pairs are not
shown here for the interest of space but we remark that they are

qualitatively the same as those reported in Figure 7. The x-axis in
the graphs of Figure 7 is the performance degradation target (%)
and y-axis is the required buffer space (in MB).

The Utilization-based policy demands the largest buffer space
since under that policy the replica WRITEs accumulate for a long
time before being served. The Aggressive policy requires the least
buffer space because it serves the incoming asynchronous tasks the
fastest. The buffer space under our scheduling policies depends
on the performance target. The smaller the performance target
the larger the buffer space. Yet, as expected it converges to the
Aggressive policy buffer requirements for higher performance tar-
gets. Note, that there are cases when our framework consumes less
maximum buffer space than the Aggressive policy. This is because
the Aggressive policy causes often the WRITEs to arrive in large
batches at the inactive node, while our framework smooths out this
bursty behavior for sending out almost equal number of WRITEs
every idle interval.

In conclusion, the results presented here support our claim that
learning the characteristics of the right process, here the length of
idle periods, is crucial to the effectiveness of the two learning-based
approaches. Also, the workload in systems, as seen via captured
traces from live systems, does not change drastically. As a result,
learning over long periods of time, as we do in our framework (a
whole day) results not only on a more resilient approach, but is
also computationally inexpensive. Our framework, introduces only
a small overhead on the system for monitoring and storing the re-
sults. System gains are nevertheless of orders of magnitude favor-
able regarding eventual consistency and user performance impact,
which is critical for the availability, reliability, and performance of
scaled-out systems.

6. RELATED WORK

In today’s storage systems, there are various activities maintained
in the background [26], aiming to increase the performance and re-
liability features. There is a large body of work in the literature
suggests, in systems, periods of high utilization may be interleaved
with idle times [25, 27, 22]. These idle times offer an opportunity
to serve low priority tasks, such as synchronization and replication,
but this may lead to performance degradation if a foreground task
arrives and cannot be executed instantaneously.

Efforts have been placed to effective scheduling that can guaran-
tee the foreground task. Conventionally, scheduling of non-preemptive
background tasks is done using a non-work-conserving approach
by delaying the execution of a background job during an idle inter-
val [22]. This technique avoids using short idle intervals to serve
long background jobs and to avoid severe degradation in foreground
performance. Storage performance insulation has been achieved by
co-scheduling timeslices for each striped workload in [28].

Our work significantly differs from the above in that instead of
focusing on predicting the idle period size, we concentrate on the
best way to coordinate scheduling between the active and inac-
tive nodes to achieve quick eventual consistency without further
degrading the foreground traffic in the system.

The work that is most related to the work in this paper is [15],
where the authors propose a framework to estimate when and for
how long idle periods can be used for processing low priority back-
ground tasks without violating pre-defined foreground performance
target. In this paper, we generalized the algorithm in a current
use case by introducing various analytic formulas and constrains.
Though the algorithm part is partially based on [15], we are inves-
tigating a totally different problem. For example, in [15], the focus
is trying to finish as much as possible the background work (mea-
sured by the amount of background work) in a single node, here we
focus on how to serve background work as fast as possible (mea-
sured by the response time and buffer requirement) in a distributed
scenario. The distinctively difference can also be identified from
the totally different experiment environment setting, which driven
by a new set of traces collected in a distributed scenario. In ad-
dition, in [15], it assumes the perfect information of future work-
load is known prior. In this paper, we discussed and experimented
with specific learning strategy, e.g. predict the information of fu-
ture workload by monitoring the past information.

7. CONCLUSIONS
In this paper, we presented a framework that facilitates the ef-

ficient synchronization of data distribution in the background for
quick eventual data consistency, common in distributed storage sys-
tems, with user performance guarantees. The framework learns the
idleness characteristics dynamically and determines how fast the
data can be sent or received without violating performance goals.
Once such capabilities are shared among the nodes in the distributed
system, each pair can synchronize the speed of sending and re-
ceiving. The result is orders of magnitude faster than the common
practices without performance loss or large buffer requirements on
the receiving end for eventually consistency applications. Exten-
sive experimentation via trace-driven simulation indicates that the
learning process is robust and that the near past predicts reasonably
the near future, with regard to idleness characteristics.

8. REFERENCES
[1] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,

A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
amazon’s highly available key-value store,” in SOSP, 2007, pp. 205–220.

[2] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file system,” in SOSP,
2003, pp. 29–43.

[3] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows,
T. Chandra, A. Fikes, and R. Gruber, “Bigtable: A distributed storage system
for structured data (awarded best paper!),” in OSDI, 2006, pp. 205–218.

[4] A. Singh, P. Fonseca, P. Kuznetsov, R. Rodrigues, and P. Maniatis, “Zeno:
Eventually consistent byzantine-fault tolerance,” in NSDI, 2009, pp. 169–184.

[5] J. Kubiatowicz, D. Bindel, Y. Chen, S. E. Czerwinski, P. R. Eaton, D. Geels,
R. Gummadi, S. C. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and B. Y.
Zhao, “Oceanstore: An architecture for global-scale persistent storage,” in
ASPLOS, 2000, pp. 190–201.

[6] O. Tatebe, Y. Morita, S. Matsuoka, N. Soda, and S. Sekiguchi, “Grid datafarm
architecture for petascale data intensive computing,” in CCGRID, 2002, pp.
102–110.

[7] L. Gao, M. Dahlin, A. Nayate, J. Zheng, and A. Iyengar, “Application specific
data replication for edge services,” in WWW, 2003, pp. 449–460.

[8] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bohannon,
H.-A. Jacobsen, N. Puz, D. Weaver, and R. Yerneni, “Pnuts: Yahoo!’s hosted
data serving platform,” PVLDB, vol. 1, no. 2, pp. 1277–1288, 2008.

[9] W. Vogels, “Eventually consistent,” ACM Queue, vol. 6, no. 6, pp. 14–19, 2008.

[10] E. Anderson, X. Li, A. Merchant, M. A. Shah, K. Smathers, J. Tucek, M. Uysal,
and J. J. Wylie, “Efficient eventual consistency in pahoehoe, an erasure-coded
key-blob archive,” in DSN, 2010, pp. 181–190.

[11] H. Wada, A. Fekete, L. Zhao, K. Lee, and A. Liu, “Data consistency properties
and the trade-offs in commercial cloud storage: the consumers’ perspective,” in
CIDR, 2011, pp. 134–143.

[12] T. Kraska, M. Hentschel, G. Alonso, and D. Kossmann, “Consistency rationing
in the cloud: Pay only when it matters,” PVLDB, vol. 2, no. 1, pp. 253–264,
2009.

[13] P. M. Chen, E. L. Lee, G. A. Gibson, R. H. Katz, and D. A. Patterson, “Raid:
High-performance, reliable secondary storage,” ACM Comput. Surv., vol. 26,
no. 2, pp. 145–185, 1994.

[14] A. D. Fekete and K. Ramamritham, “Consistency models for replicated data,”
in Replication, 2010, pp. 1–17.

[15] N. Mi, A. Riska, X. Li, E. Smirni, and E. Riedel, “Restrained utilization of
idleness for transparent scheduling of background tasks,” in Proceedings of the

Eleventh International Joint Conference on Measurement and Modeling of

Computer Systems, SIGMETRICS/Performance, 2009, pp. 205–216.

[16] K. Daudjee and K. Salem, “Lazy database replication with snapshot isolation,”
in VLDB, 2006, pp. 715–726.

[17] E. Pacitti, P. Minet, and E. Simon, “Fast algorithms for maintaining replica
consistency in lazy master replicated databases,” in VLDB, 1999, pp. 126–137.

[18] K. Petersen, M. Spreitzer, D. B. Terry, M. Theimer, and A. J. Demers, “Flexible
update propagation for weakly consistent replication,” in SOSP, 1997, pp.
288–301.

[19] M. McKusick and G. Ganger, “Soft updates: A technique for eliminating most
synchronous writes in the fast filesystem,” in Proceedings of the annual

conference on USENIX Annual Technical Conference. USENIX Association,
1999, pp. 24–24.

[20] M. I. Seltzer, G. R. Ganger, M. K. McKusick, K. A. Smith, C. A. N. Soules, and
C. A. Stein, “Journaling versus soft updates: Asynchronous meta-data
protection in file systems,” in USENIX Annual Technical Conference, General

Track, 2000, pp. 71–84.

[21] V. Prabhakaran, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “Analysis
and evolution of journaling file systems,” in USENIX Annual Technical

Conference, General Track, 2005, pp. 105–120.

[22] L. Eggert and J. Touch, “Idletime scheduling with preemption intervals,” in In

Proceedings of the 20th ACM Symposium on Operating Systems Principles

(SOSP), 2005, pp. 249–262.

[23] “Snia iotta repository.” [Online]. Available: http://iotta.snia.org/traces

[24] D. Narayanan, A. Donnelly, and A. I. T. Rowstron, “Write off-loading: Practical
power management for enterprise storage,” in FAST, 2008, pp. 253–267.

[25] R. A. Golding, P. B. II, C. Staelin, T. Sullivan, and J. Wilkes, “Idleness is not
sloth,” in USENIX Winter, 1995, pp. 201–212.

[26] E. Bachmat and J. Schindler, “Analysis of methods for scheduling low priority
disk drive tasks,” in ACM Conference on Measurements and Modeling of

Computer Systems (SIGMETRICS). ACM Press, 2002, pp. 55–65.

[27] A. Riska and E. Riedel, “Disk drive level workload characterization,” in
Proceedings of the USENIX Annual Technical Conference, May 2006, pp.
97–103.

[28] M. Wachs and G. R. Ganger, “Co-scheduling of disk head time in cluster-based
storage,” in SRDS, 2009, pp. 278–287.

