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Abstract—Machine-Learning-as-a-Service (MLaaS) enables
practitioners and AI service providers to train and deploy ML
models in the cloud using diverse and scalable compute resources.
A common problem for MLaaS users is to choose from a
variety of training deployment options, notably scale-up (using
more capable instances) and scale-out (using more instances),
subject to the budget limits and/or time constraints. State-of-the-
art (SOTA) approaches employ analytical modeling for finding
the optimal deployment strategy. However, they have limited
applicability as they must be tailored to specific ML model
architectures, training framework, and hardware. To quickly
adapt to the fast evolving design of ML models and hardware
infrastructure, we propose a new Bayesian Optimization (BO)
based method HeterBO for exploring the optimal deployment
of training jobs. Unlike the existing BO approaches for general
applications, we consider the heterogeneous exploration cost and
machine learning specific prior to significantly improve the search
efficiency. This paper culminates in a fully automated MLaaS
training Cloud Deployment system (MLCD) driven by the highly
efficient HeterBO search method. We have extensively evaluated
MLCD in AWS EC2, and the experimental results show that
MLCD outperforms two SOTA baselines, conventional BO and
CherryPick, by 3.1× and 2.34×, respectively.

I. INTRODUCTION

Machine-Learning-as-a-Service (MLaaS) [1] is widely sup-
ported in the leading cloud platforms (e.g., AWS, Azure, and
Google Cloud) to facilitate training and serving user-developed
models in a scalable manner. In MLaaS training, users are
offered two general deployment options for their training jobs,
scale-up and scale-out. Specifically, MLaaS users need to
choose from an array of cloud instances with different resource
configurations and hardware architectures such as CPU, GPU,
and TPU (scale-up). In the meantime the users also determine
how many instances should be used for distributed training
(scale-out). More often than not, the decision makings of scale-
up and scale-out are subject to the budget constraints and
training time goals. For example, an MLaaS user may have
$1000 to spare and would like to use it to train a ResNet-50
model in AWS as fast as possible.

Training large SOTA models can be expensive, for instance,
it is reported that training Google’s BERT model costs about
$6,912 while training the XLNet model can cost up to
$245,000 [2]–[4], which makes efficient training deployment
vitally important. However, existing MLaaS platforms provide
no guideline for users to deploy their training jobs using the
scale-up and scale-out options, which is highly non-trivial
yet critically important as it determines the performance and
cost of model training. To illustrate this point, we refer to
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Fig. 1: (a) Normalized hourly cost of different EC2 instances,
where the cost of c5.xlarge is normalized to 1. (b) Training
time of Char-RNN using 40 c5.xlarge, 10 c5.4xlarge, and 9
p2.xlarge instances, respectively. For a fair comparison, in all
three settings, the per hour training cost remains the same.

Fig. 1(a) for a comparison of the hourly cost of popular CPU
and GPU instances in AWS, where the cost of the cheapest
CPU instance c5.xlarge is normalized to 1. We observe a
significant cost variation across instance types, with the most
costly GPU instance (p2.8xlarge) 42.5× more expensive than
CPU instance c5.xlarge. Despite the common belief that GPU
instances offer more attractive performance-cost ratio than
CPU instances for the training job [5], our experiments show
that the actual performance and cost depend on many factors
such as ML models, training datasets, learning platforms,
and system configurations (e.g., parallelism, communication
protocol). Fig. 1(b) compares the training time of a Char-RNN
model [6] using 40 c5.xlarge, 10 c5.4xlarge, and 9 p2.xlarge
instances, respectively. Note that for a fair comparison, the per-
hour training cost in all three settings is equal. We see that
the most performant and cost-effective training deployment
(10 c5.4xlarge) is not given by a large number of cheap CPU
instances (c5.xlarge), nor can it be achieved using a small
number of costly, high-end GPU instances (p2.xlarge).

To find the optimal training deployment that balances
between scale-up and scale-out, existing work employs two
general approaches, analytical modeling and profiling-based
optimization. The former establishes an analytical model and
uses it to characterize the computation and communication
time for a given ML model deployed in a cluster with known
hardware architecture and resource configurations [7], [8].
However, this approach imposes heavy assumptions on specific
ML model architectures and computing hardware, e.g., the



(a) Total Time. (b) Total Cost.

Fig. 2: Time and monetary cost of profiling and training using
exhaustive search and conventional BO search for ResNet
model using CIFAR-10 dataset. For exhaustive search, we only
consider 180 deployment choices out of total 3,100 choices.

modeling and analysis for training CNNs on CPUs do not ap-
ply to training RNNs on GPUs. Analytical modeling therefore
has limited applicability and is a poor fit for cloud users given
the fast-evolving model architectures and the increasingly
diversified instance hardware in MLaaS platforms.

Unlike analytical modeling, profiling-based optimization
treats an ML model as a black box and searches for the optimal
deployment by profiling the model training performance in
a few iterations under various scale-up and scale-out config-
urations. Reinforcement-Learning (RL), Pareto-Optimization
(PO), and Bayesian Optimization (BO) are widely used opti-
mization methods. However, Reinforcement-Learning [9] usu-
ally requires extensive training samples and high computing
resources while Pareto-Optimization [10] falls short in perfor-
mance. In comparison, Bayesian Optimization [11] offers an
appealing lightweight solution as it can judiciously determine
the next search point (deployment configuration) based on the
previous profiling results, striking a good balance between
exploitation and exploration. Recent works have used BO to
find the optimal configurations of cloud applications [12], [13].

However, directly applying BO to MLaaS training can
be highly inefficient. First, conventional BO assumes that
profiling each search point has a uniform cost. This is not the
case in MLaaS training, e.g., profiling the training performance
for a large number of high-end GPU instances can be orders of
magnitude more expensive than that of a small number of low-
cost CPU instances. As the conventional BO is oblivious to the
heterogeneous profiling cost, it may “over explore” and hence
cannot provide any guarantees for complying with the budget
constraint, e.g., if the newly explored deployment scheme
could not meet the training time requirements, the spending
on this new exploration may result in insufficient fund to roll
back to the previous best or even any explored deployments
to finish training. Second, conventional BO assumes general
applications, without incorporating ML-specific insights into
search optimization. Failing to do so may result in excessive
exploration cost, as exploring large scale-out deployment for
training jobs can be extremely time-consuming and expensive.
For example, Fig. 2 demonstrates the profiling and training
time breakdown for both exhaustive search (profiling all points
in the search space) and conventional BO. Though BO can find
the best configuration as in exhaustive search in significantly
shorter time, the profiling time and monetary cost are quite
high—almost on par with training.

In this paper, we propose HeterBO, an intelligent profiling-
based solution that efficiently searches the optimal deployment
scheme for MLaaS training. Key to our design is a cost-
aware search strategy that embeds the profiling cost of a
deployment scheme into the BO’s acquisition function. In this
way, expensive profiling is naturally penalized in the search
process and is performed cautiously. HeterBO supports various
practical MLaaS training scenarios by providing guarantees for
user-specified training time and monetary budget constraints.
This is done by using a protective mechanism to prevent “over
exploration.” The protective mechanism reserves the training
budget for the current best deployment scheme and only uses
the remaining budget for exploration.

HeterBO also utilizes the MLaaS training specific prior
to further improve the search efficiency. The prior is based
on an important observation that the speedup brought by
scaling out usually follows a concave-shape curve. This can
be explained as when the distributed training scale (number of
instances) is small, the computation is usually the bottleneck.
Scaling-out thus helps mitigate the bottleneck and improve the
training speed. On the other hand, as more instances are used
for training, the communication overhead ramps up quickly,
which eventually offsets the benefits of having more compute
resources, thus resulting in decreased training speed. This prior
is very prominent in reducing the exploration overhead as it
helps limit the search in expensive range (e.g., large scale
deployments) that usually dominates the search cost.

We built a fully-automated MLaaS training Cloud Deploy-
ment system (MLCD) on top of HeterBO. We prototyped
MLCD on AWS and performed extensive experimental eval-
uations by training popular ML models such as Inception-V3
[14], AlexNet [15], ResNet [16], Char-RNN [6], and BERT [2]
in the cloud. The experimental results show HeterBO reduces
the total profiling and training cost by 3.1× and 2.34×
respectively compared with conventional BO (ConvBO) and
the state-of-the-art solution CherryPick [12].
We summarize our main contributions as follows:
• We identify the opportunities and challenges of automating

and optimizing MLaaS training deployment using BO.
• We provide a new BO-based methodology HeterBO for

MLaaS training. HeterBO is significantly faster and more
efficient than the existing approaches, and can provide
guarantees for user-defined deployment requirements.

• We implement HeterBO in an automated MLaaS training
deployment system (MLCD) atop AWS.

• We show through extensive evaluations that HeterBO out-
performs ConvBO by 3.1× and CherryPick [12] by 2.34×.

II. BACKGROUND AND MOTIVATION

A. ML Training Deployment in MLaaS

Sustained algorithmic advances in machine learning (ML)
have enabled a growing number of new AI applications [17],
[18]. These applications are backed by large ML models that
contain up to billions of neural connections trained on a
large amount of data. Training and serving ML models at



(a) Scale Up. (b) Scale Out.

Fig. 3: Training speed under different scale-up and scale-out
deployment options for training Char-RNN model on AWS.

such a large scale require a significant amount of computing
cycles and memory bandwidth [19], [20].Machine-Learning-
as-a-Service (MLaaS) offers a scalable solution to facilitate
training and serving ML models in the cloud, and is widely
supported by leading providers such as AWS, Azure, and
Google Cloud. In the MLaaS training stage, ML models
are built from the training datasets using ML training plat-
forms [21] in a cluster of machines with massive parallelism
(model parallelism and data parallelism). In the MLaaS serving
stage, the trained models are used to provide inference services
such as classification and prediction [22], [23]. In this paper,
we focus on the training stage in MLaaS.

ML model training is a costly and time-consuming pro-
cess [8]. Optimally deploying an MLaaS training job with a
good balance between scale-up and scale-out can dramatically
accelerate the training process with significant cost savings. In
our experiments on AWS, with the same monetary cost, train-
ing a Char-RNN model using the right deployment scheme can
be 3× faster than using a non-optimal scheme (see Fig. 1(b)).
However, finding the optimal deployment scheme is a non-
trivial task. For example, it is widely believed that GPU offers
better performance-cost ratio than CPU for the training jobs.
But we show in Fig. 1(b) that with the same monetary cost,
using more CPU instances leads to faster training completion
than using a few GPU instances. Our experiments further
show that both scale-up and scale-out schemes have complex
behaviors. Fig. 3 illustrates how the training speed of a Char-
RNN model may vary using the two deployment schemes,
where Fig. 3(a) shows the scale-up and Fig. 3(b) scale-out.
We observe drastically different performance trends between
the two schemes, both of which are non-linear. The things
become even more complicated in practice, as users usually
have specific training requirements, such as limited monetary
budget or training deadlines.

B. Challenges of Modeling based Cloud Deployment

To find the best ML task deployment scheme that ex-
plores the trade-off between scale-up and scale-out, existing
works employ analytical modeling to estimate the computa-
tion and communication time for a given ML model. For
accurate modeling, those works usually need to know the
exact hardware architecture, resource configurations, and the

model architecture and hyperparameters [7], [8]. Despite the
efforts to extend the analytical modeling to public cloud, the
corresponding proposals can only support a limited number of
instance types and ML models, due to the heavy assumptions
that are necessary for modeling the ML model and underlying
infrastructure. For example, Paleo [8] extended its analytical
model for AWS, but only 3 models (Inception-V3, AlexNet
V2, and NiN) are supported and a few instance types are
applicable. We summarize the main reasons why the analytical
modeling is not suitable for guiding cloud deployment as
follows:
• It is difficult to capture the ever-changing and versatile

yet nontransparent hardware and system architectures in
the cloud;

• It is challenging to support new software features of
machine learning platforms, such as the ring all-reduce
communication protocol;

• It is hard to provide support for the fast evolving design of
ML model architectures (e.g., the modeling and analysis
for CNNs cannot be applied to RNNs directly) and large
amount of hyperparameters.

C. Challenges of Exhaustive Profiling

An alternative solution to analytical modeling is to search
for the optimal deployment scheme by directly measuring the
training throughput (i.e. profiling) in a specific configuration.
However, as discussed in Sections II-A and II-B, there is
a large number of different deployment choices (e.g., 3,100
possible configurations in total if we consider scale-out a
training job over up to 50 nodes) and the training time
and monetary cost depend on many factors such as model
architectures, hyperparameters, ML system features, and the
chosen cloud platform. Even if we only profile a very small
set of deployment choices, e.g., 180 out of 3,100 deployment
choices, the profiling cost can still be too expensive (see
Fig. 2). To make matters worse, if there are any changes made
in the training job (e.g., using a different batch size), the
expensive search needs to re-performed again. We therefore
rule out exhaustive profiling of a viable solution.

D. Opportunities and Challenges of Bayesian Optimization

Bayesian Optimization (BO) [24] is an observation-based
method for solving problems with unknown objective func-
tions, and can be potentially applied to solve the expensive
search cost issue. Figure 4 illustrates the search process of con-
ventional BO. Conventional BO starts by randomly selecting a
few (e.g., two) deployment schemes for profiling as shown in
Figure 4(a). Based on the profiling results y1 and y2, BO esti-
mates the mean of target function y(D) (the estimate is shown
in bold solid line while the actual function is shown in dashed
line) that represents here the training speed as a function of
deployment scheme D with certain confidence interval. Closer
to the profiled points has lower confidence interval, vice versa.
BO judiciously selects the next points to explore based on
the predefined acquisition function. There are three commonly
used acquisition functions. EI (Expected Improvement) aims



(a) After Initial Profiling Step.

(b) After 2 Profiling Steps.

Fig. 4: An example of the work process for Conventional BO.

at maximizing the expected improvement from the new point
over the current best. UCB (Upper Confidence Bound) chooses
the next point whose confidence interval has the largest bound
in the search space. POI (Probability of Improvement) [11],
[25] seeks to maximize the possibility of improvement over
the current best. After a profiling step, the estimated target
function y(D) as well as the confidence interval changes based
on the new profiling results y3 (see Figure 4(b)). Meanwhile,
the acquisition function is also updated for selecting the next
profiling point. Such process repeats until the predefined stop
condition meets, e.g., the expected improvement is smaller
than a threshold when EI is used as an acquisition function.

Our experiments show that even though the conventional
BO can significantly reduce the profiling cost compared to the
exhaustive search, it still results in excessive profiling time
and monetary cost, see Fig. 2. The reasons are multi-fold.
First, conventional BO does not consider the heterogeneous
profiling cost, e.g., it is more expensive to profile a high-
end instance type (e.g., GPU) in a large cluster than cheap
instance type in a small cluster. Such cost difference is
particularly salient for MLaaS training as training a modern
ML model is quite resource intensive [2]–[4] and today’s ML
training platforms can utilize powerful instances and large
cluster to enable massive parallelism. Fig. 5 gives an example
of using the conventional BO to search cloud deployments
by demonstrating the cost saving and speedup change over
profiling steps. The results show that most profiling steps do
not bring benefits and can lead to lower performance. This
suggests that conventional BO likely makes wrong judgements
of the potential benefits versus the exploration cost.

Second, the general BO approaches do not consider ML
specific prior. From Figure 3, we observe an important ML
training prior that the speedup trend of scale-out follows
a concave-shape curve. This is because the computation is
usually the bottleneck when ML training is performed at a
small scale, but when the scale expands, the communication
overhead increases and eventually becomes the major bot-
tleneck. We can utilize this prior to limit the search in the
expensive scale-out region if we detect a declined training
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Fig. 5: Cost saving and speedup change over profiling steps
using conventional BO to deploy AlexNet with CIFAR-10
dataset. The positive value means there is gain after the step
while negative value means getting worse after the step.

Fig. 6: Workflow of HeterBO.

speed between two neighboring deployments, i.e., down hill of
the Concave-shape curve. However, scale-up may have a more
complex behavior due to the complex memory hierarchy and
hardware-specific optimization. Thus it is difficult to utilize
this prior.

Finally, conventional BO methods do not incorporate the
profiling cost into the search process, and thus they could not
provide strict guarantees for user-defined training requirements
such as a training deadline or monetary budget. Given the
profiling can be costly due to the resource demanding nature
of MLaaS training, ignoring the profiling cost may violate
those user-defined constraints.

The above challenges make it difficult to apply conventional
BO methods directly for finding the best deployment plans
for MLaaS training. In this work, we will design a new
BO based methods that can support fast and cost-effective
MLaaS training deployment while at the same time providing
guarantees for user-defined training requirements.

III. HETERBO DESIGN

A. Overview

Our goal is to find the best deployment scheme in cloud
for any given ML training job based on the user defined
requirements. To this end, we propose a new BO-based method
HeterBO that takes into consideration of heterogeneous explo-
ration cost and MLaaS specific prior to enable quick and cost-
effective search of the best deployment schemes according to
the user defined requirements. In particular, we demonstrate
how HeterBO supports the common practical scenarios out-
lined in Section II, and HeterBO can be extended to support
other scenarios. It is worth noticing that we only change cloud
deployment (i.e., scale-up and scale-out schemes), but we do
not make changes to ML model or ML training platform
parameters, such as model hyperparameter (e.g., batch size,



learning rate), synchronization schemes, communication pro-
tocols. This is because these configurations may potentially
change the eventual accuracy of the trained model. Instead,
we use these parameters as input when search for the best
cloud deployment schemes.

In this paper, we consider three common scenarios for
MLaaS users to deploying training jobs:
• Scenario-1: finish the training job as fast as possible with

unlimited monetary budget.
• Scenario-2: finish the training job before a deadline at

the lowest cost.
• Scenario-3: finish the training job as fast as possible

within a budget.

B. Problem Formulation

For a machine learning training task, HeterBO tries to find
the optimal MLaaS training deployment scheme based on the
specific target and constraints. Formally, we denote m and n
as the instance type (scale-up) and quantity of the selected
instance type (scale-out), respectively. We define D(m,n) as
the deployment scheme. The deployment scheme search space
depends on specific cloud provider. Using AWS as an example,
there are 62 scale-up options and a rule of thumb for scale-
out is 50, so there are in total 3,100 deployment schemes. We
further define P (m) as the instance price per unit time for
the chosen instance. For a given deployment D, Let T (D)
be the total time, and C(D) the total monetary cost to finish
the given job. Let D(m,n) be the deployment strategy which
directly impacts T (D) and P (m). Let Tmax be the deadline
(if any) and Cmax the maximum budget (if given). We define
our optimization problem for the three scenarios as follows.

Scenario-1: minimize
D(m,n)

T (D)

subject to D ∈ D(m,n), m ∈M, n ∈ [1,∞];
(1)

Scenario-2: minimize
D(m,n)

C(D) = T (D)× P (m)

subject to T (D) ≤ Tmax, D ∈ D(m,n),

m ∈M, n ∈ [1,∞];

(2)

Scenario-3: minimize
D(m,n)

T (D)

subject to C(D) = T (D)× P (m) ≤ Cmax,

D ∈ D(m,n), m ∈M, n ∈ [1,∞].

(3)

Here, M is the collection of instance types. Note that there
are 3,100 deployment options in D(m,n) and each takes a
few minutes to measure, which is too expensive to profile all
of them in practice. We propose a BO based method HeterBO
to enable lightweight profiling that can support user specified
requirements (if any).

C. HeterBO Search Method

We give an overview of HeterBO by showing its workflow
in Fig. 6. HeterBO starts the search process by randomly
selecting initial deployment schemes (e.g., two) and profiling
their training speed. The profiling results are fed into the
BO model and are used to update the function estimate
and acquisition function by considering the user-specified

Fig. 7: Comparison of the next explore point selection between
HeterBO and Conventional BO (ConvBO).

constraints. After status updates, HeterBO selects the next
deployment scheme to profile based on the acquisition function
with heterogeneous profiling cost, expected improvement and
its confidence, as well as user specified constraints. HeterBO
evaluates whether profiling the selected next scheme meets
the stop condition. If so, the search process stops, otherwise
HeterBO performs the profiling and continue the iterative
process until the stop condition is met.
Prior function. We follow the convention of using Gaussian
Process as the prior function [24], [26], i.e., the found function
is a sample from Gaussian Process, because of its good
flexibility and tractability.
Acquisition function with constraints. We employ the con-
ventional Expected Improvement (EI) [24], [26] as the base
acquisition function to derive the acquisition function with
user-specified constraints. We choose EI as it does not re-
quire hyperparameter tuning and it is easier for setting the
stop condition (introduced later) to guarantee the constraint
compliance. The conventional EI is defined as:

EI(D) = (yo − µ(D))Φ(γ(D)) + σ(D)φ(γ(D)), (4)

where µ(·) and σ(·) are predictive mean function and pre-
dictive standard deviation function, respectively; yo is the best
current value at argmin(D)y(D); γ(D) = yo−µ(D)

D ; Φ(·) and
φ(·) are predictive cumulative distribution function of standard
normal and probability density function of standard normal.

To support user specified constraints, we need to take
profiling cost into consideration when compute the total cost.
We define Tprofile as the profiling time (includes instance
cluster setup and warm-up time) and Cprofile as the profiling
monetary cost. We adjust the acquisition function to reflect the
constraints as follows. For Scenario 2 with deadline Tmax, the
True Expected Improvement (TEI) is

TEI(D) = Tmax − Tprofile −
S

EI(D)
, (5)

where S is total data samples for training. For Scenario 3
with budget Cmax, the True Expected Improvement (TEI) is

TEI(D) = Cmax − Cprofile −
S

EI(D)
× P (m). (6)

Heterogeneous search cost. In conventional BO, it assumes
every point in the search space takes the same amount of
exploration cost. However, in MLaaS training in cloud, dif-
ferent deployment strategy D(m,n) may cause significantly
different profiling time and monetary cost. We embed the
penalty function PL in the profiling time Tprofile and cost



Cprofile to penalize the exploring of expensive deployment
options. Assuming the profiling time for deployment D(m,n)
is t(m,n), we write the profiling time penalty as

PLT = Tprofile = t(m,n). (7)

For the profiling monetary cost penalty, we have

PLC = Cprofile = P (m)× n× Tprofile. (8)

Note that unlike existing work [12], [27], this penalty
function does not trim any search space based on experience,
but rather guide the search process to avoid unnecessary ex-
pensive profiling cost due to randomly jumping into expensive
profiling regions that do not meet requirements. We give
an example to illustrate how the acquisition function with
constraints and heterogeneous search cost work in Figure 7.
Similar to Figure 4(a), y1 and y2 are profiled points. However,
instead of selecting the maximum point in acquisition function
as the next point to profile as in conventional BO, HeterBO
also considers the user constraints and heterogeneous search
cost and thus selects a different next point to profile—in this
case, a point with much smaller scale and thus much less cost.
Initial points. Different from the existing works [11] that
choose random points as initial points to profile, here we
select a single node of each instance type as our initial explore
points to avoid unnecessary large cost in consideration of the
heterogeneous search space.
Stop condition. Existing works [11]–[13] use the expected
improvement threshold and fixed number of points as stop
condition. To guarantee that the constraints are not violated
due to over exploration, we reserve the necessary training cost
required to finish training from the optimal point found in the
previous explorations. We also use the confidence interval (i.e.,
95%) of the expected improvement to reduce the chance of
unsuccessful exploration.
Optimization with prior. Motivated by the ML specific prior,
i.e., concave-shape curve speedup pattern (Section II), we
further optimize the search process by leveraging this prior.
Once HeterBO detects two nearby deployments with declining
training speed, i.e., predicting it is on the down slope of the
Concave-shape curve, it prevents exploring further scale-out
deployments to avoid unnecessary overheads. As large scale-
out deployment schemes usually dominate the profiling time
and monetary cost, this prior utilizes the ML training patterns
to judiciously limit the search in a small range.

IV. MLCD IMPLEMENTATION

We provide the design overview of MLCD by demonstrat-
ing its system architecture in Fig. 8 and introducing its main
components below. Profiler. The Profiler takes the deployment
information from HeterBO Deployment Engine and executes
the model training for certain iterations. It records the training
time and monetary cost and feedback these measurements to
the HeterBO Deployment Engine. To achieve statistic stability
of profiling, Profiler monitors the training throughput across it-
erations and extends the profiling time when large discrepancy

Fig. 8: Overview of MLCD system architecture.

is observed. Scenario Analyzer. The Scenario Analyzer takes
the training requirements from user (e.g., training deadline,
budget) and forms them into the search constraints and feeds
them into the HeterBO Deployment Engine. HeterBO De-
ployment Engine. We use HeterBO search method to drive the
deployment engine to search for the best deployment schemes
based on the Profiler’s feedback. Cloud Interface. MLCD
supports different cloud services through Cloud Interface (e.g.,
AWS, Google Cloud, Azure). It provides the cloud control
operations such as launch/suspend/manage instance, collect
measurements through cloud tools (e.g., CloudWatch in AWS)
and ML platform tools. ML Platform Interface. MLCD
supports popular ML training platforms (such as TensorFlow
[28], MXNet [29], PyTorch [30]) and connects them with the
Cloud Interface to enable various ML platform features, such
as PS and all-reduce communication protocols.

V. EVALUATION

We prototype MLCD atop AWS and conduct extensive
experimental evaluation to validate the effectiveness and ro-
bustness of HeterBO in practical use scenarios.

A. Experiment Setup

Testbed. We use AWS as the testbed and choose various
CPU and GPU instance types as our scale-up options, in-
cluding CPU instances like compute optimized c5, network
enhanced c5n, last generation compute optimized c4, and
GPU instances p3 and p2 featuring NVIDIA V100 and K80
accelerators respectively. In our experiments, up to 100 c5,
c5n, c4 instances and 50 p2, p3 instances are used.

ML models. To verify that HeterBO is general and robust,
we perform the evaluation use a diverse selection of popular
ML models, such as AlexNet, ResNet, Inception-v3, Char-
CNN, and BERT. The models vary from each other substan-
tially in terms of the size, architecture, and task field.

ML platforms. To prove that HeterBO is platform-
independent, we implement BERT on two popular ML plat-
forms TensorFlow and MXNet. To demonstrate that HeterBO
does not rely on any specific communication protocols or
implementations, we examine HeterBO’s performance under
the two widely used ML distribution topologies, namely,
parameter server (PS), and ring all-reduce. We use strong-
scaling to avoid the scale-out level impacting accuracy.



(a) Search Process (b) Total Time

Fig. 9: Scenario1. (a) HeterBO search process. (b) Total time
comparison with profiling and training time breakdown.

Baseline. We use exhaustive search to obtain the optimal
deployment under each setting for reference. We perform a
quick comparison with random profiling to show the statistical
significance of HeterBO. We focus on making comparison
with the analytical model based Paleo and BO based CherryP-
ick as they are the state-of-the-art approaches in their category.
Paleo builds individual analytical models for all supported
models. The model estimates training time and cost based on
model architecture, hardware configuration, hyperparameter,
cluster size, and ML platform. CherryPick, on the other hand,
employs ConvBO and extends it by utilizing prior knowledge.
We also include ConvBO’s results for reference.

Profiler. To ensure fairness, the profiling time is the same
across different approaches. For single node, each profiling
takes 10 minutes (including initial setup and warm-up), we
add extra 1 minute to the profiling time for every increase of
3 extra nodes to offset the longer setup and warm-up time as
well as the randomness in measurement.

B. Effectiveness of HeterBO under Practical Scenarios

We first verify the effectiveness of HeterBO’s under the
three common scenarios outlined in Section II. For clarity,
we use scale-out (i.e., we already found the optimal scale-up
is c5.4xlarge) as an example to illustrate how to deploy
ResNet with CIFAR10 dataset using TensorFlow training
platform in AWS. We report the experimental results in Fig. 9-
11 for the three scenarios respectively.

Results of Scenario1 (finding the fastest training deployment
with unlimited budget) is shown in Fig. 9. Fig. 9(a) shows the
snapshot of the final profiling step and also the search steps
to demonstrate how HeterBO performed the search process.
The plot shows after the 2 initial profiling points, HeterBO
picks the third point in between to discover the curve shape.
HeterBO is able to narrow down the search space to the
interval between point 1 and 3 by fitting point 1, 2, 3 into
a Concave-shape curve, which is the prior HeterBO employs.
By doing so, HeterBO avoids the expensive regions on the
right side, i.e., after point 2 and 3, no further left region is
explored. HeterBO then further narrows down the search space
iteratively until the best deployment scheme is found. Fig. 9(b)
shows HeterBO is able to find the optimal deployment with
only 16% profiling cost compared to conventional BO, thanks
to the heterogeneous profiling cost aware and MLaaS training
prior aware search strategies employed by HeterBO.

(a) Search Process (b) Total Cost

Fig. 10: Scenario2. (a) HeterBO search process. (b) Total cost
comparison with profiling and training cost breakdown.

(a) Search Process (b) Total Time

Fig. 11: Scenario3. (a) HeterBO search process. (b) Total time
comparison with profiling and training time breakdown.

Fig. 10 depicts Scenario2 – how HeterBO finds the cheapest
deployment when the total time (profiling plus training) needs
to be under 6 hours. HeterBO keeps track of the time spent in
profiling to make sure that the training can finish within the
time limit. As shown in Fig. 10(b), HeterBO manages to find
the cheapest deployment scheme with only 20% of ConvBO’s
profiling cost while complying with the user defined time limit,
whereas ConvBO runs over time limit by 3.4 hours. Fig. 11
shows Scenario3 – how HeterBO accomplishes to find the
fastest configuration when the total monetary budget (profiling
plus training) is capped by $100. HeterBO only uses 21%
profiling time compared to ConvBO with $96, under the given
monetary cost budget while ConvBO spends $225 in total,
significantly violates the given budget. Also note that though
Scenario3 and Scenario1 both targets at minimizing the total
time, due to the different monetary budget, the search process
and found deployment scheme are also different.

We also compare HeterBO with random search to show the
statistical significance, see Figure 12. Random search exhibits
significant variance when the number of profiling steps is
small. When larger number of steps are used, the profiling
cost increases, which results in larger total time. In addition,
in practice, it is difficult to know how many steps strikes the
best balance between variance and optimality. As expected,
HeterBO consistently out performs random search in all cases
by using intelligent search strategies.

C. HeterBO vs. state-of-the-art approaches

We first compare HeterBO with Paleo and use ConvBO as
a reference in the scenario of limited budget of $80. Fig. 13
demonstrates the total cost and total time comparison. Since
Paleo models distributed ML directly, there is no profiling
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Fig. 13: Comparison of (a) total cost and (b) total time
among ConvBO, Paleo, and HeterBO under the scenario of
total budget capped by $80 using Inception-v3 with ImageNet
dataset and TensorFlow platform. Opt is the optimal training
cost/time for reference.

cost. However, as the cluster grows bigger, nuances like com-
munication topology demonstrates bigger impacts on training.
These nuances are particularly hard to capture by analytical
modeling. Given Paleo does not consider these nuances, it
fails to find the optimal configuration. HeterBO, on the other
hand, finds an almost optimal configuration, while keeping the
overall cost under budget.

We then compare HeterBO to the state-of-the-art BO based
approach CherryPick under the scenario of limit time – 20
hours. CherryPick is also built atop of ConvBO with prior
information, but instead of considering ML specific prior, it
trims search space based on experience. Here we exclude the
worse performing instance types in search to favor CherryPick
as such prior is difficult to obtain in practice. The evaluation
results are exhibited in Fig. 14. CherryPick runs over the bud-
get even with narrowed search space using prior information
as it does not consider the heterogeneous profiling cost nor
aware of constraints when deciding the next profiling point.
As expected, HeterBO achieves the training time limit with
low profiling cost, thanks to its awareness of heterogeneous
profiling cost and smart mechanism to protect “over profiling”.

D. Robustness and Adaptivity of HeterBO

In this section, we verify the robustness of HeterBO by
applying it to different ML models, training platforms, com-
munication protocols, and different use scenarios. Fig. 15
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Fig. 14: Comparison of (a) total cost and (b) total time among
ConvBO, CherryPick, and HeterBO under the scenario of total
time limit of 20 hours using Char-RNN model and TensorFlow
platform. Opt is the optimal training cost/time for reference.
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Fig. 15: How HeterBO searches for the optimal Char-RNN
over TensorFlow configuration with both horizontal and verti-
cal scaling options. HeterBO progressively narrows down the
search space with a budget of $120 in mind.

illustrates how HeterBO finds the optimal configuration for
training Char-CNN in 9 steps. HeterBO first profiles each
instance type with only 1 instance to get a sense of their
performance in the interest of profiling cost. HeterBO then
starts exploring with step 4, 5, 6, trying to find an interval
to exploit. Finally, HeterBO starts exploiting within the space
between step 2 and 5 for the optimal configuration.

We then extend the evaluations to recently proposed BERT
model, and implement it using both TensorFlow and MXNet.
BERT model has more than 340 million trainable parameters,
and it is trained with ring all-reduce communication topology
instead of parameter server. The results are depicted in Fig. 16
and Fig.17, respectively. Similar exploring and exploiting
procedures can be seen in both experiments, confirming that
HeterBO is general and robust in terms of handling various
ML models, platforms, and communication typologies.

Lastly, we evaluate the adaptivity of HeterBO by changing
the budget requirements when training ResNet with CIFAR10
dataset in cloud. We compare HeterBO with the standard
budget-oblivious ConvBO and CherryPick as well as their
strengthened version by improving them to be budget-aware,
named as BO imprd and CP imprd respectively. Again, we
favor CherryPick by eliminating the sub-optional instance
types and narrow down to only search within the optimal
c5n.4xlarge instance type (i.e., no need to search scale-up
dimension).

The results are shown in Fig. 18. Fig 18(a) shows the total
cost comparison and Fig 18(b) shows the corresponding total
time. As expected, for the total cost, strengthened ConvBO
and CherryPick would stop the profiling process in time to
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Fig. 16: How HeterBO searches for the optimal BERT over
TensorFlow configuration with both horizontal and vertical
scaling options. The budget is $100.
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Fig. 17: How HeterBO searches for the optimal BERT over
MXNet configuration with both horizontal and vertical scaling
options. The budget is $120.

comply with the budget constraint. However, HeterBO still
outperforms them in larger budget as HeterBO tries to narrow
down the search space through the most cost-efficient way
by taking into consideration of the heterogeneous profiling
cost and ML specific prior. As we can see, with higher
budget, HeterBO manages to find better configurations without
significantly increasing cost as opposed to other methods. For
total time, HeterBO outperforms all other approaches in all
budget ranges, and up to 3.1× and 2.34× compared with
ConvBO and CherryPick respectively to be specific.

E. Scalability of HeterBO

We evaluate the scalability of HeterBO by demonstrating
the speedup and cost saving of HeterBO over ConvBO for
models with different number of parameters: 6.4M(AlexNet),
60.3M(ResNet), 340M(Bert), 8B and 20B (ZeRO [31]). Due
to the resource limitation, the results of model size 8B and
20B are simulated based on the training speed and system
settings from ZeRO. The speedup improves form 1.3× to
6.5× and the cost saving increases from 69% to 92% as
model size increases. Larger model size results in larger
deployment search space, therefore, HeterBO achieves much
better scalability compared to ConvBO, thanks to HeterBO’s
search cost awareness and ML prior employment.

VI. RELATED WORK

Proteus [32] exploits transient revocable resources on public
cloud to train ML models cheaper and faster. Optimus [33]
dynamically schedules deep learning training tasks in a shared
cluster to minimize job completion time. MArk [34] is a system
supports cost-efficient ML inference. [7] employs performance
modeling and scalability optimization to achieve efficient ML
training. HeterBO significantly differs from the above work as
it targets at quick and efficient ML training task deployment
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Fig. 18: Sensitivity analysis of (a) total cost VS different
budget constraints and (b) total time VS different budget
constraints. We compare ConvBO, CherryPick, strengthened
ConvBO (BO imprd), strengthened CherryPick (CP imprd),
HeterBO against the optimal (Opt).

6.4
M
60.

3M 340
M 8B 20B

0
1
2
3
4
5
6
7

 Model Size

 

 

Sp
ee

du
p

6.4
M
60.

3M 340
M 8B 20B

0
20
40
60
80
100

 Model Size

 

 

C
os

t s
av

in
g 

(%
)

Fig. 19: Left plot is the speed-up of total time of HeterBO
over ConvBO as model size increases. The right plot is the
total cost saving by using HeterBO as model size increases.

on public cloud supporting user defined performance and cost
objective and constraints.

Bayesian Optimization (BO) has been developed to find
the optimal solution for black box functions [35], [36]. BO
is employed in finding optimal Deep Neural Network struc-
tures for Deep Learning (DL) jobs [11], [37], [38], adaptive
MCMC [39], information extraction [40] and hyper-parameter
tuning [41]–[43]. However, our solution uses BO methods
in a different way. Instead of changing the internals of ML
structures or the training algorithms, which may lead the
trained models to be less accurate or the training jobs not
to converge, HeterBO aims to find an optimal deployment for
speeding up the training process.

General approaches have been recently studied for optimiz-
ing the deployment of jobs in cloud. PARIS [44] provides
performance prediction by combining a large amount of offline
and online performance statics across different workloads and
VM types. Arrow [13] proposes an augmented BO method by
adding low level metrics into the performance model and using
Extra-Trees algorithm as the surrogate model. CherryPick [12]
is the most related work that builds BO based model to identify
the most suitable configuration for targeting workloads. We
want to emphasize that HeterBO employs a very different
search strategy than CherryPick: CherryPick manually limits
the search space based on experience while HeterBO does
not trim any search space according to experience. Instead,
HeterBO makes judicious decisions by considering a heteroge-
neous search space and uses a protective mechanism to reduce
the risk of “randomly” exploring the more expensive search



region to avoid unnecessary high exploring cost.

VII. CONCLUSION

To support efficient MLaaS training deployment in public
cloud with user defined time and cost requirements, we
develop a fully automated MLaaS training Cloud Deployment
system (MLCD). MLCD is driven by a highly efficient Het-
erBO search method that takes into account the heterogeneous
exploration cost and machine learning specific prior, which
are neglected by existing solutions. Experimental evaluation
in AWS demonstrates the effectiveness and robustness of the
HeterBO search method and MLCD system.
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